
Universe 2015, 1, 186-198; doi:10.3390/universe1020186
OPEN ACCESS

universe
ISSN 2218-1997

www.mdpi.com/journal/universe

Article

Generalized f (R, φ,X) Gravity and the Late-Time
Cosmic Acceleration
Sebastian Bahamonde 1, Christian G. Böhmer 1,*, Francisco S.N. Lobo 2,3 and
Diego Sáez-Gómez 2

1 Department of Mathematics and Institute of Origins, University College London, Gower Street,
London WC1E 6BT, UK; E-Mail: sebastian.beltran.14@ucl.ac.uk

2 Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências, Universidade de Lisboa, Campo
Grande, PT1749-016 Lisboa, Portugal; E-Mails: fslobo@fc.ul.pt (F.S.N.L.); dsgomez@fc.ul.pt (D.S.-G.)

3 Faculdade de Ciências da Universidade de Lisboa, Edifício C8, Campo Grande, P-1749-016
Lisboa, Portugal

* Author to whom correspondence should be addressed; E-Mail: c.boehmer@ucl.ac.uk;
Tel.: +44-(0)20-76793597; Fax: +44-(0)20-73835519.

Academic Editors: Kazuharu Bamba and Sergei D. Odintsov

Received: 25 June 2015 / Accepted: 7 August 2015 / Published: 18 August 2015

Abstract: High-precision observational data have confirmed with startling evidence that
the Universe is currently undergoing a phase of accelerated expansion. This phase, one
of the most important and challenging current problems in cosmology, represents a new
imbalance in the governing gravitational equations. Historically, physics has addressed
such imbalances by either identifying sources that were previously unaccounted for or by
altering the gravitational theory. Several candidates, responsible for this expansion, have
been proposed in the literature, in particular dark energy models and modified gravity
models, amongst others. Outstanding questions are related to the nature of this so-called
“dark energy” that is driving this acceleration, and whether it is due to the vacuum energy
or a dynamical field. On the other hand, the late-time cosmic acceleration may be due to
modifications of general relativity. In this work, we explore a generalised modified gravity
theory, namely f(R, φ,X) gravity, where R is the Ricci scalar, φ is a scalar field and X is a
kinetic term. This theory contains a wide range of dark energy and modified gravity models.
We considered specific models and applications to the late-time cosmic acceleration.
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1. Introduction

A central theme in cosmology is the fact that the Universe is currently undergoing an accelerating
expansion [1,2]. In this context, during the last two decades, cosmology has evolved from being mainly
a theoretical area of physics to becoming a field supported by observational data. Recent experiments
call upon state-of-the-art technology in astronomy and astrophysics to provide detailed information on
the contents and history of the Universe, which has led to the measuring of the parameters that describe
our Universe with increasing precision. The standard model of cosmology is remarkably successful in
accounting for the observed features of the Universe. However, there remain a number of open questions
concerning the foundations of that standard model. In particular, we lack a fundamental understanding
of the mechanisms underlying the acceleration of the late-time universe. What is the so-called “dark
energy” that is driving the cosmic acceleration? Is it a vacuum energy or a dynamical field? Is the
acceleration due to modifications of Einstein’s theory of general relativity (GR)? How is structure
formation affected in these alternative scenarios? What happens to the Universe in the asymptotic future?

