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Abstract: We show that Einstein’s conformal gravity can explain, simply, and on the geometric
ground, galactic rotation curves, without the need to introduce any modification in both the gravi-
tational as well as in the matter sector of the theory. The geometry of each galaxy is described by a
metric obtained, making a singular rescaling of Schwarzschild’s spacetime. The new exact solution,
asymptotically anti-de Sitter, manifests an unattainable singularity at infinity that cannot be reached
in finite proper time; namely, the spacetime is geodetically complete. It deserves to be noticed that,
in this paper, we have a different opinion from the usual one. Indeed, instead of making the metric
singularity-free, we make it apparently but harmlessly even more singular than Schwarzschild’s.
Finally, it is crucial to point out that Weyl’s conformal symmetry is spontaneously broken into the
new singular vacuum rather than the asymptotically flat Schwarzschild’s one. The metric is unique
according to the null energy condition, the zero acceleration for photons in the Newtonian regime,
and the homogeneity of the Universe at large scales. Once the matter is conformally coupled to
gravity, the orbital velocity for a probe star in the galaxy turns out to be asymptotically constant
consistent with the observations and the Tully–Fisher relation. Therefore, we compare our model
with a sample of 175 galaxies and show that our velocity profile very well interpolates the galactic
rotation curves after a proper choice of the only free parameter in the metric. The mass-to-luminosity
ratios of galaxies turn out to be close to 1, consistent with the absence of dark matter.

Keywords: galactic rotation curves; dark matter; conformal gravity

1. Introduction

Despite the enormous successes of Einstein’s theory of gravity, it appears to be about
“twenty five percent wrong”. To date, the scientists proposed two possible solutions to the
problems that are known under the name of “dark matter” or “dark gravity”, and both
are extensions of Einstein’s field equations. The first proposal consists of modifying the
right side of Einstein’s equations, while according to the second proposal, are modified on
the left-hand side. Indeed, to take into account all the observational evidence—galactic
rotation curves, structure formation in the universe, CMB spectrum, bullet cluster, and
gravitational lensing—it seems necessary to somehow modify Einstein’s field equations.
However, in this paper, we propose the following different approach, namely: “understand
gravity instead of modifying it”.

In this document, we do not pretend to provide a definitive answer to the “mystery
of missing mass” or “missing gravity in the universe”, but we only focus on the galactic
rotation curves. Nevertheless, we believe our result to be quite astonishing on both the
theoretical and observational sides.

The analysis here reported, which follows the previous paper [1]1, is universal and
applies to any conformally invariant theory, nonlocal [2–5], or local [6], that has the
Schwarzschild metric as an exact [7] and stable solution [8–12].
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However, for the sake of simplicity, we will focus on Einstein’s conformal gravity,
whose general covariant action functional [13–21] reads

S =
∫

d4x
√
−ĝ
(

ϕ2R̂ + 6ĝµν∂µϕ∂νϕ − 2hϕ4
)

, (1)

which is defined on a pseudo-Riemannian spacetime Manifold M equipped with a metric
tensor field ĝµν, a scalar field ϕ (the dilaton), and it is invariant under the following Weyl
conformal transformation:

ĝ′µν = Ω2 ĝµν , ϕ′ = Ω−1ϕ , (2)

where Ω(x) is a general local function. In (1), h is a dimensionless constant that has to be
selected extremely small to have a cosmological constant compatible with the observed
value. However, we here assume h = 0 because the presence of a tiny cosmological constant
will not affect our result (see Appendix B for more details). For completeness and to show
the exactness of the solutions that we will expand later on, we here remind the reader of
the equations of motion for the theory (1) for h = 0,

ϕ2Ĝµν = ∇̂ν∂µϕ2 − ĝµν□̂ϕ2 − 6
(

∂µϕ∂νϕ − 1
2

ĝµνgαβ∂αϕ∂βϕ

)
,

□̂ϕ =
1
6

R̂ϕ .
(3)

The Einstein–Hilbert action for gravity is recovered if the Weyl conformal invariance
is broken spontaneously in exact analogy with the Higgs mechanism in the standard model
of particle physics (for more details we refer the reader to [22]).

If the dimensionless parameter h vanishes, the potential is identically zero everywhere
and the vacuum solution is ϕ = const., with the latter constant proportional to Newton’s
constant. Therefore, the full vacuum will be consistent with: (ϕ = const., R̂µν = 0), as
required by General Relativity in the absence of the cosmological constant. On the other
hand for h ̸= 0, the vacuum solution is again ϕ = const., but now R̂µν = Λĝµν, namely the
vacuum is: (ϕ = const., R̂µν = Λĝµν). Therefore, for h ̸= 0 the vacuum is not Minkowski’s
spacetime, but the de Sitter one. Finally, according to (3) the vacuum ϕ = 0 is degenerate
because the two EoMs in (3) are identically satisfied for any metric ĝµν.

To end up with General Relativity after the conformal symmetry is spontaneously
broken, the vacuum for the scalar field in the theory (1) (exact solution of the equations
of motion (3)) must be ϕ = const. = κ−1

4 = 1/
√

16πG, together with the metric satisfying
Rµν ∝ ĝµν. Therefore, replacing ϕ = 1/

√
16πG+ φ in the action (1) and using the conformal

invariance to eliminate the gauge-dependent Goldstone’s degree of freedom φ, we end up
with Einstein–Hilbert’s action in the presence of the cosmological constant,

SEH =
1

16πG

∫
d4x
√
−ĝ
(

R̂ − 2Λ
)
, (4)

where Λ is consistent with the observed value for a proper choice of the dimensionless
parameter h = 16πG Λ in the action (1). Ergo, Einstein’s gravity is simply the theory (1) in
the spontaneously broken phase of Weyl conformal invariance [22,23].

Let us now expand on the exact solutions in conformal gravity. Given the conformal
invariance (2), any rescaling of the metric ĝµν accompanied by a non-trivial profile for the
dilaton field ϕ is also an exact solution, namely

ĝ∗µν = Q2(x) ĝµν ϕ∗ = Q(x)−1 ϕ, (5)

solve the EoM obtained by varying the action (1) with respect to ĝµν and ϕ.
To date, the rescaling (5) has been used to show how the singularity issue disappear-

ance in conformal gravity [22–25]. However, and contrary to the previous papers, we here
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focus on a not asymptotically flat rescaling of the Schwarzschild metric as a workaround to
the non-Newtonian galactic rotation curves. Moreover, the logic in this project is opposite to
the one implemented in the past works and it is somehow anti-intuitive. In fact, in Section 2,
instead of removing the spacetime’s singularities, we deliberately introduce a singular
function Q(x) which leads to an unreachable asymptotic spacetime singularity. However,
as it will be proved in Section 2, the spacetime stays geodetically complete. Indeed, the
proper time to reach the singularity at the edge of the universe will turn out to be infinite.

Notice that to give a physical meaning to the metric (5), conformal symmetry has
to be broken spontaneously to a particular vacuum specified by the function Q(x). The
uniqueness of such rescaling will be discussed in Section 3. In the spontaneously broken
phase of conformal symmetry, observables are still invariant under diffeomorphisms.

In Section 4, we apply the spherically symmetric metric constructed in Section 2
to drive the orbital rotation velocity of probe particles. Then, in Section 5, the effective
gravitational potential of a single star is obtained and we subsequently obtain the galactic
rotation curves by summing up effective potential contributions from all stars in a galaxy.
Afterward, in Section 7, we compare our galactic rotation velocity profile to the observation
data of 175 galaxies, and meanwhile, determine the free parameters in our model by data
fitting. The fitting results are shown in the Appendixes C and D. Finally, we conclude the
above discussion and summarize the advantages of our models.

2. The Spherically Symmetric Solution in Conformal Gravity

As explained in the introduction, given an exact solution of Einstein’s conformal
gravity, any rescaled metric is an exact solution too, if the metric is accompanied by a
non-trivial profile for the dilaton. Therefore, we here consider the following conformal
rescaling of the Schwarzschild spacetime2,

dŝ∗2 = Q2(x)

[
−
(

1 − 2GM
x

)
dt2 +

dx2

1 − 2GM
x

+ x2(dθ2 + sin2 θdφ2)

]
, (6)

Q(x) =
1

1 − γ∗
2

x
,

ϕ∗ = Q(x)−1 κ−1
4 ,

(7)

where we identified x with the radial coordinate. The reason for the particular rescaling
Q(x) will be clarified shortly, making use of a more suitable radial coordinate. Notice that
Q(x) is singular for x = 2/γ∗, and, therefore, the metric is defined for x < 2/γ∗. However,
we will prove in the next section that the asymptotic singularity is unattainable; namely,
it requires an infinite amount of proper time to be reached. As a remnant of the previous
work [1], we named γ∗/2 the free inverse length scale present in the solution. However,
to manifestly identify the effect of the conformal symmetry it would be useful and more
suitable to define: γ∗/2 ≡ ℓc, which we will refer to as the characteristic scale of the system.

To show that the scaling factor Q(x) in (7) is the only one compatible with (i) g00 = −1/g11
(we will expand on the uniqueness of the metric in Section 3), we make a coordinate trans-
formation to the usual radial Schwarzschild coordinate “r”, which identifies the physical
radius of the two-sphere (ii). The new radial coordinate r is related to x as follows,

x =
r

1 + γ∗
2 r

, (8)

∂x(r)
∂r

=
1

Q(r)2 , (9)

and the metric turns into:
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dŝ∗2 = −Q2(r)
(

1 − 2GMQ(r)
r

)
dt2 +

dr2

Q2(r)
(

1 − 2GMQ(r)
r

) + r2(dθ2 + sin2 θdφ2) ,

Q(r) = 1 + γ∗

2 r
(

notice that x = r
Q(r)

)
,

ϕ∗(r) = Q(r)−1 κ−1
4 .

(10)

It deserves to be noted that any rescaling that differs from the one in (7) is not consistent
with the two requirements above, namely (i) and (ii). Therefore, in the infinite class of exact
solutions conformally equivalent to the Schwarzschild metric, there is only one geometry
non-asymptotically flat consistent with g00 = −1/g11 and two-dimensional transverse area
4πr2. Notice that Q(r) in (10) is only linear in r, which is the minimal modification of the
metric compatible with analyticity. As mentioned above, we will expand further on the
uniqueness of the metric in Section (3).

2.1. Regularity of the Kretschmann and Weyl Square Invariants

As a first check of the regularity, we look at the spacetime in x = 2/γ∗. Since the
Schwarzschild spacetime is Ricci flat, before the rescaling the first non-trivial curvature
invariant is the Kretschmann scalar, which reads:

K̂ := R̂αβγδR̂αβγδ = ĈαβγδĈαβγδ =
48G2M2

x6 , (11)

where in the last equality we used that R̂αβ = 0 and introduced the Weyl tensor Ĉαβγδ.
Under the Weyl rescaling (2) the Weyl tensor, for the following position of the indexes, is
invariant, namely

Ĉ∗α
βγδ = Ĉα

βγδ . (12)

Hence, the Kretschmann scalar (11) for the metric (7) turns into:

Ĉ∗2 = Ĉ∗α
βγδ Ĉ∗µ

νρσ ĝ∗αµ ĝ∗βν ĝ∗γρ ĝ∗δσ

= Ĉα
βγδ Ĉµ

νρσ ĝαµ ĝβν ĝγρ ĝδσQ2(x) Q−2(x) Q−2(x) Q−2(x) (13)

=
Ĉ2

Q4(x)
.

