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Abstract: In this note, we construct Noether charges for the chiral supergravity, which
contains the Lorentz Chern–Simons term, by applying Wald’s prescription to the vielbein
formalism. We investigate the AdS3/CFT2 correspondence by using the vielbein formalism.
The asymptotic symmetry group is carefully examined by taking into account the local
Lorentz transformation, and we construct super Virasoro algebras with central extensions
from the chiral supergravity.
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1. Introduction

The three dimensional gravity with negative cosmological constant has been one of the interesting
testing grounds to uncover quantum natures of gravity. Especially the gauge/gravity correspondence has
been investigated from various aspects for decades.

The vacuum solution of the three dimensional gravity with negative cosmological constant is
described by global AdS3 geometry [1]. In 1986, Brown and Henneaux showed that the asymptotic
symmetry group of the AdS3 geometry consists of left and right Virasoro algebras, and they succeeded
to evaluate the same central charges for both algebras [2]. This is a prototype of the gauge/gravity
correspondence, which was conjectured sophisticatedly in the context of superstring theory [3]. The
three dimensional theory also contains Banados–Teitelboim–Zanelli (BTZ) black hole solution [4,5].
Moreover, the entropy of the BTZ black hole is statistically explained by using the Cardy formula for
the boundary conformal field theory (CFT) [6]. It is well known that the three dimensional gravity
theory can also be described by the gauge Chern–Simons theory [7,8]. The Virasoro algebras can be
derived by using this alternative formulation [9], and the black hole entropy is statistically explained in
Reference [10].
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There are many important works on the three dimensional gravity, but we just focus on three kinds of
generalizations on the Virasoro algebras at the boundary. First one is to deal with the supergravity [11].
As expected, the asymptotic symmetry group enhances to super Virasoro algebras and the central charges
can be evaluated including fermionic sector [12,13]. Second one is to add chiral terms to the theory. The
three dimensional gravity with the gravitational or Lorentz Chern–Simons term is called topologically
massive gravity (TMG) [14,15]. In this theory it has been studied that the central charges for left and
right modes are asymmetric [16–24]. Third one is to consider higher derivative corrections, such as R2

terms. In this case, central charges are modified by some conformal factors [24–26].
The purpose of this note is to consider the supergravity with negative cosmological constant which

contains the Lorentz Chern–Simons term. The supergravity with the Lorentz Chern–Simons term,
which is called the topologically massive supergravity (TMSG), is constructed by Deser and Kay [27],
and the cosmological constant is added to the TMSG by Deser (CTMSG) [28]. There are two
parameters in CTMSG : the cosmological constant− 2

`2
and the coefficient of the Lorentz Chern–Simons

term β. It is known that fluctuation around the AdS3 geometry contains negative energy mode for
generic ` and β [22]. The exception occurs at the critical point |β/`| = 1, and the theory is called
chiral supergravity [22,29]. Since we need stable AdS3 background to explore the gauge/gravity
correspondence, the chiral supergravity is investigated in this note. We employ Wald’s prescription
to construct the Noether charge for the chiral theory [30–32]. Especially we formulate the chiral
supergravity in the vielbein formalism [33]. The charges are covariant under the general coordinate
transformation, and it is possible to evaluate the asymmetric central charges for left and right modes
explicitly. As a result, super Virasoro algebras at the boundary are explicitly constructed, which are
expected from the viewpoint of AdS/CFT correspondence [29]. The vielbein formalism is applicable to
all supergravity theories [33,34], and this work will be useful to test the gauge/gravity correspondence
in superstring theory and M-theory at quantum level [35,36].

In Section 2, we explain some basic properties of the CTMSG. In Section 3, we construct the current
for the general coordinate transformation and that for the local supersymmetry. We review the asymptotic
symmetry group of the AdS3 in Section 4. The super Virasoro algebras for the chiral supergravity are
constructed and the central charges for left and right movers are derived in Section 5. Section 6 is devoted
to the conclusion and discussion.