The resolution of these fundamental questions, looking beyond the standard theories of gravity
and particle physics, is extremely important for theoretical cosmology and theoretical physics as a
whole. The standard model of cosmology has favoured dark energy models as fundamental candidates
responsible for the cosmic expansion. However, it is clear that these questions involve not only gravity,
but also particle physics. String theory provides a synthesis of these two branches of physics and is
widely believed to be moving towards a viable quantum gravity theory, given time. One of the key
predictions of string theory is the existence of extra spatial dimensions. In the brane-world scenario,
motivated by recent developments in string theory, the observed four-dimensional universe is embedded
in a higher-dimensional spacetime [3]. The new degrees of freedom belong to the gravitational sector and
can be responsible for the late-time cosmic acceleration [4,5]. On the other hand, generalisations of the
Einstein–Hilbert Lagrangian, including quadratic Lagrangians, which involve second order curvature
invariants, have also been extensively explored [6–11]. An alternative approach was formulated
in [12,13]. Curvature-matter couplings have also been extensively analysed [14–20]. While these
modified theories of gravity offer an alternative explanation to the standard cosmological model for the
expansion history of the Universe [21], it offers a paradigm for nature fundamentally distinct from dark
energy models of cosmic acceleration [22], even those that perfectly mimic the same expansion history.
It is also fundamental to understand how one may differentiate these modified theories of gravity from
dark energy models.

In this context, a promising way to explain the late-time cosmic acceleration is to assume that at large
scales, Einstein’s theory of GR breaks down, and a more general action describes the gravitational field.
Thus, one may generalise the Einstein–Hilbert action by including “quadratic Lagrangians”, involving
second order curvature invariants. Some of the physical motivations for these modifications of gravity
were related to the possibility of a more realistic representation of the gravitational fields near curvature
singularities and to create some first order approximation for the quantum theory of gravitational fields.
On the other hand, field theories in theoretical physics tend to have Lagrangians quadratic in field
strengths, gravity being somewhat different. One may tackle the problem using the metric formalism,
which consists of varying the action with respect to the metric, although other alternative approaches
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have been considered in the literature, namely the Palatini formalism [23], where the metric and the
connections are treated as separate variables; and the metric-affine formalism, where the matter part of
the action now depends and is varied with respect to the connection [24]. Recently, a novel approach
to modified theories of gravity consists of adding to the Einstein–Hilbert Lagrangian an f(R) term
constructed à la Palatini [25]. It was shown that the theory can pass the Solar System observational
constraints even if the scalar field is very light. This implies the existence of a long-range scalar field,
which is able to modify the cosmological and galactic dynamics, but leaves the Solar System unaffected.
These explicit models are consistent with local tests, lead to the late-time cosmic acceleration and also
verify the absence of instabilities in perturbations.

In this work, we intend to consider a generalised modified gravity theory, f(R, φ,X) gravity, where
R is the Ricci scalar, φ a scalar field and X a kinetic term. This theory contains a wide range of known
dark energy and modified gravity models, for instance f(R) gravity models or Galileons. Here, we apply
it to the late-time cosmic acceleration. In particular, several cosmological solutions are studied within
the framework of these theories, specifically solutions that can provide cosmic acceleration at late times,
and even the exact ΛCDM evolution. Reconstruction techniques are implemented in order to obtain the
f(R, φ,X) of the action given a particular Hubble parameter. This provides a way to efficiently check
the viability of any gravitational action by just considering a particular cosmological evolution and then
analysing the gravitational action. An action of the form f(R, φ,X) is in fact quite natural, as it removes
any assumptions on the underlying theory of gravity with the exception of being second order. We can
think of the field φ as the effective field controlling the strength of the gravitational force. One should
emphasise that normal matter is still coupled minimally to this theory.

This paper is organised in the following manner: In Section 2, we present the general formalism of
f(R, φ,X) gravity. In Section 3, we analyse cosmological applications, in particular to the late-time
cosmic acceleration, by considering specific models and reconstructing the corresponding gravitational
action. Then, we discuss in the conclusions at Section 4 about the results obtained and possible future
considerations of these theories.

2. Generalised Gravity Models: Formalism

Consider the following general action:

S =

∫
d4x
√−g

[
1

2κ2
f(R, φ,X) + Lm

]
, (1)

where f = f(R, φ,X) is a function of the Ricci scalar R, the scalar field φ and a kinetic term
X = −(1/2)(∇φ)2. The matter Lagrangian is Lm = Lm(g, ψ); we note that matter is minimally coupled
to the gravitational sector of the theory, and ψ collectively denotes any matter fields.