Finally, for the metric (7) we find:

Ĉ∗2 =
K̂

Q4(x)
=

48G2M2

x6

(
1 − γ∗

2
x
)4

, (14)

which is zero in the limit x → γ∗/2. The latter point, as we will show explicitly in the next
subsection, represents the spatial infinity for the metric (7), because nothing can reach such
a point in finite proper time. Therefore, the curvature invariant approaches asymptotically
zero.

Using the radial coordinate r the curvature invariant Ĉ∗2 turns into (x = r/Q(r)):

Ĉ∗2(r) := Ĉ∗2(x(r)) =
Ĉ2(x(r))
Q4(x(r))

=
48G2M2

r6 Q6(r) Q−4(r) =
48G2M2

r6

(
1 +

γ∗

2
r
)2

, (15)

which is now zero for r → +∞ according to the inverse coordinate transformation from x
to r, namely

r =
x

1 − γ∗
2 x

, (16)
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which diverges to infinity for x → γ∗/2.
On the other hand, the Kretschmann scalar for the metric (10) is:

K̂∗ =
1

2r6

[
−2γ∗2GMr3(16 + 12γ∗r + 3γ∗2r2) + γ∗2r4(16 + 12γ∗r + 3γ∗2r2)

+4G2M2(24 + 16γ∗r + 8γ∗2r2 + 4γ∗3r3 + γ∗4r4)
]
.

(17)

At large distance the Kretschmann invariant for the metric (10) tends to a constant
K̂∗ → 3γ∗4/2, which means that the metric (10) describes asymptotically a spacetime of
constant curvature. Indeed, at large scales the metric (10) approaches the anti-de Sitter
spacetime with scalar curvature R → −3γ∗2 in the limit r → +∞.

Therefore, the two curvature invariants computed above, namely Ĉ∗2 and K̂∗, are
asymptotically finite, and x = 2/γ∗ is not a curvature singularity. The latter point, as we
will show explicitly in the next subsection, represents the spatial infinity for the metric (7)
because nothing can reach such a point in finite proper time.

Although, in this paper, we are concerned with the spacetime far outside the event
horizon (indeed all the probes in the galaxy are stars and not black holes), the reader may
worry about the singularity at x = 0 or r = 0. However, the resolution of singularities
has been rigorously dealt with in several previous articles [22,23] and the results found
there can be exported directly to the metric (7). Indeed, it is sufficient to rescale the latter
metric as explicitly performed in [22]. For completeness, starting from the metric (10), we
here provide an explicit example of geodetically complete spacetime from short to large
distances, namely

dŝ∗2 = S(r)

−Q2(r)
(

1 − 2GMQ(r)
r

)
dt2 +

dr2

Q2(r)
(

1 − 2GMQ(r)
r

) + r2dΩ(2)

 ,

Q(r) = 1 +
γ∗

2
r

(
notice that x =

r
Q(r)

)
,

ϕ∗(r) = S(r)−1/2Q(r)−1 κ−1
4 ,

S(r) = 1 +
L4

r4 ,

(18)

where L is a parameter with the dimension of length (for more details and observational
constraints on L see [22,24,27]).

Finally, we notice that the geometry (10) has the same Penrose diagram of the
Schwarzschild black hole because a conformal rescaling cannot change the causality struc-
ture of the spacetime.

2.2. Geodetic Completion: Conformally Coupled Particles

For the sake of simplicity from now, in the paper, we will remove the label “∗” from
the metric and the dilaton field. Let us start with a conformally coupled particle whose
action reads:

Scp = −
∫ √

− f 2ϕ2 ĝµνdxµdxν = −
∫ √

− f 2ϕ2 ĝµν
dxµ

dλ

dxν

dλ
dλ , (19)

where f is a positive constant coupling strength, λ is the world-line parameter, and xµ(λ)
is the trajectory of the particle3. From (19), the Lagrangian reads:

Lcp = −
√
− f 2ϕ2 ĝµν ẋµ ẋν , (20)
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and the translation invariance in the time-like coordinate t implies

∂Lcp

∂ṫ
= − f 2ϕ2 ĝtt ṫ

Lcp
= const. ≡ −E , (21)

therefore, the equation of motion ṫ reads

ṫ =
LcpE

f 2ϕ2 ĝtt
. (22)

Since we are interested in evaluating the proper time for the particle to reach the
singularity of the universe located in x = 2/γ∗, we choose the proper time gauge, namely
λ = τ. Therefore, E can be formally interpreted as the energy of the test particle. From the
equation ĝµν ẋµ ẋν = −1, we have Lcp = − f ϕ then the Equation (22) is given by

ṫ = − E
f ϕ ĝtt

. (23)

Replacing ṫ from (23) in the radial geodesic equation gtt ṫ2 + gxx ẋ2 = −1 and using the
solution of the EOM for ϕ, namely ϕ = Q−1κ−1

4 , we end up with the following first-order
differential equation for x(τ), namely

Q(x)4 ẋ2 + Q(x)2
(

1 − 2GM
x

)
−

E2κ2
4

f 2 Q(x)2 = 0 , (24)

or, introducing the dimensionless parameter e2 ≡ E2κ2
4

f 2 ,

Q(x)2 ẋ2 =
2GM

x
+ e2 − 1 . (25)

Since we are interested in investigating the asymptotic completeness of the spacetime
for large x, we can assume x ≫ 2GM and (25) simplifies to

Q(x)2 ẋ2 ≃ e2 − 1 , (26)

which must be positive because Q(x)2 ẋ2 is surely positive. Replacing Q(x) from (7) into
(26) we obtain:

|ẋ|
|1 − γ∗

2 x|
≃
√

e2 − 1 > 0 . (27)

We here would like to study a particle moving from smaller to larger values of x, then
ẋ > 0, moreover, x < γ∗/2, therefore (27) simplifies to

ẋ

1 − γ∗
2 x

≃
√

e2 − 1 > 0 , (28)

and the solution is:

τ =
2

γ∗
√

e2 − 1
log

(
1 − γ∗

2 x0

1 − γ∗
2 x

)
or x(τ) =

2
γ∗

[
1 − e−

γτ
2

(
1 − γ∗

2
x0

)]
. (29)

According to the solution (29), the proper time to reach the edge of the universe located
in x = 2/γ∗ = ℓc is infinity. Moving to the radial coordinate r defined in (8),

lim
x→ γ∗

2

r = lim
x→ γ∗

2

x

1 − γ∗
2 x

= +∞ . (30)
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Therefore, a massive particle will reach r = +∞ in an infinite amount of proper time.
Indeed, in the coordinate r, the radial geodesic Equation (25) turns into:

Q(r)2ṙ2
(

∂x[r(τ)]
∂r

)2

=
2GMQ(r)

r
+ e2 − 1 ,

ṙ2

Q(r)2 =
2GMQ(r)

r
+ e2 − 1

(31)

where we used (8) and (9),

ṙ
Q(r)

≃
√

GMγ∗ + e2 − 1 := c for r ≫ 2GM, ṙ > 0 , and GMγ∗ + e2 − 1 > 0 ,

τ =
2

c γ∗ log

 1 +
γ∗

2
r

1 +
γ∗

2
r0

 .
(32)

So far, we found that the proper time for a particle (conformally coupled) to reach the
edge of the Universe is infinite in both x and r coordinates, in the former case the boundary
is located at the finite value x = γ∗/2, in the latter case it is located in r = +∞. In the next
section, we will study the geodesic motion of massless particles.

2.3. Geodetic Completion: Massless Particles

For massless particles, the correct action, which is invariant under reparametrizations
of the world line, p′ = f (p), is

Sγ =
∫

Lγdλ =
∫

e(p)−1ϕ2 ĝµν
dxµ

dp
dxν

dp
dp , (33)

where e(p) is an auxiliary field that transforms as e′(p′)−1 = e(p)−1(dp′/dp) in order to
guarantee the invariance of the action. The action (33) is not only invariant under general
coordinate transformations but also the Weyl conformal rescaling (2).

The variation δSγ/δe gives

dŝ2 = ĝµνdxµdxν = 0 , (34)

which is equivalent to saying that massless particles travel along the light cone.
The variation with respect to xµ gives the geodesic equation in the presence of the

dilaton field, namely (in the gauge e(p) = const.)

D2(g = ϕ2 ĝ)xλ

dp2 =
D2(ĝ)xλ

dp2 + 2
∂µϕ

ϕ

dxµ

dp
dxλ

dp
− ∂λϕ

ϕ

dxµ

dp
dxµ

dp
= 0 , (35)

where D2(ĝ) is the covariant derivative with respect to the metric ĝµν.
However, when we contract Equation (35) with the velocity dxλ/dp and we use

dŝ2 = 0 obtained in (34), we obtain the following on-shell condition,

dxλ

dp
D2(ĝ)xλ

dp2 = 0 . (36)

Therefore, the covariant derivative D2(ĝ)xλ

dp2 must be proportional to the velocity, namely

D2(ĝ)xλ

dp2 = f
dxλ

dp
( f = const.) (37)
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because the velocity is null on the light cone. Under a reparametrization of the world line
q = q(p) Equation (37) becomes

d2xλ

dq2 + Γ̂λ
µν

dxµ

dp
dxν

dp
=

dxλ

dp

(
dp
dq

)(
f

dq
dp

− d2q
dp2

)
. (38)

Choosing the dependence of q on p such us to make vanish the right-hand side of (38),
we end up with the geodesic equation in the affine parametrization. Hence, we can redefine
q → λ and, finally, we obtain the affinely parametrized geodesic equation for photons in
the metric ĝµν,

D2(ĝ)xλ

dλ2 = 0 . (39)

We can now investigate the conservation laws based on the symmetries of the metric
ĝµν. Let us consider the following scalar,

α̂ = ĝµνvµ dxν

dλ
= ĝµνvµuν . (40)

where vµ is a general vector and uν the four velocities. Taking the derivative of (40) with
respect to λ and using the geodesic Equation (39), we obtain:

d
dλ

α̂ =
1
2

vµ∂µ ĝρν
dxρ

dλ

dxν

dλ
+ ĝµν∂ρvµ dxν

dλ

dxρ

dλ
=

1
2
[Lv ĝ]ρν

dxρ

dλ

dxν

dλ
, (41)

where [Lv ĝ] is the Lie derivative of ĝµν by a vector field vµ. Thus, if vµ is a Killing vector
field, namely [Lv ĝ] = 0, α̂ is conserved:

d
dλ

[
ĝµνvµ dxν

dλ

]
= 0 . (42)

The metric (7) is time-independent and spherically symmetric (in particular it is
invariant under t → t + δt and φ → φ + δφ). Therefore, we have the following Killing
vectors associated with the above symmetries

ξα = (1, 0, 0, 0) , ηα = (0, 0, 0, 1) . (43)

Since the metric is independent of the t- and φ-coordinates, according to (40) we can
construct the following conserved quantities

e = −ξαuβ ĝαβ = −ĝtβuβ = −ĝttut = Q2(x)
(

1 − 2M
x

)
dt
dλ

= Q2(x)
(

1 − 2M
x

)
ṫ , (44)

ℓ = ηαuβ ĝαβ = ĝϕβuβ = ĝϕϕuϕ = Q2(x)x2 sin2 θ φ̇ , (45)

where the null vector

uα =
dxα

dλ
(46)

satisfies

u · u = ĝαβ
dxα

dλ

dxβ

dλ
= 0 , (47)

as a consequence of (34).
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From (47) in the equatorial plane (i.e., θ = π/2), we obtain the following equation

−
(

1 − 2GM
x

)
ṫ2 +

ẋ2(
1 − 2GM

x

) + x2 φ̇2 = 0 . (48)

Note that the rescaling of the metric cancels out in the above Equation (48) for null
geodesics, but Q2(x) will appear again when the conserved quantities (44) and (45) are
taken into account. Let us solve (44) for ṫ and (45) for φ̇ and, afterward, replace the results
in (48). The outcome is:

− e2

Q(x)4
(

1 − 2GM
x

) +
ẋ2

1 − 2GM
x

+
ℓ2

Q(x)4x2 = 0 . (49)

Let us focus on the radial geodesics (i.e., ℓ = 0), which will be sufficient to verify the
geodesic completeness. Equation (49) simplifies to:

Q2(x)|ẋ| = e . (50)

The above first-order differential equation can be easily integrated for a photon travel-
ing toward the boundary x = 2/γ∗, namely for ẋ > 0. The result of the integration is:

x(λ) =
4λ − 2γ∗λx0 + 4x0

2γ∗λ − γ∗2λ − x0 + 4
, (51)

where x0 is the initial position from which the photon is emitted, and

lim
λ→+∞

x(λ) =
2

γ∗ . (52)

It turns out that photons cannot reach x = 2/γ∗ for any finite value of the affine
parameter λ.