2. Cosmologically Topologically Massive Supergravity

The topologically massive supergravity (TMSG) is the three dimensional supergravity with Lorentz
Chern–Simons term which was constructed by Deser and Kay [27]. Deser also generalized the theory
by adding the cosmological constant (CTMSG) [28]. In this section we review the equations of motion
for the CTMSG. Fields of the CTMSG consist of a vielbein eaµ and a Majorana gravitino ψµ. Here µ, ν
are used for space-time indices and a, b = 0, 1, 2 are for local Lorentz ones. In this note we consider
N = (1, 0) CTMSG (If the sign of ` is flipped, we obtain N = (0, 1) CTMSG. Although the bulk
gravity has three dimensions, by taking into account the AdS/CFT correspondence, we use the notation
N = (1, 0) in the boundary CFT.), and the Lagrangian is given by
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L =
e

16πGN

{
R +

2

`2
− 1

2
ψργ

µνρψµν

+
β

2
εµνρ

(
ωµ

a
b∂νωρ

b
a +

2

3
ωµ

a
bων

b
cωρ

c
a

)
− β

2
Dρψσγ

µνγρσDµψν

}
(1)

Here GN and−2/`2 are the gravitational constant and the negative cosmological one, respectively. β is a
coefficient for the nonchiral part. Since we evaluate physical quantities in the background of AdS3 with
ψµ = 0 in later sections, below we consider the Lagrangian up to O(ψ3).

In Equation (1), two kinds of covariant derivatives are defined,

Dµψν = ∂µψν +
1

4
ωµabγ

abψν , Dµψν= Dµψν +
1

2`
γµψν (2)

and the field strength of the Majorana gravitino is given by ψµν ≡ Dµψν − Dνψµ. The gamma matrix
in three dimensions satisfy the Clifford algebra {γa, γb} = 2ηab, and ηab = diag(−1, 1, 1). The gamma
matrix with spacetime index is defined as γµ = eµaγ

a, and a completely antisymmetric tensor γµ1···µn

is defined so that a coefficient of each term becomes 1/n!. γµνρ = εµνρ1 is a completely antisymmetric
tensor in three dimensions.

The spin connection is expressed in terms of the vielbein and the Majorana gravitino by requiring
Dµ

(
2eeµae

ν
b

)
= 1

4
eψργ

ρµνγabψµ. After standard calculations, the explicit forms of the spin connection
and its variation can be obtained as

ωρab = eµ[ae
ν
b]

(
− eρc∂µecν + eµc∂νe

c
ρ − eµc∂ρecν

+
1

4
ψµγρψν −

1

4
ψνγµψρ +

1

4
ψργµψν

)
, (3)

δωρab = eµ[ae
ν
b]

(
− eρcDµδe

c
ν + eµcDνδe

c
ρ − eµcDρδe

c
ν

+
1

2
δψµγρψν −

1

2
δψνγµψρ +

1

2
δψργµψν

)
(4)

Then , up to O(ψ2), the variation of the Lagrangian (1) becomes

16πGNδL = 2e
{
Ra

µ −
1

2
eaµ

(
R +

2

`2

)}
δeµa − eδψργρµνψµν

+
β

2

(
− eερµνRab

µνδωρab + 2eδψσγ
abγρσDρDaψb

)
(5)

+ ∂µ

(
2eeµae

ν
bδων

ab + eψνγ
µνρδψρ +

β

2
eεµνρωνabδωρ

ab − βeδψνγρσγµνDρψσ

)
In the above calculation, we used Dµγ

a = 0 and Dγ(eγ
µνρ) = 0. Note also that Dρ(eγ

ρµ1···µn) = O(ψ2)

from Equation (3), and we employed this relation to derive Equation (5).
Let us evaluate the first term in the second line in Equation (5). The Riemann tensor in three

dimensions is written in terms of the Ricci tensor and the scalar curvature as

Rµνρσ = gµρRνσ − gµσRνρ − gνρRµσ + gνσRµρ −
1

2
(gµρgνσ − gµσgνρ)R,

ερµνRab
µν = 2ερaσRb

σ − 2ερbσRa
σ − ερabR (6)

By using Equations (4) and (6), the first term in the second line in Equation (5) is evaluated as