The variation of action Equation (1) with respect to the metric gµν gives the following field equation:

FGµν =
1

2
(f −RF ) gµν +∇νF,µ − gµν∇α∇αF +

1

2
f,X φ,µφ,ν + T (m)

µν , (2)

while variations with respect to the scalar field φ yield:

∇µ (f,X φ
,µ) + f,φ = 0 . (3)
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Here, F = ∂f/∂R and T (m)
µν is the matter energy-momentum tensor defined by:

T (m)
µν = − 2√−g

δ(
√−g Lm)

δ(gµν)
. (4)

Now, taking into account a flat Friedman–Lemaître–Robertson–Walker (FLRW) metric in
spherical coordinates:

ds2 = −dt2 + a2(t)
[
dr2 + r2

(
dθ2 + sin2 θdϕ

)]
, (5)

where a(t) is the scale factor, then Equations (2) and (3) take the following form:

3FH2 = f,XX +
1

2
(FR− f)− 3HḞ + κ2ρm , (6)

−2FḢ = f,XX + F̈ −HḞ + κ2(ρm + pm) , (7)

0 =
1

a3

(
a3φ̇f,X

).
− f,φ , (8)

where H = ȧ/a is the Hubble parameter and the overdot denotes a derivative with respect to
cosmological time t. For simplicity, we will not take into account additional forms of matter.

In order to derive an equation for the effective equation of state, we rewrite the field Equations (6)
and (7) in the following form:

3H2 = κ2 (ρm + ρDE) , (9)

−2Ḣ = κ2 (ρm + pm + ρDE + pDE) , (10)

where the quantities ρDE and pDE are defined by:

κ2ρDE = f,XX +
1

2
(FR− f)− 3HḞ + 3H2(1− F ) , (11)

κ2pDE = F̈ + 2HḞ − 1

2
(FR− f)−

(
2Ḣ + 3H2

)
(1− F ) . (12)

One may easily show that the these effective dark energy components satisfy the usual conservation
equation, i.e.,

ρ̇DE + 3H (ρDE + pDE) = 0 . (13)

This is expected since the left-hand sides of Equations (9) and (10) are equivalent to the
general relativistic field equations containing the Einstein tensor, which satisfies the twice contracted
Bianchi identities.

Let us define the dark energy equation of state given by ωDE ≡ pDE/ρDE, which by using
Equations (9) and (10) takes the form:

ωDE = −2Ḣ + 3H2 + κ2pm

3H2 − κ2ρm

. (14)

In order to specify the matter content, let us choose the equation of state pm = wρm. In turn, we can
write the dark energy equation of state as:

ωDE = −1 + 2
3
Ḣ
H2 + w κ2ρm

3H2

1− κ2ρm
3H2

=
ωeff

1− Ω̃m

, (15)
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where:

ωeff = −1− 2

3

Ḣ

H2
− wΩ̃m, Ω̃m =

κ2ρm
3H2

= F Ωm . (16)

In the following, we will consider the above equations and seek a solution corresponding to an
accelerated expansion.

3. Cosmological Applications: Late-Time Cosmic Acceleration

Let us consider some specific forms of the action (1) and reconstruct particular cosmological solutions
capable of reproducing the late-time cosmic acceleration. We are considering pure de Sitter solutions,
also power law solutions, and finally, we are reconstructing an exact ΛCDM model. Note that this
kind of cosmological solution has already been considered in the literature within modified gravity
theories, especially in f(R) gravity and Gauss–Bonnet gravity. In particular, power-law solutions were
found in [26,27], while exact the ΛCDM model was reconstructed in [28–30]. In order to simplify the
calculations, we restrict to a matter Lagrangian with a pressure-less fluid, as natural when analysing
late-time cosmology.