In the coordinate r, the geodesic Equation (50) turns into:

Q(x[r])4
(

∂x[r(τ)]
∂r

)2

ṙ2 = e2 , (53)

then we have

|ṙ| = e . (54)

It is clear to see that a massless particle can reach r = +∞ only for λ = ∞. The
above Equation (54) has been derived in the Appendix A.1 also directly starting from the
metric (10).

3. Uniqueness of the Solution

In the first part of this paper, the rescaling of the metric Q(x) was chosen compatibly
with the relation g00 = −1/g11, as evident in the coordinate r. In this section, we would
like to provide three fundamental reasons to support such a choice.

(i) The first one is related to the null energy condition, which asserts that p+ ρ ⩾ 0 [28].
Indeed, to preserve the null energy condition we must impose g00 = −1/g11.

(ii) The second one is related to the acceleration of the light in the Newtonian regime.
Indeed, if the velocity of light has to remain constant in empty space surrounding a point-
like mass, then photons should experience zero acceleration [29]. Using the last result in
the previous subsection, namely |ṙ| = e we obtain r̈ = 0, which is true only if the relation



Universe 2024, 10, 19 10 of 38

g00 = −1/g11 for the components of the metric tensor is satisfied. Let us expand on this
point. For a general spherically symmetric metric,

ds2 = −A(r)dt2 + B(r)dr2 + r2dΩ2, (55)

making use again of (44), namely

e = A(r)ṫ , (56)

and ds2 = 0, the radial geodesic equation reads

ṙ2 =
e2

A(r)B(r)
. (57)

Then, we have

2 ṙ r̈ =
(

e2

A(r)B(r)

)′
ṙ , (58)

where ′ means derivative respect to r. Finally,

r̈ =
(

e2

2A(r)B(r)

)′
. (59)

Therefore, to not experience acceleration in the radial coordinate we must have:
A(r)B(r) = const. Notice that here the radial coordinate is not the physical radial distance
because the spacetime is not asymptotically flat. However, according to the Taylor expan-
sion of (83) in the Newtonian intermedium regime ℓr ≈ r the acceleration above vanishes.

(iii) Last but not least, we should consider the impact of the large distance modification
of the Schwarzschild metric on the homogeneity and isotropy of the Universe.

Let us start by considering the following coordinate transformation from the radial
coordinate r to ρ,

ρ =
4r

2(1 + αr + βr2)1/2 + 2 + αr
, (60)

τ =
∫

dtR(t) , (61)

in the following general not asymptotically flat metric,

dŝ∗2 = −
(

1 + αr + βr2
)

dt2 +
dr2

(1 + αr + βr2)
+ r2dΩ(2) . (62)

The above metric (62) in the new coordinates reads:

dŝ∗2 =
1

R2(τ)

 1 − α2ρ2

16 + βρ2

4(
1 − αρ

4
)2 − βρ2

4

2
−dτ2 +

R(τ)2[
1 −

(
α2

16 − β
4

)
ρ2
]2

(
dρ2 + ρ2dΩ(2)

) , (63)

where R(τ) := R(t(τ)).
Now, in a geometry that is both homogeneous and isotropic about all points, any

observer can serve as the origin of the radial coordinate ρ; thus, in their own local rest
frame, each observer is able to make the above general coordinate transformation using
their own particular ρ. Moreover, in conformal gravity, we can make an overall rescaling of
the metric to finally end up with a comoving Robertson-Walker (RW) spacetime written in
spatially isotropic coordinates with spatial curvature K = β − α2/4,
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dŝ∗2 = F(τ, ρ)

[
−dτ2 +

R(τ)2

(1 + Kρ2/4)2

(
dρ2 + ρ2dΩ(2)

)]
. (64)

For the case of the metric (10), taking r ≫ 2GM and GMγ∗ ≪ 1,

dŝ∗2 ≈ −
(

1 + γ∗r +
γ∗2

4
r2
)

dt2 +
dr2(

1 + γ∗r + γ∗2

4 r2
) + r2dΩ(2) . (65)

Therefore, we can identify the constants α = γ∗ and β = γ∗2/4, and in the new
coordinates (τ, ρ) the metric (65) takes the following RW form,

dŝ∗2 =
1

R2(τ)

1(
1 − γ∗

2 ρ
)2

[
−dτ2 + R(τ)2

(
dρ2 + ρ2dΩ(2)

)]
, (66)

which coincides with the metric (7) for x ≫ 2GM upon reintroducing the time coordinate t
defined in (61).

Therefore, the metric proposed in this paper is the only one that does not affect the
homogeneity of the Universe at large scales. Finally, we notice that the metric (65) is
asymptotically (for large r) anti-de Sitter, whose stability is guaranteed from the fact that it
comes from a rescaling of the Schwarzschild metric, which is known to be stable.

4. The Orbital Velocity

In this section, we compute the orbital velocity of a conformally coupled probe particle
on the equatorial plane in the geometry (10) and (7), respectively, assuming zero radial
velocity. For completeness let us remember here the action for a conformally coupled
particle (19),

Scp = −
∫ √

− f 2ϕ2 ĝµνdxµdxν = −
∫ √

− f 2ϕ2 ĝµν
dxµ

dλ

dxν

dλ
dλ , (67)

from which the Lagrangian reads:

Lcp = −
√
− f 2ϕ2 ĝµν ẋµ ẋν . (68)

Since both the metrics (10) and (7) are invariant whether we make the replacements
t → t + const. and φ → φ + const.. Therefore, from the Lagrangian (68) we obtain the
following conserved quantities (for θ = π/2),

∂Lcp

∂ṫ
= − f 2ϕ2 ĝtt ṫ

Lcp
= −E ,

∂Lcp

∂φ̇
= −

f 2ϕ2 ĝφφ φ̇

Lcp
= ℓ . (69)

In the proper time gauge λ ≡ τ, dŝ2/dλ2 = −1 and Lcp = − f ϕ. Hence, from (69),

ṫ =
E

f ϕ ĝtt
, φ̇ = − ℓ

f ϕ ĝφφ
. (70)

4.1. The Orbital Velocity in the Metric (10)

Let us in this section focus on the metric (10). Again in the proper time gauge and for
θ = π/2, the geodesics equation reads

ĝtt ṫ2 + ĝrr ṙ2 + ĝφφ φ̇2 = −1 , (71)



Universe 2024, 10, 19 12 of 38

and replacing (70) in (71), we obtain:

E2

f 2 ϕ2 ĝtt
+ ĝrr ṙ2 +

ℓ2

f 2 ϕ2 ĝφφ
= −1 . (72)

Since we are interested in the orbital motion we can take ṙ = 0 and we end up with
the following constraint equation,

− E2

f 2 Q−2(r)κ−2
4 Q2(r)

(
1 − 2GMQ(r)

r

) +
ℓ2

f 2 Q−2(r)κ−2
4 r2

= −1 . (73)

In order to extract a simple relation for the ratio between ℓ2 and E2, we take the
derivative of Equation (73) respect to r,

E2
d
dr

(
1 − 2GMQ(r)

r

)
(

1 − 2GMQ(r)
r

)2 + ℓ2 d
dr

(
Q2(r)

r2

)
= 0 . (74)

Then, we obtain

=⇒ ℓ2

E2 =
2GMr3

(2 + rγ∗)(r − GM(2 + rγ∗))2 . (75)

The physical velocity on the equatorial plane and along the φ-direction reads:

v =

√
ĝφφ√
−ĝtt

dφ

dt
=

√
ĝφφ√
−ĝtt

φ̇

ṫ
, (76)

where the dot stays for the derivative with respect to the proper time τ. Replacing ṫ and φ̇
in (70) into (76) we obtain:

v2 = − ĝtt

ĝφφ

ℓ2

E2 , (77)

where we finally replace (75),

v2 =
GM(2 + γ∗r)

2(r − GM(2 + γ∗r))
=

GMQ(r)
r − 2GMQ(r)

. (78)

In the limit of r ≫ 2GM, namely far from the Schwarzschild radius, the velocity turns
into:

v2 =
GMQ(r)

r(1 − GMγ∗)
, (79)

and if we also assume GMγ∗ ≪ 1,

v2 =
GMQ(r)

r
=

GM
r

+
GMγ∗

2
(80)

which asymptotically approaches the constant value:

v2 → v2
∞ =

GMγ∗

2
. (81)

Let us now express the velocity in terms of the physical length ℓr in place of the radial
coordinate r. What we need is the physical radial length, namely
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ℓr =
∫ √

ĝrr dr + const =
∫ dr

Q(r)

√
1 − 2GMQ(r)

r

+ const

≈
∫ dr
√

1 − GMγ∗ (1 +
γ∗

2
r)

+ const =
2 log(2 + γ∗ r)
γ∗√1 − GMγ∗ + const .