−β
2
eερµνRab

µνδωρab = 2βeεµνρCaρ

(
−Dµδe

a
ν +

1

2
δψµγ

aψν

)
(7)
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In this calculation we used

Cµν = Rµν −
1

4
gµνR, ερµνRab

µν = 2ερaσCb
σ − 2ερbσCa

σ (8)

and we neglected terms of O(ψ2).
Finally the variation of the Lagrangian Equation (5) is expressed as

δL =
e

16πGN

(
2Ga

µδe
µ
a + δψρΨ

ρ
)

+
1

16πGN
∂µ
(
eΘµ(δ)

)
(9)

In the above we defined

Θµ(δ) = 2eµae
ν
bδων

ab + ψ̄νγ
µνρδψρ

+
β

2
εµνρωνabδωρ

ab − 2βεµνρCaρδe
a
ν − βδψνγρσγµνDρψσ (10)

and

Ga
µ ≡ Ra

µ −
1

2
eaµ

(
R +

2

`2

)
+ βεaνρebµDνCbρ,

Ψρ ≡ −γµνρψµν + βεµνρCaνγ
aψµ − βγabγρσDσDaψb (11)

The equations of motion for the CTMSG are given by Ga
µ = 0 and Ψρ = 0.

3. Currents for the CTMSG

The action of the CTMSG is invariant under the general coordinate transformation and the local
supersymmetry. In this section we will construct currents for these transformations via Wald’s
procedure [30,31].

3.1. Current for the General Coordinate Invariance

Let us consider the general coordinate transformation x′µ = xµ − ξµ. The vielbein and the spin
connection transform as vector fields, and these behave like

δξe
a
µ = ξν∂νe

a
µ + ∂µξ

νeaν = Dµξ
a − ξνωνaµ,

δξων
ab = ξρ∂ρων

ab + ∂νξ
ρωρ

ab = ξρRab
ρν +Dν(ξ

ρωρ
ab) (12)

Below we apply Wald’s procedure to construct the current for the general coordinate transformation [30,31]
(Noether’s procedure is generalized to the gravitational Chern–Simons term in Reference [32]).

First, by imposing the equations of motion Ga
µ = 0 and Ψρ = 0, the variation of the Lagrangian

Equation (9) becomes

δξL =
1

16πGN
∂µ(eΘµ(ξ)) (13)

And the explicit form of eΘµ(ξ) up to O(ψ) is evaluated as (Although Equation (10) is expressed up to
O(ψ3) for the general coordinate transformation, we also need to know the correct equations of motion
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Equation (11) up to O(ψ3) to obtain fermionic bilinear terms of Qµν(ξ). Thus, we evaluate Θµ(ξ) up to
O(ψ), which is enough to obtain the super Virasoro algebras in Section 5.)

eΘµ(ξ) = 2eeµae
ν
bδξων

ab +
β

2
eεµνρωνabδξωρ

ab − 2βeεµνρCaρδξe
a
ν

= 2eRµ
νξ
ν + 2eeµae

ν
bDν(ξ

ρωρ
ab)− β

2
eεµνρωνabξ

σRab
ρσ +

β

2
eεµνρωνabDρ(ξ

σωσ
ab)

− 2βeεµνρCaρDνξ
a + 2βeεµbρCa

ρξ
σωσab

= 2eGµ
νξ
ν + e

(
R +

2

`2

)
ξµ + ∂ν

(
2eeµae

ν
bξ
ρωρ

ab − 2βeεµνρCρσξ
σ − β

2
eεµνρωρabωσ

abξσ
)

− β

2
eεµνρωνabR

ab
ρσξ

σ − β

4
eεµνρωσabR

ab
νρξ

σ − β

2
eεµνρων

a
bωρ

b
cωσ

c
aξ
σ

= 2eGµ
νξ
ν + ξµL+ ∂ν

(
eQµν(ξ)

)
(14)

Here, we defined the antisymmetric tensor,

eQµν(ξ) = 2eeµae
ν
bξ
ρωρ

ab − β

2
eεµνρ

(
4Cρσ + ωρabωσ

ab
)
ξσ (15)

In order to obtain the last line in Equation (14), we used the relation εµνρAνρσξσ = 1
3
ενρσAνρσξ

µ for a
completely antisymmetric tensor Aµνρ.