3.1. Brans–Dicke Type Models

Here, we consider a Brans–Dicke-type action with f(R,X, φ) = γ(X,φ)R, where the coupling to
the Ricci curvature also includes the kinetic term of the scalar field,

S =

∫
d4x
√−g

[
1

2κ2
γ(X,φ)R + Lm

]
. (17)

Then, by considering an homogeneous and isotropic metric Equation (5), the FLRW Equations (6)
and (7) are expressed as follows:

3γ(X,φ)H2 = γ,XXR− 3H
d

dt
γ(X(t), φ(t)) + κ2ρm ,

−2γ(X,φ)Ḣ = γ,XXR +
d2

dt2
γ(X(t), φ(t))−H d

dt
γ(X(t), φ(t)) + κ2(ρm + pm) . (18)

Additionally, combining both equations, a differential equation solely of γ(X(t), φ(t)) = γ(t)

is obtained:
d2γ(t)

dt2
+ 2H

dγ(t)

dt
+ (3H2 + 2Ḣ)γ(t) = 0 . (19)

Then, Equation (19) can be solved by assuming a particular Hubble parameter, and action
Equation (17) can be reconstructed by assuming a particular form of γ(X,φ), which has to satisfy:

γ,XX =
3γH2 + 3Hγ̇ − κ2ρm

R
, (20)

As an example for illustrating the reconstruction method, here we consider the usual form of a scalar
field Lagrangian,

γ(X,φ) = X − V (φ) , (21)
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where V (φ) is a function of the scalar field to be determined. Then, by redefining the scalar field to
coincide with the cosmic time φ = t and using Equations (20) and (21), the kinetic term and the scalar
potential are fully reconstructed:

X(φ) =
3γH2 + 3Hγ̇ − κ2ρ0e−3

∫
dφH

R
,

V (φ) = X(φ)− γ(φ) . (22)

where we have used the continuity Equation ρ̇m + 3Hρm = 0.
Let us now consider several cosmological solutions. Firstly, we assume a pure de Sitter solution,

H = H0 , (23)

where H0 is a constant. Then, the Equation (19) leads to:

d2γ(t)

dt2
+ 2H0

dγ(t)

dt
+ 3H2

0γ(t) = 0 . (24)

which is the equation of a damped harmonic oscillator, whose general solution is given by:

γ(t) = e−H0tC cos
√

2H0(t− t0) , (25)

where {C, t0} are integration constants. Then, assuming Equation (21), the gravitational action is
reconstructed by the expressions Equation (22), where the kinetic term and the scalar potential turn out:

X(φ) = − C

2
√

2
e−H0φ sin

√
2H0(φ− φ0)− κ2ρ0

12H2
0

e−3H0φ ,

V (φ) = −C
4

e−H0φ
[
4 cos

√
2H0(φ− φ0) +

√
2 sin

√
2H0(φ− φ0)

]
− κ2ρ0

12H2
0

e−3H0φ , (26)

The interesting point of this action is that it leads to a constant Hubble parameter in the presence of
dust matter and a scalar field, but without a cosmological constant, contrary to standard general relativity.

Another important class of solutions in cosmology is the power-law-type expansion, whose Hubble
parameter is given as follows:

H =
n

t
→ a(t) = a0t

n . (27)

By applying the same procedure as above, Equation (19) turns out to be:

t2
d2γ(t)

dt2
+ 2nt

dγ(t)

dt
+ n(3n− 2)γ(t) = 0 , (28)

which is a Cauchy–Euler equation whose general solution is given by:

γ(t) = C1t
p+q + C2t

p−q , (29)

where C1 and C2 are two constants of integration, and we defined:

p =
1− 2n

2
, q =

√
1 + 4n− 8n2

2
. (30)
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By assuming Equation (21) as above, the kinetic term and the scalar potential are obtained:

X(φ) =
1

4(2n− 1)

[
C1(1 + 2q)φp+q + C2(1− 2q)φp−q − 1

3N
2κ2ρ0φ

2−3n
]
,

V (φ) =
1

4(2n− 1)

[
C1(5− 8n+ 2q)φp+q + C2(5− 8n− 2q)φp−q − 1

3N
2κ2ρ0φ

2−3n
]
. (31)

Hence, the gravitational action capable of reproducing the power-law solutions Equation (27)
is obtained.