(82)

where in the last two steps we have integrated for r ≫ 2GM. Finally, we fix the integration
constant imposing that ℓr(r = 0) = 0,

ℓr =
2 log

(
1 + γ∗

2 r
)

γ∗√1 − GMγ∗ . (83)

Notice that in the intermedium Newtonian regime, namely r ≪ 2/γ∗, and for
GMγ∗ ≪ 1, ℓr ≈ r. The inverse relation r(ℓr) reads:

r(ℓr) =
2
(

e
1
2 γ∗ℓr

√
1−GMγ∗ − 1

)
γ∗ ≈

2
(

e
1
2 γ∗ℓr − 1

)
γ∗ , (84)

where the last approximation comes again from GMγ∗ ≪ 1 (notice that also r(ℓr = 0) = 0).
Replacing (84) in (79), we obtain the physical velocity square, namely

v2(ℓr) =
GMγ∗

4

[
1 + coth

(
1
4 ℓrγ∗√1 − GMγ∗

)]
1 − GMγ∗ , (85)

which further simplifies for GMγ∗ ≪ 1,

v2(ℓr) =
GMγ∗

4

[
1 + coth

(
ℓrγ∗

4

)]
. (86)

The above astonishing simple analytic result correctly interpolates between Newtonian
velocity and the asymptotic constant value (81). It deserves to be noticed that for small
γ∗, namely ℓc ≫ rg = 2GM (rg is the Schwarzschild radius), the exact result (85) and the
velocity (80) are extremely close to each other. Therefore, the following replacement is a
good approximation of (80),

v2(ℓr) =
GM
ℓr

+
GMγ∗

2
. (87)

4.2. The Orbital Velocity in the Metric (7)

In this section, we compute again the velocity square, but now for the metric (7). This
computation not only will provide a further check of our result (86), but also will make
more explicit the crucial role of the asymptotic singularity in x = 2/γ∗ = ℓc.

According to the previous section (ṫ and φ̇) (70), the velocity (76), and the velocity
square (77) are general and independent of the metric. However, the ratio ℓ2/E2 does
depend on the metric. Indeed, the proper time gauge for the metric (7) reads:

dŝ2

dλ2 = −1 =⇒ ĝtt ṫ2 + ĝxx ẋ2 + ĝφφ φ̇2 = −1 (88)

which, for x =const. and replacing the metric (7) within, turns into:
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ĝtt

(
E

f ϕ ĝtt

)2
+ ĝφφ

(
− ℓ

f ϕ ĝφφ

)2
= −1 =⇒ E2

f 2 ϕ2 ĝtt
+

ℓ2

f 2 ϕ2 ĝφφ
= −1

=⇒ E2

f 2 Q−2(x) Q2(x)
(

1 − 2GM
x

) +
ℓ2

f 2 Q−2(x) Q2(x)x2 = −1

=⇒ E2

f 2
(

1 − 2GM
x

) +
ℓ2

f 2 x2 = −1 ,

(89)

which is independent of the rescaling Q(x). Taking the derivative of (89) respect to radial
coordinate x, we find:

ℓ2

E2 = − g′tt
g′φφ

g2
φφ

g2
tt

. (90)

where we defined:

gtt = −
(

1 − 2GM
x

)
, gφφ = x2 . (91)

The one above is not just a definition, but the Schwarzschild metric before introducing
the rescaling Q(x). Substitution of (90) in the velocity square (77) and making use of (91)
together imply:

v2(x) =
g′tt
g′φφ

gφφ

gtt
=

GM
x − 2GM

≈ GM
x

, (92)

where in the last equality we assumed x ≫ 2GM.
The result just found for the velocity square may seem trivial and obvious, but it

is actually rich in geometric meaning. Indeed, it is exactly the Newtonian result in the
radial coordinate x. However, we must remember that the larger value for x is 2/γ∗ and,
therefore, the minimum asymptotic value for the velocity square is GMγ∗/2 in perfect
agreement with (81). This is clearly due solely to the singular structure of the conformal
geometry in the unattainable asymptotic point x = 2/γ∗.

To complete the section we now express the velocity square in terms of the physical
length ℓx that we set about calculating,

ℓx =
∫ √

gxx dx + const. =
∫

dx
Q(x)√
1 − 2GM

x

+ const. ≈
∫

Q(x) dx + const.

= − 2
γ∗ log

(
1 − γ∗x

2

)
,

(93)

where again we assumed x ≫ 2GM and we fixed the integration constant imposing
ℓx(x = 0) = 0. Notice that ℓx → +∞ for x → 2/γ∗.

It is straightforward to invert (93),

x(ℓx) =
2

γ∗

(
1 − e−

ℓxγ∗
2

)
. (94)

Replacing the above expression in the velocity square (92) we find:

v2(ℓx) =
GM

x(ℓx)
=

GMγ∗

4

[
1 + coth

(
ℓxγ∗

4

)]
, (95)

which of course agrees with (86), which is also expressed in terms of the physical distance.
Notice that ℓx ≡ ℓr because there is only one physical observable distance in nature.



Universe 2024, 10, 19 15 of 38

A further remark in comparison with the existing literature on conformal gravity is
needed. In particular, we will focus on the solution proposed in [30] and the issue pointed
out in [31].

To preserve the conformal symmetry, in this paper the matter has been coupled to
gravity in a conformal invariant way. Hence, in the metric (7), which is conformally
equivalent to the Schwarzschild solution, the motion of conformally coupled massive probe
particles is the same as in the Schwarzschild metric. However, since the conformal rescaling
Q(x) (see again the metric (7)) is singular, the Schwarzschild coordinate x has a cutoff at
the value x = 2/γ∗ ≡ ℓc, which is actually the causal infinity because to reach such limit
we need an infinite amount of proper time. Therefore, the velocity v(x) (see (92) and the
discussion in the text right after) has a lower positive bound v(x = ℓc) = GMγ∗/2 > 0,
which is consistent with asymptotically flat rotation curves. Therefore, contrary to [30], our
model can explain the rotation curves on a purely geometrical ground and consistently
with Hobson and Lasenby’s analysis [31].

5. Newtonian Effective Theory and Gravitational Potential

To derive the effective gravitational potential, we start from the orbital velocity in
terms of the physical distance. Indeed, in Newtonian physics, we only deal with physical
lengths, and the Lagrangian simply reads:

LN =
1
2

m
(

d⃗r
dt

)2
− mΦ(|⃗r|) = 1

2
m
(
ℓ̇2

r + ℓ2
r φ̇2
)
− mΦ(ℓr) , (96)

where |⃗r| = ℓr, m is the mass of a probe particle, and we assumed to be on the equatorial
plane θ = π/2. From the Lagrangian above the EoM, assuming ℓ̇r = 0, is:

ℓr φ̇2 =
v2(ℓr)

ℓr
=

∂Φ(ℓr)

∂ℓr
= −Er(ℓr) =⇒ v2(ℓr) = −ℓr Er(ℓr) , (97)

where for future reference we also defined the gravitational field E⃗ = −∇⃗Φ.
Therefore, the effective potential can be obtained simply by integrating (86) or (95),

Φ(ℓr) =
∫

dℓ′r
v2(ℓ′r)

ℓ′r
+ const. . (98)

However, the velocity in (98) can be very well approximated making use of (87), and
the integral (98) can be easily computed to give the following result,

Φ(ℓr) ≈ −GM
ℓr

+
GMγ∗

2
log(ℓr) + const. . (99)

Now we have to consider the contribution of all the stars in a galaxy gravitationally
acting on a probe star. This consists of integrating the potential in cylindrical coordinates
after having introduced the following three vectors: R⃗, which points from the center of
the galaxy to the probe star, R⃗′ from the center of the galaxy to one of its stars, and r⃗
pointing from a star in the galaxy to the probe star. Therefore, we have: r⃗ = R⃗ − R⃗′ and the
contribution to the potential due to any star in the galaxy is:

Φ(|R⃗ − R⃗′|) = − GM
|R⃗ − R⃗′|

+
GMγ∗

2
log(|R⃗ − R⃗′|) + const. ≡ Φ0 + Φlog . (100)

Notice that we replaced ℓr with |R⃗ − R⃗′| because the Newtonian effective theory is
defined in flat spacetime.

Let us now consider a thin disk galaxy model with an exponential distribution of
matter that decays at large distances. We assume that the mass of each star is M⊙(solar



Universe 2024, 10, 19 16 of 38

mass) and the distribution of stars is described as follows (in cylindrical coordinates:
R, φ, z):

ρ(R′, z′) = Σ0 e−
R′
R0 δ(z′) , [ρ] = L−3 , (101)

where z is the coordinate orthogonal to the galaxy plane. Moreover, R0 is the radius of the
galaxy and Σ0 is related to the number of stars of mass comparable to the solar mass in the
galaxy, i.e.,

N∗ =
∫ +∞

0
dR′ R′

∫ 2π

0
dφ′

∫ +∞

−∞
dz′ ρ(R′, z′)

=
∫ +∞

0
dR′ R′

∫ 2π

0
dφ′

∫ +∞

−∞
dz′Σ0 e−

R′
R0 δ(z′) = 2πΣ0R2

0 (102)

=⇒ Σ0 =
N∗

2πR2
0

.

In order to obtain the total contribution to the gravitational potential we have to
integrate over all the stars in the galaxy each of them of solar mass M⊙, namely:

ΦT(R, z) =
∫ +∞

0
dR′ R′

∫ 2π

0
dφ′

∫ +∞

−∞
dz′ ρ(R′, z′)Φ(R, R′, z, z′) ,

Φ(R, R′, z, z′) = − GM⊙

[R2 + R′2 − 2R R′ cos φ′ + (z − z′)2]

1
2

+
GM⊙γ∗

2
log


[
R2 + R′2 − 2R R′ cos φ′ + (z − z′)2]1

2

ℓ

 ,

(103)

where R is the distance of the probe star from the galactic center in cylindrical coordinates
and R0 is the characteristic scale of the galaxy. Since Φ(R, R′, z, z′) consists of two parts,
we will integrate the two contributions of the potential separately obtaining the two
corresponding contributions to the velocity square. Finally, ℓ is the scale coming from
the integration constant that cannot be zero since the potential grows with the distance.
However, we do not have to worry about such scale because it will disappear in the orbital
velocity that is related to the force and not the potential.

For the Newtonian potential contribution to (100), namely Φ0 = −GM/|R⃗ − R⃗′|,
and assuming the density profile (101), the rotation velocity square of a probe star was
computed in [32] and the result is:

v2
0 =

GN∗M⊙R2

2R3
0

[
I0

(
R

2R0

)
K0

(
R

2R0

)
− I1

(
R

2R0

)
K1

(
R

2R0

)]
, (104)

where I0, I1 are the modified Bessel functions of the first kind and K0, K1 are the modified
Bessel functions of the second kind. In (104) M = N∗M⊙ is the mass of all stars in the
galaxy.

To compute the logarithmic contribution to the potential in (100), namely

Φlog =
GMγ∗

2
log

|R⃗ − R⃗′|
ℓ

, (105)

we can use the Gaussian theorem

divE⃗ = −4πGρ , (106)
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to sum up all the stars in the galactic disk. Notice that we can assume the sources of the
logarithmic potential to be wires because of the cylindrical symmetry of the galaxy.

Due to the above logarithmic correction (105), the gravitational field in cylindrical
coordinates (we here fix the origin in R⃗′ = 0) is attractive and reads:

ER = −∂Φlog(R)
∂R

= −GMγ∗

2R
. (107)

Integrating (106) on a three-dimensional volume V with boundary ∂V in Cylindrical
coordinates, we can infer the energy density ρs(x⃗) = ρ0δ(x)δ(y) of a single wire-like source,
namely ∫

V divE⃗ dv = Flux
∣∣∣
∂V
(E) = −4πG

∫
V dvρs(x⃗) ,

2πR∆z ER = −4πGρ0 ∆z .
(108)

Replacing (107) in (108) we finally find ρ0,

ρ0 = −R ER
2

=
Mγ∗

4
, (109)

and the potential can be recast in the following form in terms of the energy density,

Φlog = 2Gρ0 log
|R⃗ − R⃗′|

ℓ
. (110)

If the gravitational sources and the probe star are all located in the same plane (we here
assume the galactic disk to be in z = 0 in cylindrical coordinates), then Φlog is analogous to
the Newtonian potential of N∗ massive infinite wires each with uniform density ρ0 and
generating a logarithmic gravitational potential.