Second, since the Lagrangian of the CTMSG is covariant under the general coordinate transformation,
its variation behaves as a scalar field like

δξL = ∂µ
(
ξµL

)
(16)

Note that the Lorentz Chern–Simons term is invariant under the general coordinate transformation.
Subtracting Equation (16) from Equation (13), we obtain the conservation law of the current. The

current for the general coordinate invariance is expressed as

eJµ(ξ) =
1

16πGN

{
eΘµ(ξ)− 16πGNξ

µL+ ∂ν
(
eQ̃µν(ξ)

)}
=

1

16πGN
∂ν
(
eQµν(ξ) + eQ̃µν(ξ)

)
(17)

Here the equation of motion Gµ
ν = 0 is used, and Q̃µν(ξ) is an antisymmetric tensor. According to the

Wald’s procedure, in order to make the Hamiltonian well defined, the variation of Q̃µν(ξ) should become

δ
(
eQ̃µν(ξ)

)
= e
(
ξµΘν(δ)− ξνΘµ(δ)

)
(18)

Then the variation of the current is evaluated as

δ
(
eJµ(ξ)

)
=

1

16πGN
∂ν
{
δ
(
eQµν(ξ)

)
+ e
(
ξµΘν(δ)− ξνΘµ(δ)

)}
(19)

We will use this expression to derive the Virasoro algebras from the chiral supergravity in Section 5.



Universe 2015, 1 297

3.2. Supercurrent

Let us construct the supercurrent for the CTMSG. Under the local supersymmetry transformation, the
vielbein and the Majorana gravitino transform as

δεe
a
µ = εγaψµ, δεψµ= 2Dµε (20)

Here ε(x) represents a spacetime dependent parameter which belongs to the Majorana representation.
From these, we see that the variation of the spin connection and that of the field strength of the Majorana
gravitino become

δεωρab = eµ[ae
ν
b]

(
− ε̄γρDµψν + ε̄γµDνψρ − ε̄γµDρψν

− 1

2`
ε̄γµγρψν +

1

2`
ε̄γνγµψρ −

1

2`
ε̄γργµψν

)
,

δεψµν =
1

2
Rabµνγ

abε+
1

`2
γµνε (21)

up to O(ψ2).
First, by imposing the equations of motion Ga

µ = 0 and Ψρ = 0, the variation of the Lagrangian
Equation (9) becomes

δεL =
1

16πGN
∂µ(eΘµ(ε)) (22)

and the explicit form of Θµ(ε) up to O(ψ2) is evaluated as

Θµ(ε) = 2eµae
ν
bδεων

ab + ψ̄νγ
µνρδεψρ

+
β

2
εµνρωνabδεωρ

ab − 2βεµνρCaρδεe
a
ν − βδεψνγρσγµνDρψσ (23)

Next, by consulting the calculations in Section 2, the variation of the Lagrangian under the local
supersymmetry is evaluated as

16πGNδεL = 2e
{
Ra

µ −
1

2
eaµ

(
R +

2

`2

)}
δεe

µ
a −

1

2
eδεψργ

ρµνψµν −
1

2
eψργ

ρµνδεψµν

+ 2βeεµνρCaρ

(
−Dµδεe

a
ν +

1

2
δεψµγ

aψν

)
− eβDρδεψσγ

µνγρσDµψν

+ ∂µ

(
2eeµae

ν
bδεων

ab +
β

2
eεµνρωνabδεωρ

ab
)

(24)

In the above, terms of O(ψ2) are neglected. The second and third terms in the first line of Equation (24)
are deformed as

−∂ρ
(
eε̄γρµνψµν

)
+ eε̄γρµνDρψµν +

1

4
eRabµν ε̄γ

abγρµνψρ +
1

2`2
eε̄γµνγ

ρµνψρ

= −∂µ
(
eε̄γµνρψνρ

)
+ 2e

{
Ra

µ −
1

2
eaµ

(
R +

2

`2

)}
ε̄γµψa (25)

and the second line of Equation (24) is calculated like

−2βeεµνρCaρ

(
ε̄γaDµψν +

1

2`
ε̄γµγ

aψν

)
+
β

4
eRabρσ ε̄γ

abγµνγρσDµψν +
β

`
eDρεγσγ

µνγρσDµψν

=
β

`
eεµνρCaρε̄γνγ

aψµ +
2β

`
eDρεγ

µνρDµψν

= ∂µ

(2β

`
eε̄γµνρDνψρ

)
(26)
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In order to derive the above expressions, we noted γµνρ = εµνρ1, γµν = εµνργρ, γµ = −1
2
εµνργνρ, and

used relations below.