Finally, let us consider the case of exact ΛCDM and explore whether a gravitational action of the type
Equation (17) is capable of reproducing such a kind of expansion. In order to simplify the calculations,
here we use the red shift 1 + z = 1

a
as the independent variable instead of the cosmic time t. The

cosmological evolution of ΛCDM model can be expressed by the following Hubble parameter:

H(z) = H0

√
Ωm(1 + z)3 + 1− Ωm , (32)

where Ωm = ρ0
3H2

0/κ
2 and H0 is the Hubble parameter evaluated at z = 0. Then, the Equation (19) can be

rewritten in terms of the red shift as,

(1 + z)2H2γ′′ +
[
(1 + z)2HH ′ − (1 + z)H2

]
γ′ +

[
3H2 − 2(1 + z)HH ′

]
γ = 0 , (33)

where the primes denote derivatives with respect to the red shift. Hence, the Equation (33) can be solved
as γ(X,φ) = γ(z). Particularly, for the ΛCDM model, the Equation (33) leads to:

2(1 + z)2
[
Ωmz(z

2 + 3z + 3) + 1
]
γ′′(z) + (1 + z)

[
Ωm(z3 + 3z2 + 3z + 3)− 2

]
γ′(z) + 6(1− Ωm)γ(z) = 0 .

(34)

Unfortunately, this equation cannot be solved exactly, but numerical resources are required. In order
to illustrate a particular case, we solve the Equation (34) by assuming Ωm = 0.31, provided by the last
Planck data [31]. The kinetic term and the scalar potential are depicted in Figure 1. Note that we have
assumed the initial conditions γ(z = 10) = 1 and γ′(z = 10) = 0, so that GR is recovered at large
red shifts. As expected, the dynamics of the scalar field become important at small red shifts while
remaining virtually constant at large ones.Universe 2015, xx 7

0 2 4 6 8 10

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

Φ

X
HΦ
L

0 2 4 6 8 10

-1.00

-0.95

-0.90

-0.85

-0.80

-0.75

Φ

V
HΦ
L

Figure 1. The kinetic term (left panel) and scalar potential (right panel) for the ΛCDM
model (32) with Ωm = 0.31.

use the redshift 1 + z = 1
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as the independent variable instead of the cosmic time t. The cosmological
evolution of ΛCDM model can be expressed by the following Hubble parameter

H(z) = H0

√
Ωm(1 + z)3 + 1− Ωm , (32)

where Ωm = ρ0
3H2

0/κ
2 and H0 is the Hubble parameter evaluated at z = 0. Then, the equation (19) can be

rewritten in terms of the redshift as,

(1 + z)2H2γ′′ +
[
(1 + z)2HH ′ − (1 + z)H2

]
γ′ +

[
3H2 − 2(1 + z)HH ′

]
γ = 0 , (33)

where the primes denote derivatives with respect to the redshift. Hence, the equation (33) can be solved
as γ(X,φ) = γ(z). Particularly, for the ΛCDM model, the equation (33) leads to

2(1+z)2
[
Ωmz(z2 + 3z + 3) + 1

]
γ′′(z)+(1+z)

[
Ωm(z3 + 3z2 + 3z + 3)− 2

]
γ′(z)+6(1−Ωm)γ(z) = 0 .

(34)
Unfortunately, this equation can not be solved exactly but numerical resources are required. In order

to illustrate a particular case, we solve the equation (34) by assuming Ωm = 0.31, provided by the
last Planck data [31]. The kinetic term and the scalar potential are depicted in Fig. 1. Note that we
have assumed the initial conditions γ(z = 10) = 1 and γ′(z = 10) = 0, so that GR is recovered at
large redshifts. As expected, the dynamics of the scalar field become important at small redshifts while
remains virtually constant at large ones.