Assuming the principle of the linearity of the gravitational force and then of the
gravitational potential, we can now apply again Gauss’ theorem to all the stars in the galaxy
that are described by the energy density profile in cylindrical coordinates:

ρs(x⃗) = ρ0δ(x)δ(y) −→ ρN∗(R) = ρ0 Σ0 e−
R

R0 =
M⊙γ∗

4
Σ0 e−

R
R0 , [ρN∗ ] = ML−3, (111)

where we assumed any star to have mass M⊙. Notice that (111) is an energy density while
(101) is a density distribution.

Finally, the Gaussian theorem making use of the above energy density (111) gives:

− 2πR∆z ET
R(R) = 4πG

∫ R

0

∫ 2π

0
R′dR′dφ ρN∗(R′)

∫ ∆z

0
dz

=⇒ ET
R(R) = −4πG

R

∫ R

0
ρN∗(R′)R′dR′ . (112)

Using (97) and upon integration of (112), the contribution to the rotation velocity
square (97) due to the logarithmic term in the potential reads,

v2
log = −ET

R(R)R = πGM⊙γ∗Σ0
∫ R

0 e−
R′
R0 R′dR′ =

GM⊙γ∗

2
2πΣ0R2

0

[
1 −

(
1 +

R
R0

)
e−

R
R0

]
=

GN∗M⊙γ∗

2

[
1 −

(
1 +

R
R0

)
e−

R
R0

]
.

(113)

Finally, taking the sum of (104) and (113) the total contribution to the velocity square
reads:

v2(R) =
GN∗M⊙R2

2R3
0

[
I0

(
R

2R0

)
K0

(
R

2R0

)
− I1

(
R

2R0

)
K1

(
R

2R0

)]
+

GN∗M⊙γ∗

2

[
1 −

(
1 +

R
R0

)
e−

R
R0

]
, (114)
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which is constant for large R, namely

v2(R) → GN∗M⊙γ∗

2
for R → +∞ . (115)

We end this section with a short review of an interesting two-dimensional dilation grav-
ity model [33,34] (generalizations are provided in [35]) that provides similar modifications
to the gravitational potential. In such a theory the spacetime is asymptotically described
by Rindler’s metric and the gravitational potential grows linearly at large distances. The
model studied in [34] is consistent with the Pioneer’s anomaly and perhaps it improves
the galactic rotation curves, but fails at the earth’s distance. It deserves to be noticed that
contrary to Einstein’s conformal gravity, the scalar-tensor theory in [35] propagates another
scalar degree of freedom because it is not conformal invariant. Moreover, in our model,
we can reproduce the rotation curves for galaxies and galaxy groups by fitting only one
parameter γ∗.

6. The Tully–Fisher Relation

As we have said several times, in conformal gravity, we are free to rescale the metric
by an overall factor that will depend on at least one undetermined length scale. In our
model, the length scale is ℓc = 2/γ∗, which turns out to be of the same order of magnitude
as the galaxy (see next section). However, if we focus our attention on a single star in the
galaxy we can with equal naturalness fix ℓc to be comparable with either the Schwarzschild
radius of the star or the galaxy extension. Indeed, these two are the characteristic scales of
the system. On the other hand, if we were dealing with a single star in an empty universe, it
would be natural to select ℓc proportional to the Schwarzschild radius of the star. Therefore,
conceptually there is nothing wrong in selecting the free scale to be proportional to the
galaxy extension, and actually, it seems the natural choice whether we are interested in the
global properties of the galaxies. Furthermore, in conformal gravity, we have an extra scalar
field, the dilaton, that does not propagate (the perturbation can always be fixed to zero
by the mean of conformal symmetry), but satisfies its equation of motion whose solutions
show up extra scales simply because of dimensional reasons and in accordance with the
Mach’s mechanical view of the Universe. In other words, the dilaton is responsible for the
gravitational interaction from small to large distances through the presence of pole-like
singularities, which are weighted by dimensional parameters, in the solution of its equation
of motion.

The arguments above have an observational counterpart in the Tully–Fisher relation
that relates the asymptotic velocity of a probe star to Newton’s constant, the mass of the
galaxy, and Milgrom’s parameter a0, namely

v4 = a0GM , [a0] = L T−2 , [G] = L3 M−1 T−2 , (116)

where M = N∗M⊙ + MHI, MHI is the mass of the Helium gas (see next section for more
details). Comparing the letter expression (116) with (81) we finally obtain:

γ∗ =

√
4a0

GM
, [γ∗] = L−1 , (117)

which depends on the mass of the galaxy while we assume a0 to be a universal constant.
For the value of a0 obtained by fitting the galactic rotation curves with the MOND

theory [36], namely a0 = 1.2 × 10−10m s−2, and for a galaxy made of 1012 solar mass stars
we obtain:

γ∗ ≈ 10−21m−1 =⇒ ℓc ≈ 1021m . (118)

In conformal gravity, γ∗ is one of the two free parameters to be obtained by fitting the
observational data and assuming dependence on the mass of the entire galaxy like in (117).



Universe 2024, 10, 19 19 of 38

In the next section, we will obtain a universal value or a0 from our model fitting
175 galaxies.

The Solar System’s Geometry

For the solar system 1/γ∗ ≈ 1015 m, and, hence, the product γ∗ r1 inside the solar
system is very small, namely γ∗ r ≪ 1. Indeed, taking as the radius of the solar system the
average distance between the sun and Pluto, namely 6× 1012m, we obtain γ∗ r ∼ 10−3 ≪ 1.
On the other hand, if we consider the larger radius of the Oort Cloud, which is about
7.5 × 1015 m, then γ∗ r ∼ 1. However, the above constraints in the solar system cannot be
taken seriously because when we consider the solar system we cannot ignore the rest of
the galaxy of which the sun is an integral part. Therefore, the value of γ∗ has to be fixed
according to Tulley–Fisher which takes into account a large number of stars. In other words,
the value of γ∗ in our universe is uniquely fixed on the base of observations at the galactic
scale of which the sun is inseparably part. The latter statement is strictly in line with the
Macchian view of a holistic essence of the Universe at large scales. The value of the mass
of the sun could be correctly replaced in γ∗(M) in a universe only consisting of the solar
system or in a universe in which the solar system is not part of any galaxy. However, such
a prediction is not falsifiable in the Popperian sense.

To avoid a large value for the quantity γ∗ r for a small mass compact object, we could
also choose γ∗ as a less trivial function of the mass. In such a way, a simple proposal that
can surely address the problem is the following function,

γ∗ =

√
4a0

G(M + M0)
, (119)

where M0 is a mass much larger than the solar system mass, but much smaller than the
galaxy’s mass.

We reiterate that in our opinion the most convincing argument is not of an engineering
nature like the one just provided, but of a holistic nature, namely we cannot consider the
solar system or any compact object in the Universe as independent from everything else.
The function γ∗(M) has to be the outcome of a comparison of the model with all the data,
at the galactic as well as the extragalactic scales (galaxy groups and galaxy clusters). On the
other hand, on the cosmological scale, the homogeneity and isotropicity of the Universe
forces the spacetime to the FRW’s metric.

Finally, we remember that the rescaling of the metric does not affect either the light
bending, the Mercury precession, or other observables that are conformal invariant.

7. Fitting of the Galactic Rotation Curves and Universality

To completely specify the velocity square (114), we need N∗ (the number of stars in the
galaxy), R0 (the effective scale of the galactic disk), and the free scale in our model, namely
γ∗. Moreover, we have to consider the contribution to the velocity due to the gas Helium
(HI). If we apply to the HI the disk model with an exponential profile, the contribution of
HI to v2 will be described by the same formula (114). Therefore, the total v2 reads:

v2
tot = v2(N∗, R0, γ∗) + v2(NHI, RH0, γ∗) , (120)

where NHI = MHI/M⊙ represents the fraction of the total mass of the HI gas with respect
to the solar mass and RH0 is the effective radius of the HI gas’ cloud.

In our analysis, we used the data from the SPARC database [37] that includes: the
rotation curves data, which the reader can find in the plots in Appendix D, the total
luminosity ratio L/L⊙, and the disk radius R0(kpc) for 175 galaxies (see Appendix C). The
database includes also MHI, while RH0 will be determined shortly. Of course, the mass
M⊙ and the luminosity L⊙ of the sun, and the luminosity of all the galaxies L are known
observed quantities. All these parameters are given in Appendix C.
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The number of stars N∗ is related to the mass-to-luminosity ratio M/L, which is our
second fitting parameter, the ration M⊙/L⊙, and the ration L/L⊙, namely

N∗ =
M

M⊙
=

M
L

M⊙
L⊙

L
L⊙

, (121)

in which M⊙/L⊙, and L/L⊙ are known and given in the table in Appendix C. Therefore,
fitting M/L is equivalent to the fitting of N∗. Since we assume that there is no dark matter,
the fitting results of M/L should be close to 1 rather than over 10 like in Newtonian
dynamics.

In the database [37] we can also find the mass MHI. However, to also include the
amount of primordial Helium, we have to multiply HI times the factor 1.4. Therefore, the
total amount of Helium is:

MTOT
HI = 1.4 MHI . (122)

In the SPARC database [37] one can find the radius RH defined to be one for which
the density of HI is equal to the value M⊙/pc2. Therefore, we can infer the effective radius
RH0 of the Helium gas using the exponential density profile (101) and (102),

ΣH0e−RH/RH0 =
NHI

2πR2
H0

e−RH/RH0 =
1

pc2 =⇒ RH0 , (123)

where the parameters NHI, which can be identified with the dimensionless quantity MHI,
are available in Appendix C. However, Equation (123) is ambiguous because it usually has
two solutions. Moreover, for some galaxies, Equation (123) has no solutions, which implies
that for these galaxies the measurements of NHI and RH are not accurate enough or the
distribution of HI does not fit the disk model properly. Therefore, we choose RH0 = 4R0 as
an effective radius of the HI disk consistently with other papers in the literature [1,32].

The results for the fitting parameters M/L and γ∗ are given in Appendix C, while the
fittings of the rotation curves are displayed in Appendix D.

The fitting results show that our model fits the rotation velocity data for most of the
typical spiral galaxies (including S0, Sa, Sb, Sc, Sab, Sbc, and Scd type) and it fits very well
some late spiral-type galaxies (Sd, Sdm, and Sm), in particular for the velocity data on the
large scale (R > 2R0).

As we expected, the fitting results for the mass-to-luminosity ratio (of luminous mass)
are close to 1. Moreover, in the plots in Appendix D, we can see that the Newtonian contri-
bution dominates the rotation velocity at a small scale (R ≲ 2R0), while the conformally
modified geometry determines the value of the velocity square asymptotically. Our model
(114) interpolates between the two regimes.

However, there are some galaxies to which our model cannot fit very well.
This is the case of the galaxies NGC3949, NGC3953, and NGC4051. However, for such

galaxies, we have only a few data, and in particular, we lack data points at large radius. In
this case, the fitting results for γ∗ is actually 0.