γµνγρσ = −2gρ[µγν]σ + 2gσ[µγν]ρ − 2gρ[µgν]σ,

γσγ
µνγρσ = 2gρ[µγν] + 2γ[µγν]ρ = 2γµνρ,

−εµνρRaρε̄γ
aDµψν = −Raρε̄γ

µνργaDµψν = −2ε̄R[µ
ργ

ν]ρDµψν −Rε̄γµνDµψν , (27)

Rabρσγ
abγµνγρσ = 16R[µ

ργ
ν]ρ + 6Rγµν

Eventually the variation of the Lagrangian for the CTMSG (24) becomes

16πGNδεL = ∂µ

(
2eeµae

ν
bδεων

ab − eε̄γµνρψνρ +
β

2
eεµνρωνabδεωρ

ab +
2β

`
eε̄γµνρDνψρ

)
(28)

Thus, the CTMSG is invariant under the local supersymmetry.
By subtracting Equation (28) from Equation (22), it is possible to obtain the current conservation for

the local supersymmetry. The supercurrent for the CTMSG is expressed as

eSµ(ε) =
e

16πGN

(
ψ̄νγ

µνρδεψρ + ε̄γµνρψνρ

− 2βεµνρCaρδεe
a
ν − βδεψνγabγµνDaψb −

2β

`
ε̄γµνρDνψρ

)
=

1

16πGN
∂ν
(
eUµν(ε)

)
(29)

Here the antisymmetric tensor Uµν(ε) is given by

Uµν(ε) = −2εµνρε̄ψρ − 2βε̄γabγµνDaψb (30)

In order to derive Equation (29), we used the second line in Equation (27) and imposed the equation of
motion Ψµ = 0.

4. Asymptotic Symmetry Group for AdS3 Geometry

In this section we briefly review the asymptotic behavior of AdS3 geometry including supersymmetry.
At the spatial infinity r →∞, the metric of AdS3 geometry becomes

ds2 = −N2dt2 + r2dφ2 +N−2dr2, N =
r

`
(31)

where t, φ and r are time, angular and radial directions, respectively. This background corresponds to
the massless BTZ black hole. The Riemann tensor is simply given by Rµνρσ = − 1

`2
(gµρgνσ − gνρgµσ).

In the background of the massless BTZ black hole, the vielbein and the spin connection become

e0 =
r

`
dt, e1 = rdφ, e2 =

`

r
dr, (32)

ωt
0

2 =
r

`2
, ωφ

1
2 =

r

`
(33)

µ, ν = t, φ, r are used for spacetime indices and a, b = 0, 1, 2 are done for local Lorentz ones.
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Since we are interested in the boundary behavior of the symmetry group, we explore general
coordinate transformation x′µ = xµ − ξµ which does not change the geometry of AdS3 only at the
spatial infinity. The condition to be imposed for the variation of the metric is written as follows.

δξgµν =

 O(1) O(1) O(r−1)

O(1) O(1) O(r−1)

O(r−1) O(r−1) O(r−4)

 (34)

The behaviors of the diagonal components of δξgµν are determined so that these go to zero faster than the
background Equation (31) as r goes to infinity. Then the behaviors of ξµ and off diagonal components
of δξgµν around the boundary are simultaneously fixed. After some calculations, the general coordinate
transformation ξµ which satisfy the above condition is solved as

ξt = `
(
T+(x+) + T−(x−)

)
,

ξφ = T+(x+)− T−(x−), (35)

ξr = −r
(
∂+T+(x+) + ∂−T−(x−)

