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Abstract: Metabolite profiling technologies have improved to generate close to quantitative
metabolomics data, which can be employed to quantitatively describe the metabolic phenotype
of an organism. Here, we review the current technologies available for quantitative metabolomics,
present their advantages and drawbacks, and the current challenges to generate fully quantitative
metabolomics data. Metabolomics data can be integrated into metabolic networks using thermodynamic
principles to constrain the directionality of reactions. Here we explain how to estimate Gibbs energy
under physiological conditions, including examples of the estimations, and the different methods for
thermodynamics-based network analysis. The fundamentals of the methods and how to perform the
analyses are described. Finally, an example applying quantitative metabolomics to a yeast model
by 13C fluxomics and thermodynamics-based network analysis is presented. The example shows
that (1) these two methods are complementary to each other; and (2) there is a need to take into
account Gibbs energy errors. Better estimations of metabolic phenotypes will be obtained when
further constraints are included in the analysis.
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1. Introduction

In recent years, the field of microbial metabolomics has expanded dramatically. This has been
mainly due to improvements in analytical platforms, such as mass spectrometry (MS) and nuclear
magnetic resonance (NMR), and a more widespread accessibility to these technologies in the research
community. While firstly developed for the analysis of plants [1], metabolomics quickly spread to
the microbial world [2], with a main focus around applied microbiology and metabolic engineering.
Unlike plants, however, microbes can be rapidly and reproducibly cultured at a large scale, making
sufficient biological replication easier to achieve, and also making high quality samples more readily
available for metabolite analysis.

Unlike plant tissue, microbial metabolomics faces two major problems. Firstly, the cells often need
to be separated from a complex culture broth prior to analysis. This is a major challenge since absolute
metabolite amounts inside the cells are often multiple orders of magnitude smaller than the respective
amounts outside the cells. This means that the smallest carryover from the separation process may bias
the measured intracellular concentrations. The second problem is the rapid growth of microbes and
their optimization for fast turnover of substrates. This means that metabolism needs to be efficiently
stopped (quenched) in a matter of seconds [3,4]. It has been shown that, for many bacteria, this is
a major problem [5,6].

The most common procedure for quenching involves rapid cooling to temperatures below−20 ◦C
which, for many different bacteria, leads to leakage of the cytoplasm into the extracellular solution [5,6].
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This means that once the cells are separated from the matrix the leaked metabolites will be removed
from the subsequent analysis, thereby yielding biased intra- and extracellular metabolomic profiles.

Overcoming the hurdles of sampling mentioned above enables further advancement of
metabolomics to a more quantitative approach. Given the original definition of metabolomics as
a non-targeted analysis of all metabolites [7], the term quantitative metabolomics is somewhat
paradoxical since, to date, quantitative analysis remains a targeted approach. Nevertheless, putting
semantics aside, metabolite profiling techniques continue being further developed into quantitative
approaches, especially when they are embedded into a systems bio(techno)logical approach.

Microbial systems biotechnology is systems biology with an applied focus [8]. Rather than
just characterizing a system, a systematic understanding of the metabolic phenotypes is sought,
identifying engineering targets to improve the metabolic phenotype of the cell, e.g., production of
target compounds. Quantification of a metabolic phenotype is not a trivial task. It requires the
integration of different datasets, as well as the creation of a model of the organism under study.
While genomics provides information on the reactions that are genetically encoded in an organism
(Figure 1), transcriptomics and proteomics indicate which of the encoded genes are currently expressed.
This, however, gives no proof that the respective enzymes are catalytically active under the conditions
studied. Due to the lack of in vivo kinetic parameters for most enzymes, the prediction of activity,
or flux through a reaction, based on metabolomics and proteomics remains impossible. However,
with the development of quantitative metabolite analysis, a thermodynamic modelling approach is now
available. Thermodynamics provides information on the direction in which a reversible reaction will
operate under the given conditions. It can also be used to evaluate whether a metabolite analysis result
is thermodynamically feasible according to a metabolic model and, hence, a realistic measurement
set. It is important to notice that all active reactions constraints are taken into account. Therefore,
the approach can also be used to evaluate the consistency between measurements and the assumed
active network. Quantifying the actual reaction rates inside cells, the metabolic phenotype, is only
possible with the help of metabolic flux analysis or fluxomics (Figure 1).
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While thermodynamics relies on accurate measurements of intra- and extracellular metabolite
concentrations, fluxomics relies on the quantitative measurements of only a few substrates being taken
up and products being secreted by the cells, as well as growth and biomass composition. When 13C
fluxomics is performed, labelling enrichment data for metabolites is acquired using MS or NMR.
This review will describe recent developments for the quantitative analysis of metabolites in microbial
experiments and will then explain how a thermodynamic approach can be implemented and used to
constrain the solution space for flux analysis. Finally, metabolic flux analysis principles, especially 13C
fluxomics, will be introduced.