For some spiral galaxies, e.g., NGC2955, NGC5005, NGC6195, UGC2916, UGC3546,
UGC5253, and UGC11914, the rotation velocity data tend to be flat at very small scales
(R ≪ 2R0). Therefore, we think that the rotation curves cannot be consistent with the
exponential profile for the matter density adopted.

For the irregular galaxies, Im (irregular Magellanic), BCD (irregular blue compact
dwarf), and weak spiral types (Sm, Sd, and, Sdm), for instance: CamB, DDO161, F574-2,
NGC2366, NGC3741, NGC4068, PGC51017, UGC2455, UGC4483, some fits are bad and
usually the fitting results of the mass-to-luminosity ratio are anomalously small. However,
this should be related to the irregular mass distribution of these galaxies that affect the
irregular motion of matters.
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Finally, having at our disposal the values of the fitting for γ∗ and M/L (L is an observed
quantity) we can now extract the universal parameter a0 using the Tully–Fisher relation
(117). The total mass in (117) consists of two contributions, stars and Helium, namely

M = L ·
(

M
L

)
+ 1.4 MHI . (124)

Let us consider the following generalization of Equation (117), namely

γ∗ =

(
4a0

GM

)k
, (125)

where the constant k has to be determined by means of the fitting. Hence, taking the “log”
of both sides we obtain:

log γ∗ = k(log 4a0 − log GM) , (126)

in which the fitting parameters are a0 and k. The fitting results are shown in Figure 1 (notice
that we removed the seven points for which γ∗ = 0),

Figure 1. This plot shows the fitting of the relation between γ∗ and M. The fitting
function is y = k(b − x), where y = log((γ∗) · kpc), x = log(GM/10−10ms−2kpc2) and
b = log(4a0/10−10ms−2). The results for the two fitting parameters are: k = 0.582 and b = 0.573.

Where

γ∗ ∝ M−0.582 , a0 = 0.935 × 10−10m/s2 = 9.35 × 10−11m/s2 . (127)

The 3σ confidence intervals of k and a0 are: 0.582± 0.057 and (9.35± 2.22)× 10−11 m/s2,
respectively. Notice that according to (117) k is compatible with 1/2.

8. Conclusions

We provided a geometrical mechanism capable of overcoming the long-standing issue
of galactic rotation curves without any kind of exotic dark matter. We are aware that dark
matter is a proposal to remove multiple issues in cosmology and astrophysics while there
is no need for it in the colliders’ physics, but we found an extremely interesting outcome to
this project from both the theoretical and observational sides. From the theoretical point of
view, the simple scalar-tensor Einstein’s theory of gravity provides a kind of non-modified
gravitational theory ghost-free and free of other instabilities. Indeed, the presence of the
dilaton field on one side allows for other vacua without introducing other propagating
degrees of freedom, on the other side introduces unattainable spacetime singularities that
drastically modify the asymptotic spacetime structure from the micro to the macro.

Specifically, the effective Newtonian gravitational force, to which the stars of the
galaxy are subject, is obtained starting from a “unique” (the metric depends only on one
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extra scale ℓc = 2/γ∗, see Section 3) spacetime geometry (7) or (10) (in two different
coordinate systems) for a single star and summing up all the stars in the galaxy. The
effective potential has the expected asymptotic logarithmic behavior characteristic of the
minimal confinement, and the velocity turns out to be constant (see formulas (80) or (87)
and (81)) at a large distance from the galactic center in agreement with the Tully–Fisher
relation.

In the force of the effective gravitational potential with logarithmic asymptotic behav-
ior, we derived for a single source and integrated all the stars of the galaxy with exponential
density profiles to end up with the total potential. Hence, we obtained the orbital velocity
of a probe star in the gravitational field of all the other stars in the galaxy (see (114)).
Afterward, we tested the theory with 175 galaxies, making a fit of the parameters γ∗ and
the mass over the luminosity ratio. The outcome of the fits is given in Appendix D. One
can notice that the fitting results for the ratio M/L turned out to be close to 1 consistently
with the absence of dark matter.

Finally, using the observational Tully–Fisher relation we obtained the value for the
universal parameter a0 = (9.35 ± 2.22)× 10−11 m/s2.

As a final remark, our model is based on a very conservative approach to Einstein’s
theory of gravity, rather than speculative new radical ideas. Indeed, Einstein’s theory:
(i) does not introduce other degrees of freedom, contrary to Weyl gravity that propagates a
ghost instability, (ii) does not modify the classical Newtonian dynamics such as the MOND
theory, and (iii) does not introduce other fields into the standard model of particle physics
like in models based on dark matter.

In addition, our purely geometrical model is universal as explained in Section 3, and
works perfectly for galaxies’ groups and clusters too (work in progress). Furthermore, the
data relative to the 175 galaxies have been fit with only one single parameter, which further
supports the universality claim stated above.

In other words, as stated in the first paragraph of the introduction, in this paper, we
tried to understand gravity instead of modifying it. In particular, we have here figured out
what the correct conformal vacuum at the galactic scale should be in Einstein’s conformal
gravity.

Finally, we would like to make a comparison with our previous work [1] and a similar
geometric approach in [38].

In our seminal paper [1], we made several approximations. In the first place, we
coupled a massive particle to a spacetime metric solving the EoM of conformal Einsteins’
gravity. Unfortunately, this is not just an approximation but has also relevant theoretical
implications. Indeed, the point of solving geometrically the galactic rotation curves’ issue
is based on the conformal invariance, but in the previous paper [1], it was broken explicitly.
The right thing to do is to consider particles conformally coupled to gravity so that the
full action, including matter, is conformal invariant. Another relevant problem in [1] is
related to the gravitational potential V. Indeed, the usual relation between g00 and V
is not very correct for a non-asymptotical Minkowski spacetime. To obtain the correct
effective Newtonian potential, in this paper all the evaluated observables are consistent
with the general coordinate invariance (proper time, distances, etc. are all invariant). In
particular, we evaluated the velocity of a test particle (a star in the galaxy) without making
any approximation and consistently with the diffeomorphism invariance. Only in the
end, we made some approximations to end up with a simple handy form of the potential,
namely logr. It is here interesting to remember how things went during our first project
on the geometric origin of the rotation curves. Honestly, at that time we also considered
particles conformally coupled to gravity, but we immediately realized that the potential
for them was the same as in Newtonian gravity, i.e., −GM/x. Hence, we gave up and
considered an explicit breaking of the conformal symmetry introducing massive particles.
What we did not realize at that time is that, asymptotically, the velocity does not go to zero,
but to a constant in an infinite amount of proper time, as proven in this paper. Indeed, it is
the singularity in the conformal rescaling to makes every consistent.
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In comparison to the previous work, in this paper, we also carefully addressed the
following issues. (i) The regularity of the Kretschemann at infinity and in r = 0. Indeed, the
rescaling of the metric proposed in this paper also takes care of the black hole’s singularity.
(ii) The geodesic completion of the metric has been carefully investigated for conformally
coupled massive particles and massless particles.

In a very interesting paper [38], the authors assume an intrinsic fractal structure of
spacetime that implies a modification of Einstein’s equations and in the end a modification
of the gravitational potential. In our paper, the fundamental theory is Einstein’s gravity
without any modification and extra new fundamental degrees of freedom. Indeed, it
has been known since the 1970s that Einstein’s gravity is actually Einstein’s conformal
gravity in its spontaneously broken conformal phase, namely in the Higgs phase of Weyl’s
invariance. In our paper, we broke the conformal symmetry spontaneously to a non-trivial
vacuum, an exact solution of the EoM of Einstein’s conformal gravity, that is not only a
spacetime-dependent function but also singular. Such singularity is unattainable by any
particle, massive or massless, so that the spacetime is on one side geodetically complete,
and the other side provides an effective confining asymptotic potential consistent with the
observations.
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Appendix A. Radial Geodesic Equations in the Metric (10)

We here derive the radial geodesic equation for massless and conformally coupled
particles in the metric (10).

Appendix A.1. Massless Particles

In this section, we derive the radial geodesic equation for light in the metric (10). Since
like (7) also (10) is independent of the t- and φ- coordinates, according to (42) the following
quantities are conserved,

e = −ξ · u = −ĝttut = Q2(r)
(

1 − 2MQ2(r)
r

)
dt
dλ

= Q2(r)
(

1 − 2MQ2(r)
r

)
ṫ , (A1)

ℓ = η · u = ηαuβ ĝαβ = ĝϕβuβ = ĝϕϕuϕ = r2 sin2 θ φ̇ , (A2)

where we introduce the null vector

uα =
dxα

dλ
(A3)

that satisfies

u · u = ĝαβ
dxα

dλ

dxβ

dλ
= 0 . (A4)
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From (A4) in the equatorial plane (i.e., θ = π/2), we obtain the following equation

−Q2(r)
(

1 − 2MQ2(r)
r

)
ṫ2 +

ṙ2

Q2(r)
(

1 − 2MQ2(r)
r

) + r2 φ̇2 = 0 . (A5)

Solving (A1) for ṫ and (A2) for φ̇ and replacing the results in (A5), the radial geodesic
Equation (ℓ = 0) reads:

− e2

Q(r)2
(

1 − 2MQ(r)
r

) +
ṙ2

Q2(r)
(

1 − 2MQ2(r)
r

) = 0 , (A6)

and we therefore obtain the equation

|ṙ| = e , (A7)

which coincides with (54).

Appendix A.2. Conformally Coupled Massive Particles

We here study the radial geodesic equations for conformally coupled particles in
the metric (10), namely for the metric in the radial coordinate r. The Lagrangian for a
conformally coupled particle reads:

Lcp = −
√
− f 2ϕ2 ĝµν ẋµ ẋν , (A8)

and the translation invariance in the time-like coordinate t implies:

∂Lcp

∂ṫ
= − f 2ϕ2 ĝtt ṫ

Lcp
= const. = −E , (A9)

thus the equation of ṫ reads

ṫ =
LcpE

f 2ϕ2 ĝtt
. (A10)

In the proper time gauge, from the equation ĝµν ẋµ ẋν = −1, we have Lcp = − f ϕ so
the equation of ṫ become

ṫ = − E
f ϕ ĝtt

. (A11)

Therefore, plugging (A11) into the equation ĝµν ẋµ ẋν = −1, we obtain the differential
equation of r(τ), namely

E2

f 2κ−1
4 Q(r)−2

− ṙ2 = Q(r)2
(

1 − 2GM
r

Q(r)
)

. (A12)

Defining e2 ≡ E2/( f 2κ−1
4 ), the equation of ṙ is reduced to

ṙ2 = Q(r)2
(

e2 − 1 +
2GM

r
Q(r)

)
, (A13)

which coincides with (31).
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Appendix B. The Cosmological Constant Is Not an Issue in Our Model

It is commonly accepted that the value of the cosmological constant is non-zero
(Λ ∼ 10−56 cm−2). Therefore, we will have to more correctly consider the rescaling of the
Schwarzschild–de Sitter spacetime instead of (7) or (10), namely

dŝ∗2 = Q2(x)

[
−
(

1 − 2GM
c2x

− Λ
3

x2
)

dt2 +
dx2

1 − 2GM
x − Λ

3 x2
+ x2Ω(2)

]
, (A14)

Q(x) =
1

1 − γ∗
2 x

, (A15)

or in the radial coordinate r,

dŝ∗2 = −Q2(r)
(

1 − 2GMQ(r)
r

− Λ
3

r2

Q2(r)

)
c2dt2 +

dr2

Q2(r)
(

1 − 2GMQ(r)
r − Λ

3
r2

Q2(r)

) + r2dΩ(2) ,

Q(r) = 1 +
γ∗

2
r .