)
where x± = t

`
± φ and ∂± = 1

2
(`∂t ± ∂φ). The isometry group only at the boundary is called asymptotic

symmetry group. The the asymptotic symmetry group is parametrized by arbitrary functions T+(x+)

and T−(x−), and we often expand these by

T±,n(x±) =
1

2
einx

±
(36)

Now let us calculate the transformation of the vielbein under Equation (35). As discussed in
Reference [33], the transformation should be combined with local Lorentz transformation δΛe

a
µ =

Λa
be
b
µ, where

Λa
b =

 0 −∂+T+ + ∂−T−
`
r

(
∂2

+T+ + ∂2
−T−

)
−∂+T+ + ∂−T− 0 − `

r

(
∂2

+T+ − ∂2
−T−

)
`
r

(
∂2

+T+ + ∂2
−T−

)
`
r

(
∂2

+T+ − ∂2
−T−

)
0

 (37)

Then the variation δξeaµ = ξρ∂ρe
a
µ + ∂µξ

ρeaρ + Λa
be
b
µ is evaluated as

δξe
a
µ =

0 0 `2

r2

(
∂2

+T+ + ∂2
−T−

)
0 0 − `2

r2

(
∂2

+T+ − ∂2
−T−

)
0 0 0

 (38)

This variation goes to zero faster than the background Equation (32). In a similar way, the transformation
of the spin connection is given by δξωµab = ξρ∂ρωµ

ab + ∂µξ
ρωρ

ab − ∂µΛab + Λa
cωµ

cb + Λb
cωµ

ac. After
some calculations, the variation of the spin connection becomes

δξωt
a
b =

 0 0 −1
r

(
∂3

+T+ + ∂3
−T−

)
0 0 1

r

(
∂3

+T+ − ∂3
−T−

)
−1
r

(
∂3

+T+ + ∂3
−T−

)
−1
r

(
∂3

+T+ − ∂3
−T−

)
0

 ,
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ξωφ
a
b =

 0 0 − `
r

(
∂3

+T+ − ∂3
−T−

)
0 0 `

r

(
∂3

+T+ + ∂3
−T−

)
− `
r

(
∂3

+T+ − ∂3
−T−

)
− `
r

(
∂3

+T+ + ∂3
−T−

)
0

 , (39)

δξωr
a
b =

 0 0 `
r2

(
∂2

+T+ + ∂2
−T−

)
0 0 − `

r2

(
∂2

+T+ − ∂2
−T−

)
`
r2

(
∂2

+T+ + ∂2
−T−

)
`
r2

(
∂2

+T+ − ∂2
−T−

)
0


The variation of the spin connection also goes to zero faster that the background Equation (33). These
results will be employed to calculate central charges in the next section.

Next let us explore local supersymmetric transformation ε(x) which satisfy the boundary condition at
the spatial infinity. Notations are the same as in Reference [33]. Because ψµ = 0 for AdS3 solution, the
condition for the supersymmetric variation is imposed as

δεψµ =
(
O(r−1/2) O(r−1/2) O(r−5/2)

)
(40)

The solution of Equation (40) becomes

ε(x+) = r1/2γ0χ(x+) + `r−1/2χ′(x+) (41)

where χ(x+) is a Majorana fermion with γ2χ = χ. The solution depends only on x+, so the remaining
local supersymmetry is chiral in this sense. We often expand χ(x+) and ε(x+) by Fourier modes,

χs = eisx
+

(
0

1

)
, εs = eisx

+

(
−r1/2

i`sr−1/2

)
(42)

which satisfy the following relation

χTs χt = 2T+,s+t, εsγ
µεt = −2iξµ+,s+t (43)

From Equation (43), it is clear that s+ t should take some integer value. When s, t ∈ Z+ 1
2
, those modes

are called in the Neveu–Schwarz sector. On the other hand, when s, t ∈ Z, those modes are done in the
Ramond sector.