3.2. Minimally coupled field model

Let us now consider another different type of the gravitational action (1), where the scalar field is
minimally coupled. We choose f(R,X, φ) = α(R) + γ(X,φ) so that

S =

∫
dx4
√−g [α(R) + γ(X,φ) + Lm] . (35)

Figure 1. The kinetic term (left panel) and scalar potential (right panel) for the ΛCDM
model Equation (32) with Ωm = 0.31.
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3.2. Minimally-Coupled Field Model

Let us now consider another different type of gravitational action Equation (1), where the scalar field
is minimally coupled. We choose f(R,X, φ) = α(R) + γ(X,φ), so that:

S =

∫
dx4
√−g [α(R) + γ(X,φ) + Lm] . (35)

This action can be seen as an f(R)-like action with a k-essence-like fluid in the presence of f(R) gravity.
Then, the FLRW Equations (6) and (7) turn out to be:

3α,RH
2 = γ,XX +

1

2
(α,RR− α− γ)− 3Hα̇,R + κ2ρm ,

−2α,RḢ = γ,XX + α̈,R −Hα̇,R + κ2ρm , (36)

which can be combined, so that an equation for γ(X,φ) = γ(t) is obtained,

γ(t) = −α +
(
R− 6H2 − 4Ḣ

)
α,R −

(
4HṘ + 2R̈

)
α,RR − 2Ṙ2α,RRR . (37)

Then, by specifying α(R) and providing a particular Hubble evolution H(t), the function γ(t) is
determined. The complete function γ(X,φ) is provided by assuming a particular form of the scalar field
Lagrangian that satisfy:

γ,XX =
1

2
α +

(
3H2 − 1

2
R

)
α,R + 3Hα̇,R − κ2ρm +

1

2
γ . (38)

In order to reconstruct some particular solutions, we are considering the following α(R),

α(R) = R + aR2 , (39)

where a is a constant free parameter with the appropriate dimensions. This gravitational action is a very
well known one in the literature, as it is capable of reproducing inflation [32]. As above, we start by
considering a pure de Sitter solution Equation (23), H = H0. In such a case, the expression of γ(t) in
Equation (37) yields:

γ = −6H2
0 . (40)

We can assume again γ(X,φ) = X − V (φ) for illustrating the full reconstruction of the action
Equation (35) and redefine the scalar field as φ = t. Then, the kinetic term X(φ) and the scalar potential
V (φ) turn out to be:

X(φ) = X0e−3H0φ , V (φ) = X0e−3H0φ + 6H2
0 , (41)

where X0 = −κ2ρ0.
In the same way as above, power-law solutions can be easily reconstructed. By assuming H(t) = n

t
,

the expression Equation (37) leads to:

γ(t) = 2n
18a(4− 11n+ 6n2) + (2− 3n)t2

t4
, (42)
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while the kinetic term and the scalar potential yield:

X(φ) = X0φ
−3n + 2n

a(36− 72n) + φ2

φ4
,

V (φ) = X0φ
−3n +

−36an(2 + n(−7 + 6n)) + 2n(−1 + 3n)φ2

φ4
, (43)

where we have again assumed γ(X,φ) = X − V (φ) for illustrative purposes.
Finally, let us reconstruct the gravitational action for the ΛCDM model. In such a case, the Hubble

parameter can be expressed as follows:

H(t) =

√
Λ

3
tanh

[
1

2

√
3Λ(t− t0)

]
, (44)

where Λ and t0 are constants. Then, by using the Equation (37), the expression for γ(t) yields:

γ(t) = −2Λ− 9aΛ2 sech4

[
1

2

√
3Λ(t− t0)

]
. (45)

While assuming γ(X,φ) = X − V (φ), the kinetic term and the scalar potential result:

X(φ) = −9aΛ2 sech4

[
1

2

√
3Λ(φ− t0)

]
,

V (φ) = 2Λ . (46)

Hence, the scalar potential reduces to a cosmological constant, while the dynamics of the scalar field
compensates the extra terms in the gravitational sector Equation (39).