(A16)

Notice that the metric is till in the form g00(r) = −1/g11(r). If we focus on (A16) and
we consider the limit r ≫ 2GM together with the approximation GMγ∗ ≪ 1, the metric
(A16) simplifies to:

dŝ∗2 ≈ −
(

Q2(r)− Λ
3

r2
)

dt2 +
dr2(

Q2(r)− Λ
3 r2
) + r2dΩ(2)

= −
(

1 + γ∗r +
γ∗2

4
r2 − Λ

3
r2
)

dt2 +
dr2(

1 + γ∗r + γ∗2

4 r2 − Λ
3 r2
) + r2dΩ(2) .

(A17)

However, since γ∗2 ≫ Λ (we will see later that γ∗ ∼ 10−21 m−1) then the presence of
the cosmological constant will not affect our analysis4. In other words, the cosmological
constant present in the action and fixed by the observations at the Hubble’s scale does not
affect the physics at the galactic scale.

Finally, we want to make the following speculative comment about the potential
impact of γ∗ on the physics at the Hubble’s scale.It deserves to be noticed that the value
of the radius of de Sitter’s spacetime (proportional to the inverse of the square root of the
cosmological constant) is about the radius of the Universe. Therefore, for ℓc comparable to
the radius of the Universe, the two contributions quadratic in r in (A17) could in principle
cancel each other for a proper choice of γ∗. However, this is not the case as we are going
to show. We remember that

√
Λ ≃ 1.05 × 10−26 m−1. Using a formula that we will derive

later and the value of a0, which we will obtain from the fit of the data, the value of γ∗ for
the mass of the all Universe is γ∗ = 6.11 × 10−27. Finally, the monomial proportional to r2

in gtt and grr reads:

γ∗2

4
− Λ

3
≃ 3.74 × 10−53 m−2

4
− 1.10 × 10−52 m−2

3
≃ −2.73 × 10−53 . (A18)

Therefore, γ∗ cannot change the sign of the cosmological constant, and the physics
at a large scale is still described by the de Sitter metric. To compare the two contributions
proportional to r2, we introduce an effective cosmological constant for AdS, namely

|Λγ∗ | = 3 × γ∗2

4
= 2.81 × 10−53 m−2 , (A19)

which we have to compare with Λ to finally obtain the following ratio,

Λ
|Λγ∗ | ≃ 3.91 . (A20)
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Notice that there is no fine-tuning between the values of γ∗ and Λ. Indeed, γ∗ is a result
of this paper, which will be derived later by comparing our model with the observations,
while for Λ we used the observed value.

Therefore, according to the discussion above one might be led to change the value of
the cosmological constant in the action to take into account the γ∗ contribution. However,
we have to carefully pay attention to the right matter content in the whole Universe. Indeed,
at the cosmological scale, the energy-momentum tensor used in Einstein’s EoM is one of
a perfect fluid regardless of the interaction between the compact objects spread in the
Universe. Therefore, the solution of Einstein’s EoM is not affected by γ∗ as well as is not
affected by the Schwarzschild–de Sitter geometry5 surrounding the point-like masses that
fill the whole Universe in Einstein’s gravity when the conformal symmetry is not taken
into account.

We can summarize the content of this section in two main statements: (i) the observed
value of the cosmological constant does not affect our model at the galactic scale because
γ∗2 ≫ Λ, and (ii) the value of γ∗ evaluated at the mass of the whole Universe does not
affect the physics at the Hubble’s scale because the latter one is well described by the FRW
metric for a perfect fluid regardless of the gravitational interaction between masses in the
Universe.

Appendix C. Galactic Parameters For 175 Galaxies

In this section, we remember the main data from the SPARC database [37] needs the
fits of the square velocity (114), and we list the values of γ∗ and M/L that turn out from
our fits for 175 galaxies.

Table A1. Galactic parameters of the 175 galaxy samples.

Galaxy Hubble Distance L R0 MHI (M/L)stars γ∗

Name Type (Mpc) (109L⊙) (kpc) (109 M⊙) (M⊙/L⊙) (kpc−1)

CamB Im 3.36 0.075 0.47 0.012 0.0883 8.94
D512-2 Im 15.2 0.325 1.24 0.081 1.75 0.556
D564-8 Im 8.79 0.033 0.61 0.029 0.295 10.6
D631-7 Im 7.72 0.196 0.7 0.29 1.19 4.13

DDO064 Im 6.8 0.157 0.69 0.211 0.411 6.18
DDO154 Im 4.04 0.053 0.37 0.275 1.09 0.6
DDO161 Im 7.5 0.548 1.22 1.378 0.0892 0.571
DDO168 Im 4.25 0.191 1.02 0.413 1.01 3.32
DDO170 Im 15.4 0.543 1.95 0.735 1.03 1.36

ESO079-G014 Sbc 28.7 51.733 5.08 3.14 0.657 0.311
ESO116-G012 Sd 13 4.292 1.51 1.083 0.676 1.08
ESO444-G084 Im 4.83 0.071 0.46 0.135 1.24 7.35
ESO563-G021 Sbc 60.8 311.177 5.45 24.298 0.56 0.139

F561-1 Sm 66.4 4.077 2.79 1.622 0.2 0.5
F563-1 Sm 48.9 1.903 3.52 3.2 2.71 0.725

F563-V1 Im 54 1.54 3.79 0.61 1.17 0
F563-V2 Im 59.7 2.986 2.43 2.169 3.07 0.409
F565-V2 Im 51.8 0.559 2.17 0.699 1.06 3.28
F567-2 Sm 79 2.134 3.08 2.449 0.5 0.68
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Table A1. Cont.

Galaxy Hubble Distance L R0 MHI (M/L)stars γ∗

Name Type (Mpc) (109L⊙) (kpc) (109 M⊙) (M⊙/L⊙) (kpc−1)

F568-1 Sc 90.7 6.252 5.18 4.498 4.49 0.283
F568-3 Sd 82.4 8.346 4.99 3.195 1.81 0.257

F568-V1 Sd 80.6 3.825 2.85 2.491 2.64 0.362
F571-8 Sc 53.3 10.164 3.56 1.782 1.099 0.662

F571-V1 Sd 80.1 1.849 2.47 1.217 0.633 1.57
F574-1 Sd 96.8 6.537 4.46 3.524 1.9 0.277
F574-2 Sm 89.1 2.877 3.76 1.701 0.0654 0.871

F579-V1 Sc 89.5 11.848 3.37 2.245 1.4 0.205
F583-1 Sm 35.4 0.986 2.36 2.126 1.51 0.922
F583-4 Sc 53.3 1.715 1.93 0.641 0.955 0.736
IC2574 Sm 3.91 1.016 2.78 1.036 0.319 2.43
IC4202 Sbc 100.4 179.749 4.78 12.326 0.64 0.107

KK98-251 Im 6.8 0.085 1.34 0.115 0.789 8.4
NGC0024 Sc 7.3 3.889 1.34 0.676 1.49 0.542
NGC0055 Sm 2.11 4.628 6.11 1.565 2.67 0.329
NGC0100 Scd 13.5 3.232 1.66 1.99 0.345 1.07
NGC0247 Sd 3.7 7.332 3.74 1.746 1 0.489
NGC0289 Sbc 20.8 72.065 6.74 27.469 1.122 0.0833
NGC0300 Sd 2.08 2.922 1.75 0.936 0.612 1.35
NGC0801 Sc 80.7 312.57 8.72 23.201 0.847 0.04
NGC0891 Sb 9.91 138.34 2.55 4.462 0.532 0.0876
NGC1003 Scd 11.4 6.82 1.61 5.88 0.121 0.271
NGC1090 Sbc 37 72.045 3.53 8.783 0.513 0.147
NGC1705 BCD 5.73 0.533 0.39 0.139 1.22 2.09
NGC2366 Im 3.27 0.236 0.65 0.647 0.15 0.35
NGC2403 Scd 3.16 10.041 1.39 3.199 0.446 0.646
NGC2683 Sb 9.81 80.415 2.18 1.406 0.559 0.165
NGC2841 Sb 14.1 188.121 3.64 9.775 0.822 0.158
NGC2903 Sbc 6.6 81.863 2.33 2.552 0.684 0.126
NGC2915 BCD 4.06 0.641 0.55 0.508 0.286 3.05
NGC2955 Sb 97.9 319.422 18.76 28.949 3.3 0.0396
NGC2976 Sc 3.58 3.371 1.01 0.172 0.498 1.33
NGC2998 Sc 68.1 150.902 6.2 23.451 1 0.0576
NGC3109 Sm 1.33 0.194 1.56 0.477 0.854 5.56
NGC3198 Sc 13.8 38.279 3.14 10.869 0.533 0.179
NGC3521 Sbc 7.7 84.836 2.4 4.154 0.808 0.768
NGC3726 Sc 18 70.234 3.4 6.473 0.315 0.292
NGC3741 Im 3.21 0.028 0.2 0.182 0.638 0.915
NGC3769 Sb 18 18.679 3.38 5.529 1.2 0.0986
NGC3877 Sc 18 72.535 2.53 1.483 0.33 0.288
NGC3893 Sc 18 58.525 2.38 5.799 0.668 0.143
NGC3917 Scd 18 21.966 2.63 1.888 0.47 0.523
NGC3949 Sbc 18 38.067 3.59 3.371 1.74 0
NGC3953 Sbc 18 141.301 4.89 2.832 1.08 0
NGC3972 Sbc 18 14.353 2.18 1.214 0.545 0.647
NGC3992 Sbc 23.7 226.932 4.96 16.599 0.574 0.117
NGC4010 Sd 18 17.193 2.81 2.832 0.465 0.591
NGC4013 Sb 18 79.094 3.53 2.967 0.632 0.154
NGC4051 Sbc 18 95.268 4.65 2.697 7.62 0
NGC4068 Im 4.37 0.236 0.59 0.154 0.118 5.04
NGC4085 Sc 18 21.724 1.65 1.349 0.367 0.526
NGC4088 Sbc 18 107.286 2.58 8.226 0.227 0.236
NGC4100 Sbc 18 59.394 2.15 3.102 0.431 0.318
NGC4138 S0 18 44.111 1.51 1.483 0.574 0.223
NGC4157 Sb 18 105.62 2.32 8.226 0.277 0.238
NGC4183 Scd 18 10.838 2.79 3.506 0.981 0.231
NGC4214 Im 2.87 1.141 0.51 0.486 0.844 1.02
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Table A1. Cont.