5. Super Virasoro Algebras from Chiral Supergravity

So far we have constructed Noether currents for the CTMSG. Since the CTMSG has stable AdS3

background for the critical point |β/`| = 1 [22,29], we consider the chiral supergravity below. Now
we evaluate super Virasoro algebras at the boundary of the chiral supergravity. The Hamiltonian for the
general coordinate transformation ξµ is given by

H(ξ) =

∫
drdφ eJ t(ξ) =

1

16πGN

∮
r=∞
dφ
(
eQtr(ξ) + eQ̃tr(ξ)

)
(44)

The variation of the Hamiltonian is related to the Poisson bracket of the algebra as

δξ2H(ξ1) = {H(ξ1), H(ξ2)} = H([ξ1, ξ2]) +K(ξ1, ξ2) (45)
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The last term represents the central extension of the algebra. Let us evaluate the above quantity in the
background of the massless BTZ black hole Equation (31) with ψµ = 0. The energy of the massless
black hole is zero, so H(ξ) = 0 in this background. Thus, K(ξ1, ξ2) = δξ2H(ξ1) and it is evaluated like

δξ2H(ξ1) =
1

16πGN

∮
r=∞
dφ
{
δξ2
(
eQtr(ξ1)

)
+ e
(
ξt1Θr(ξ2)− ξr1Θt(ξ2)

)}
=

1

16πGN

∮
r=∞
dφ
{
δξ2
(
2eetae

r
bξ
ρ
1ωρ

ab
)

+
β

2
δξ2
(
4Cφσ + ωφabωσ

ab
)
ξσ1

+ 4eξ
[t
1 e

r]
ae
ν
bδξ2ων

ab + βeξ
[t
1 ε

r]νρ
(
4Caνδξ2e

a
ρ + ωνabδξ2ωρ

ab
)}

= − `

4πGN

∮
r=∞
dφ
{(

1− β

`

)
T1+∂

3
+T2+ +

(
1 +

β

`

)
T1−∂

3
−T2−

}
(46)

In order to derive the last expression, we used eεtφr = 1, Equation (38), Equation (39) and
following relations.

δξ2
(
4Cρσ + ωρabωσ

ab
)

=


4
`2

(∂3
+T2+ + ∂3

−T2−) 4
`
(∂3

+T2+ − ∂3
−T2−) 0

4
`
(∂3

+T2+ − ∂3
−T2−) 4(∂3

+T2+ + ∂3
−T2−) 0

0 0 0

 ,

δξ2
(
4Cρσ + ωρabωσ

ab
)
ξσ1 =


8
`
(T1+∂

3
+T2+ + T1−∂

3
−T2−)

8(T1+∂
3
+T2+ − T1−∂

3
−T2−)

0

 , (47)

4Caνδξ2e
a
ρ + ωνabδξ2ωρ

ab =


2
`2

(∂3
+T2+ + ∂3

−T2−) 2
`
(∂3

+T2+ − ∂3
−T2−) 0

2
`
(∂3

+T2+ − ∂3
−T2−) 2(∂3

+T2+ + ∂3
−T2−) 0

0 0 0


Notice that left and right modes are separated in a nontrivial way in Equation (46).

Now we substitute the Fourier mode expansion of Equation (36). Then the variation of the
Hamiltonian becomes

δξ±,nH(ξ±,m) = −i `

8GN

(
1∓ β

`

)
m3δm+n,0 (48)

This gives the central extensions of left and right Virasoro algebras. By expanding H(ξ±,m) = L±me
imx±

and replacing the Poisson bracket with the commutator, we obtain Virasoro algebras for left and
right modes.

[L+
m, L

+
n ] = (m− n)L+

m+n +
c+

12
m3δm+n,0,

[L−m, L
−
n ] = (m− n)L−m+n +

c−
12
m3δm+n,0 (49)

Here the central charges are given by

c± =
3`

2GN

(
1∓ β

`

)
(50)

Note that the sign is flipped compared with Reference [24] because of the definition eεtφr = 1. At the
critical point, one of the central charges vanishes.
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Next let us evaluate the Poisson bracket of the supercharge. The supercharge for the local
supersymmetry is written as

F (ε) =

∫
drdφ eSt(ε) =

1

16πGN

∮
r=∞
dφ eU tr(ε) (51)

It is obvious that the supercharge is zero in the background of ψµ = 0. The variation of the supercurrent
under the local supersymmetry is evaluated as