Another interesting set of cosmological models are the so-called scaling solutions, which are
characterized by:

ρ

ρm
= C , (47)

where C is a constant and ρ is the energy density of an additional perfect fluid. We can rewrite the first
FLRW Equation (36) as follows:

3
α,R
κ2

H2 = ρ+ ρm , (48)

where:

ρ =
1

κ2

[
γ,XX +

1

2
(α,RR− α− γ)− 3Hα̇,R

]
, (49)

which leads to the constraint equation:

1

κ2

[
γ,XX +

1

2
(α,RR− α− γ)− 3Hα̇,R

]
− Cρm0e−3

∫
dtH(t) = 0 . (50)

By considering the Hilbert–Einstein action, α(R) = R, together with a kind of k-essence field that
satisfies ρ/ρm = C, the Equation (48) can be easily solved by using the continuity equation leading to:

a(t) ∝ t2/3 H(t) =
2

3t
, (51)

while the Equation (50) leads to:

γ,XX −
1

2
γ = C

κ2ρ0

t2
. (52)
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Additionally, the second FLRW Equation (36) provides an additional condition over the scalar
field sector:

γ,XX =
4− 3κ2ρ0

3t2
, (53)

which together with Equation (52) allows one to reconstruct the scalar field Lagrangian once a particular
form of γ is assumed. In order to illustrate the procedure, let us consider the usual quintessence field
γ = X(φ)− V (φ). Then, the kinetic term and the scalar potential yield:

X(φ) =
4− 3κ2ρ0

3φ2
,

V (φ) =
κ2ρ0(6C + 1)− 4

3φ2
, (54)

where once again we have redefined the scalar field as the cosmic time, φ = t. Note that the potential
Equation (54) is very well known as one of the possible scalar potentials that provides scaling solutions
within quintessence models, others are the exponential ones V (φ) ∝ eφ; see [33,34].

4. Conclusions

In this work, we explored a generalised modified gravity theory, namely f(R, φ,X) gravity, where R
is the Ricci scalar, φ a scalar field andX a kinetic term. This theory contains a wide range of dark energy
and modified gravity models, particularly higher derivative models, both in the gravitational sector and
also in the matter one. Some models within this action include f(R) modified gravity and Galileons,
which have been widely studied in the literature. We have then considered some specific Hubble
parameters, specifically those that reproduce late-time cosmic acceleration and a realistic cosmological
evolution, and the corresponding f(R, φ,X) action has been reconstructed.

Using the reconstruction technique studied here, the gravitational action can be easily obtained once
some restrictions are assumed on the kind of function f(R, φ,X). We note that this action carries
several extra degrees of freedom, so a particular cosmological solution does not provide a unique
action; a degeneracy problem as in every dark energy model. However, we suggest some simple
actions that reproduce late-time acceleration and even the exact ΛCDM behaviour. Future works should
be devoted to studying the viability of the different actions within the f(R, φ,X) gravity framework.
Besides the cosmological evolution, one should study cosmological perturbation theory with the view of
understanding the growth of structure. Another interesting point may arise when analysing screening-like
mechanisms, similar to the chameleon mechanism in this framework. Note also that the cases of the
gravitational action Equation (17) studied here stand for a minority of the wide class of models included
in the action Equation (17), and some interesting ones to be considered in future papers may be of the
type f1(R)f2(X,φ). Taking into account various observational facts about cosmology, it is hoped that
one can restrict the form of the action f(R, φ,X) and provide a clearer way for explaining the late-time
acceleration and even its unification with the inflationary paradigm.
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