Galaxy Hubble Distance L R0 MHI (M/L)stars γ∗

Name Type (Mpc) (109L⊙) (kpc) (109 M⊙) (M⊙/L⊙) (kpc−1)

NGC4217 Sb 18 85.299 2.94 2.562 0.461 0.205
NGC4389 Sbc 18 21.328 2.79 0.539 0.367 0.53
NGC4559 Scd 9 19.377 2.1 5.811 0.356 0.259
NGC5005 Sbc 16.9 178.72 9.45 1.28 4.63 0
NGC5033 Sc 15.7 110.509 5.16 11.314 1.03 0.0951
NGC5055 Sbc 9.9 152.922 3.2 11.722 0.458 0.0863
NGC5371 Sbc 39.7 340.393 7.44 11.18 0.593 0.0542
NGC5585 Sd 7.06 2.943 1.53 1.683 0.51 0.939
NGC5907 Sc 17.3 175.425 5.34 21.025 0.699 0.0755
NGC5985 Sb 39.7 208.728 7.01 11.586 1.32 0.0692
NGC6015 Scd 17 32.129 2.3 5.834 0.609 0.261
NGC6195 Sb 127.8 391.076 13.94 20.907 1.35 0.0506
NGC6503 Scd 6.26 12.845 2.16 1.744 0.931 0.279
NGC6674 Sb 51.2 214.654 6.04 32.165 0.892 0.063
NGC6789 BCD 3.52 0.1 0.31 0.017 1.67 7.75
NGC6946 Scd 5.52 66.173 2.44 5.67 0.533 0.123
NGC7331 Sb 14.7 250.631 5.02 11.067 0.659 0.0632
NGC7793 Sd 3.61 7.05 1.21 0.861 0.594 0.609
NGC7814 Sab 14.4 74.529 2.54 1.07 1.04 0.116
PGC51017 BCD 13.6 0.155 0.53 0.201 0 0
UGC00128 Sdm 64.5 12.02 5.95 7.431 1.35 0.288
UGC00191 Sm 17.1 2.004 1.58 1.343 1.08 0.706
UGC00634 Sm 30.9 2.989 2.45 3.663 0.748 0.774
UGC00731 Im 12.5 0.323 2.3 1.807 3.08 1.24
UGC00891 Sm 10.2 0.374 1.43 0.428 0.464 4.01
UGC01230 Sm 53.7 7.62 4.34 6.43 2.965 0.0649
UGC01281 Sdm 5.27 0.353 1.63 0.294 0.915 4.12
UGC02023 Im 10.4 1.308 1.55 0.477 0.346 2.14
UGC01281 Sdm 5.27 0.353 1.63 0.294 0.915 4.12
UGC02023 Im 10.4 1.308 1.55 0.477 0.346 2.14
UGC02259 Sdm 10.5 1.725 1.62 0.494 2.19 0.538
UGC02455 Im 6.92 3.649 0.99 0.803 0.0341 1.28
UGC02487 S0 69.1 489.955 7.89 17.963 1.12 0.0508
UGC02885 Sc 80.6 403.525 11.4 40.075 1.18 0.0352
UGC02916 Sab 65.4 124.153 6.15 23.273 1.33 0.0635
UGC02953 Sab 16.5 259.518 3.55 7.678 0.55 0.15
UGC03205 Sab 50 113.642 3.19 9.677 0.659 0.154
UGC03546 Sa 28.7 101.336 3.79 2.675 0.6 0.152
UGC03580 Sa 20.7 13.266 2.43 4.37 0.886 0.194
UGC04278 Sd 9.51 1.307 2.21 1.116 0.882 2.14
UGC04305 Im 3.45 0.736 1.16 0.69 0.134 0.824
UGC04325 Sm 9.6 2.026 1.86 0.678 2.64 0.497
UGC04483 Im 3.34 0.013 0.18 0.032 0.0444 6.2
UGC04499 Sdm 12.5 1.552 1.73 1.1 0.847 0.971
UGC05005 Im 53.7 4.1 3.2 3.093 0.359 0.908
UGC05253 Sab 22.9 171.582 8.07 16.396 1.3 0.04
UGC05414 Im 9.4 1.123 1.47 0.574 0.479 2.31
UGC05716 Sm 21.3 0.588 1.14 1.094 0.923 0.922
UGC05721 Sd 6.18 0.531 0.38 0.562 0.722 1.4
UGC05750 Sdm 58.7 3.336 3.46 1.099 0.409 1.34
UGC05764 Im 7.47 0.085 1.17 0.163 6.58 2.42
UGC05829 Im 8.64 0.564 1.99 1.023 0.624 2.63
UGC05918 Im 7.66 0.233 1.66 0.297 2.3 1.46
UGC05986 Sm 8.63 4.695 1.67 2.667 0.824 0.725
UGC05999 Im 47.7 3.384 3.22 2.022 0.577 1.33
UGC06399 Sm 18 2.296 2.05 0.674 0.748 1.62
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Table A1. Cont.

Galaxy Hubble Distance L R0 MHI (M/L)stars γ∗

Name Type (Mpc) (109L⊙) (kpc) (109 M⊙) (M⊙/L⊙) (kpc−1)

UGC06446 Sd 12 0.988 1.49 1.379 1.91 0.711
UGC06614 Sa 88.7 124.35 5.1 21.888 0.434 0.142
UGC06628 Sm 15.1 3.739 2.82 1.5 0.37 0.366
UGC06667 Scd 18 1.397 5.15 0.809 7.52 0.598
UGC06786 S0 29.3 73.407 3.6 5.03 1.32 0.0985
UGC06787 Sab 21.3 98.256 5.37 5.03 2.01 0.0713
UGC06818 Sm 18 1.588 1.39 1.079 0.157 1.94
UGC06917 Sm 18 6.832 2.76 2.023 1.18 0.39
UGC06923 Im 18 2.89 1.44 0.809 0.48 1.44
UGC06930 Sd 18 8.932 3.94 3.237 1.49 0.237
UGC06973 Sab 18 53.87 1.07 1.753 0.295 0.334
UGC06983 Scd 18 5.298 3.21 2.967 1.97 0.307
UGC07089 Sdm 18 3.585 2.26 1.214 0.333 1.29
UGC07125 Sm 19.8 2.712 3.38 4.629 1.42 0.0337
UGC07151 Scd 6.87 2.284 1.25 0.616 0.691 0.843
UGC07232 Im 2.83 0.113 0.29 0.046 0.57 7.29
UGC07261 Sdm 13.1 1.753 1.2 1.388 0.827 0.534
UGC07323 Sdm 8 4.109 2.26 0.722 0.566 1.21
UGC07399 Sdm 8.43 1.156 1.64 0.745 4.09 0.658
UGC07524 Sm 4.74 2.436 3.46 1.779 1.96 0.453
UGC07559 Im 4.97 0.109 0.58 0.169 0.166 2.95
UGC07577 Im 2.59 0.045 0.9 0.044 0.172 11.5
UGC07603 Sd 4.7 0.376 0.53 0.258 0.438 3.75
UGC07608 Im 8.21 0.264 1.5 0.535 1.16 4.77
UGC07690 Im 8.11 0.858 0.57 0.39 0.692 0.763
UGC07866 Im 4.57 0.124 0.61 0.118 0.56 2.6
UGC08286 Scd 6.5 1.255 1.05 0.642 0.876 1.48
UGC07866 Im 4.57 0.124 0.61 0.118 0.56 2.6
UGC08286 Scd 6.5 1.255 1.05 0.642 0.876 1.48
UGC08490 Sm 4.65 1.017 0.67 0.72 0.999 0.854
UGC08550 Sd 6.7 0.289 0.45 0.288 0.47 1.74
UGC08699 Sab 39.3 50.302 3.09 3.738 1.23 0.0997
UGC08837 Im 7.21 0.501 1.72 0.32 0.462 3.42
UGC09037 Scd 83.6 68.614 4.28 19.078 0.335 0.137
UGC09133 Sab 57.1 282.926 6.97 33.428 0.75 0.058
UGC09992 Im 10.7 0.336 1.04 0.318 0.643 1.22
UGC10310 Sm 15.2 1.741 1.8 1.196 1.24 0.536
UGC11455 Scd 78.6 374.322 5.93 13.335 0.415 0.127
UGC11557 Sdm 24.2 12.101 2.75 2.605 0.215 0.704
UGC11820 Sm 18.1 0.97 2.08 1.977 1.58 0.718
UGC11914 Sab 16.9 150.028 2.44 0.888 0.907 0.577
UGC12506 Scd 100.6 139.571 7.38 35.556 1.32 0.0599
UGC12632 Sm 9.77 1.301 2.42 1.744 1.58 0.62
UGC12732 Sm 13.2 1.667 1.98 3.66 0.704 0.548
UGCA281 BCD 5.68 0.194 1.72 0.062 13.1 0
UGCA442 Sm 4.35 0.14 1.18 0.263 1.86 3.37
UGCA444 Im 0.98 0.012 0.83 0.067 8.9 4.57

Appendix D. Fitting the Galactic Rotation Curves of 175 Galaxies

We hereby provide the fits for the galactic orbital velocity (in km/s) as a function of
the physical radial distance (in kpc) for 175 galaxies. In each plot, the blue dots with error
bars are the data of the observed galactic rotation velocity, and the red curve is the fitting
result. The dashed (blue-)curve represents the Newtonian contribution to the velocity
square, namely the first term in (114), while the (yellow-)dot-dashed curve shows only the
modification due to the conformal rescaling, namely only the second contribution in (114).
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Notes
1 The previous seminal paper [1] did not address the issue of conformally coupled matter that completely changes the geometrical

interpretation of our proposal underlining the crucial role of the asymptotic but harmless spacetime singularity. Notice that in [1]
the massive particles break explicitly the conformal invariance, even if slightly, making the solution no longer exact. Moreover,
we will show in this paper that in the presence of conformally coupled matter we do not need to resort to the global structure
of space–time and to invoke the small inhomogeneities on the cosmological scale or the presence of the cosmological constant,
which will turn out to be too small to affect on the rotation curves on a galactic scale: “everything will be limited to the single
galaxies”.

2 Notice that a conformal rescaling of the metric does not affect the light bending. Therefore, our model does not suffer from the
issue mentioned in [26] for the case of Weyl conformal gravity. Indeed, such a problem is present for exact solutions of Weyl
gravity that are not a rescaling of the Schwarzschild metric. We remember that in Weyl gravity we have more solutions because it
is a higher derivative theory.

3 Notice that assuming the conformal symmetry to be spontaneously broken to ϕ = κ−1
4 and taking the unitary gauge, the

action (19) turns into the usual one for a particle with mass m = f κ−1
4 ( f > 0). Different values for f provide different mass scales.

4 Looking at the Mannheim’s paper [32], in the Appendix A5, the potential is defined as usually like −(g00 + 1)/2 (see the
paragraph before formula (A43) and formula (A45) ). However, this is inconsistent with the physical velocity that we obtain from
the metric (62). Indeed, the usual derivation of the potential, which one can find for example in Landau’s book “Classical Field
Theory”, does not work for spacetimes not asymptotically flat, which is the case of (62). The correctness of Mannheim’s paper lies
in the fact that the scales in their model are much larger than the galactic extension. It deserves to be noted that for special values
of γ0 and k in Mannheim’s paper, namely γ0 = γ∗ and k2 = −γ∗2/4, the exact solution (62) (it is (5) in Mannheim’s paper) of
Weyl conformal gravity turns out to be a conformal rescaling of the Minkowski spacetime. A generalization of the model in [32]
has been proposed and extensively studied in [39]. The latter paper deals with solutions in f (T) = T + αTn gravitational theories,
where T is the torsion. However, the generality of the results we think will be very useful for improving our model too.

5 Notice that the geometry of any compact object in the Universe is not Schwarzschild, but Schwarzschild–de Sitter because of the
presence of the cosmological constant in the action as required by the ΛCDM model.
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