δε2F (ε1) = {F (ε1), F (ε2)} = H(ε1γε2) +K(ε1, ε2) (52)

where K(ε1, ε2) is the central extension of the algebra. Let us evaluate the above quantity in the
background of the massless BTZ black hole Equation (31) with ψµ = 0. The energy of the massless
black hole is zero, so H(ξ) = 0 in this background. Thus, K(ε1, ε2) = δε2F (ε1) and its explicit form is
calculated as

δε2F (ε1) =
1

16πGN

∮
r=∞
dφ
(

4ε1Dφε2 −
β

2
eRρσabε1γ

abγtrγρσε2 −
2β

`
eε1γ

abγtrγbDaε2

)
=

1

4πGN

(
1− β

`

)∮
r=∞
dφ ε1Dφε2,

=
i`

4πGN

(
1− β

`

)∮
r=∞
dφχT1 χ

′′
2 (53)

In the above we employed Equation (27). Let us substitute Fourier mode expansion of Equation (42).
Then the variation of the supercharge is evaluated as

δεtF (εs) = −i `

2GN

(
1− β

`

)
s2δs+t,0 (54)

This corresponds to the central extension of the super Virasoro algebra. Notice that iεsγµεt = 2ξµ+,s+t.
By expanding F (εs) = Gse

isx+ , the algebra is expressed as

{Gs, Gt} = 2Ls+t +
c+

3
s2δs+t,0 (55)

The Neveu–Schwarz sector corresponds to s, t ∈ Z + 1
2
, and the Ramond sector does to s, t ∈ Z.

Finally let us examine the variation of the supercharge under the general coordinate
transformation [33]. When the transformation ξµ+ depends only on x+, we obtain

δξ+F (ε1) = {F (ε1), H(ξ+)} = −F (δξ+ε1) (56)

where δξ+ε1 = ξρ+∂ρε1 + 1
4
Λabγ

abε1. Notice that the integral constant should be zero since F (ε) = 0 for
ψµ = 0. By setting ξ+ = ξ+,m and ε1 = εs, we obtain

[L+
m, Gs] =

(m
2
− s
)
Gm+s (57)

In a similar way, it is possible to show [L−m, Gs] = 0. Therefore we conclude that there are left and right
Virasoro algebras at the boundary with different central charges, and left mode is extended to the super
Virasoro algebra.
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6. Conclusions and Discussion

In this note, we investigated the chiral supergravity in three dimensions. The charges for the general
coordinate transformation and local supersymmetry are explicitly constructed by applying Wald’s
prescription to the vielbein formalism. Commutation relations of the charges are explored in detail
and super Virasoro algebras are constructed for AdS3 background. Especially, the central extensions of
the left and right super Virasoro algebras are evaluated by calculating the variations of the charges. The
asymmetric central charges are obtained and those expressions are given by c± = 3`

2GN
(1∓ β

`
).

Note that the super Virasoro algebras Equations (49) and (55) are not in the canonical form. In order
to make the expressions canonical, we just shift the zero point energy as

L±0 → L±0 −
c±
24

(58)

Then the algebras become

[L±m, L
±
n ] = (m− n)L±m+n +

c±
12

(m3 −m)δm+n,0,

{Gs, Gt} = 2Ls+t +
c+

3

(
s2 − 1

4

)
δs+t,0 (59)

At the same time, the energy of the global AdS3 geometry is shifted to zero. Thus, the effective central
charge is the same as the central charge, and the entropy of the BTZ black hole can be correctly explained
by the Cardy formula (As a review on the BTZ black hole entropy and Cardy formula, see Reference [37]
for example.). Though this conclusion was obtained in the supersymmetric theory, it is also true for the
bosonic case if we truncate the fermionic sector.

Since the vielbein formulation of the chiral supergravity is well established, it is interesting to apply
these results to other geometries, such as warped AdS3 [38,39], or Kerr/CFT correspondence [40]. For
these cases, it is important to generalize the covariant formalism of refs. [41,42] to the chiral supergravity.
It is also important to apply the vielbein formalism to the higher spin supergravity and derive the central
charges [43–46].
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