2. Quantitative Analysis of Microbial Metabolites

Several analytical platforms are available for the quantitative analysis of metabolites from
microbial origins. Here, some of the most commonly used platforms will be presented.

2.1. High-Performance Liquid Chromatography (HPLC)

HPLC remains a workhorse technology for the quantification of metabolites, with a broad
range of available columns and detectors enabling the targeted analysis of many compound
classes. Its advantage over other platforms is the robustness of the methods and the availability
of many detectors which are compatible with buffers or salt gradients which are unsuitable for
mass spectrometry-based applications. However, sensitivity and selectivity can be an issue with
HPLC. These depend on the chromatography applied, the detection method and the sample matrix.
Derivatized amino acids, for example, can be detected at very low fluorescence levels (picomoles
injected) with good selectivity. Another problem is that separate instrument runs are usually required
for each compound class and, since identification relies on the retention times of external standards
rather than mass fragmentation patterns or chemical shifts, this bears the risk of false positives.
Some examples of commonly used methods are amino acid analysis [9], organic acids and sugars [10],
and nucleotides and sugar phosphates [11].

2.2. Gas Chromatography-Mass Spectrometry (GC-MS)

GC-MS in metabolomics is mainly applied as a non-targeted semi-quantitative profiling tool,
but it is a powerful tool for the quantification of volatile compounds. Quantification of non-volatile,
polar compounds (after derivatization) is more complicated, since the derivatization chemistry is very
matrix-dependent and the concentration of different compounds influences the derivatization efficiency
of others. Each compound usually has its own reaction kinetics with the derivatization reagent [12],
making determination of absolute concentrations of many compounds in a single run difficult.

For 13C fluxomics, however, GC-MS is currently the instrument of choice, delivering highly
reproducible mass isotopomer distributions with the relative error of technical repeat injections often
under 0.5%. This is possible because derivatization of the target compounds (e.g., amino acids [13])
creates stable derivatives of high molecular mass. This leads to the target ions to be moved into a mass
range where fewer ions will interfere with the analysis. This results in very good signal-to-noise
ratios. Another advantage is the creation of singly-charged ions and no salt adducts, leading to simpler
ion chromatograms. In addition, some derivatization reagents lead to very stable fragmentation
patterns, which can be used for identification purposes using databases such as NIST. Furthermore,
the molecular formula of many fragments has been elucidated, a prerequisite for labelling analysis.

2.3. Liquid Chromatography Electro-Spray Ionization Tandem Mass Spectrometry (LC-ESI-MS/MS)

LC-ESI-MS/MS technology is becoming increasingly important for the analysis of metabolites.
The advantage of this approach is its sensitivity and selectivity when run in selected (SRM) or multiple
(MRM) reaction monitoring mode on a triple quadrupole instrument. These modes select a target parent
ion in quadrupole 1, fragment it in the collision cell (quadrupole 2), and then measure the abundance
of the daughter ion selected in quadrupole 3. The idea is that the parent-daughter relationship is very
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specific, enabling the filtering of a small peak among a vast pool of compounds and achieving high
sensitivity when quantifying in the presence of a very small background. For example, LC-ESI-MS/MS
in combination with ion-pairing chromatography was used to quantify metabolites of the central
carbon metabolism [14].

The major problem with LC-ESI-MS/MS is ion suppression or enhancement during ionization [15].
This means that in certain sample matrices more or fewer ions are produced from the same amount of
molecules of a compound leaving the LC column, compared to those ions formed from a known
standard that is not in the same matrix. This means that many compounds will be over- or
underdetermined and, sometimes, may disappear completely from the analysis. This has major
practical implications on the applicability of the method: if a compound completely disappears, sample
preparation or a change in chromatography may become necessary. If compound quantification is
biased by matrix effects, the addition of standards may be the only reliable way to determine the true
concentration of a compound. This is, of course, very labour intensive and only feasible in cases where
only a few compounds are analyzed, e.g., drug metabolism studies.

The second problem with LC-ESI-MS/MS is its inherently low dynamic range. In order to get
quantitative data for a microbial extract it is not uncommon to run each sample in a whole range of
dilutions, especially when trying to analyze a broad range of metabolites that usually cover multiple
orders of magnitude in concentration.

Another problem, that affects all analytical platforms, can be the availability of metabolite
standards. For many intracellular metabolites, calibration standards may be not available off the shelf
and need to be custom synthesized, adding significantly to the analysis cost, while other metabolites
might not be available at all.

A recent development is the use of 13C labelled internal standards to overcome the ion
suppression/enhancement effects caused by the sample matrix [16–18]. This clever approach uses
the fact that many microbes can be cultured under defined conditions with the use of one, or a few,
fully 13C labeled carbon sources. One of the cheapest labelled carbon sources is universally 13C labelled
glucose (U13C glucose), which contains the stable isotope 13C in all carbon positions. Fortunately,
glucose is also the preferred carbon source for a long list of microbes as their exclusive carbon and
energy source.

When creating internal standards for all metabolites, cells are cultured under fully-labelled
conditions, which mean that after achieving isotopic steady state all metabolites in a cell will have
all their carbons labelled. There is a need to consider residual unlabelled carbon, which can come
from the biomass originally used as the starter culture in the labelling experiment, impurities in
the fully-labelled substrate (usually >99% 13C) and, in the case of aerobic experiments, unlabeled
atmospheric CO2 that can enter the culture and can be fixed in carboxylation reactions. This can be
established by determining the labelling enrichment of key metabolites in a separate MS experiment.
The labelled cells containing a fully-labelled version of each metabolite present under the conditions
tested will then be co-extracted with the systems under study or a previously made fully labelled
extract will be spiked into the extraction. The ratio between the fully labelled and the monoisotopic
mass peak for the unlabelled compound is determined in the MS experiment. This can be used
directly to compare fold changes in metabolites under different experimental conditions as a relative
quantification or, when the fully labelled extract is used as the matrix for the unlabelled external
standards, quantitative data can be obtained [17,18].

This method has several drawbacks. Firstly, it is sometimes difficult to create the fully labelled
extract. For example, organisms carrying auxotrophies [11] have broad carbon substrate requirements
that may not be economically feasible under fully-labelled conditions (for instance, the cost of fully
labelled amino acids easily increases to >$US 2000 per gram compared to $US 50–70 per gram for
glucose). An alternative is to use a more common organism that can grow exclusively on glucose
(e.g., E. coli or baker’s yeast), but this leads to the second and third problems. Such alternative
organisms might not contain the entire metabolite pool present in the target organism, resulting in the
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labelled internal standard being missing for some compounds. The third problem is the low dynamic
range of LC/MS. It is very difficult to achieve that both sample and internal standard are within
the calibration curve. If different growth conditions or mutants are compared, it is likely that key
metabolite pools will change significantly. This means that the sample would require different dilution
than the internal reference. Another problem is the reproducible creation of internal standard mixes
over long experimental campaigns. This will require the cultivation of the microbes in highly-defined
systems, usually in chemostat mode.

3. Thermodynamics and Metabolomics Integration into Metabolic Networks

Metabolomic datasets are prone to errors and generally far from complete. Thermodynamics
combined with the metabolic network structure can be employed to validate and expand metabolomic
datasets. There are two main approaches to accomplish this: network embedded thermodynamic
analysis (NET analysis) [19] and thermodynamics-based metabolic flux analysis (TMFA) [20].
NET analysis determines the feasible ranges of Gibbs free energy of reactions (∆rG) for a given
network and a given set of measured metabolite concentrations, and further determines the
feasible concentration ranges for the unmeasured metabolites. Apart from enabling data validation
(existence of a feasible solution), NET analysis can be used to determine metabolite distributions in
compartmentalized models from total cell concentration. This can be especially important when dealing
with compartmentalized microorganisms such as baker’s yeast. Since it is experimentally challenging
to extract metabolites from separate compartments independently, to the best of our knowledge, there is
only one publication that has been able to measure compartment specific metabolites concentration,
where cytosolic and mitochondrial CHO cells metabolites were quantified [21]. TMFA, which uses
a similar approach, focuses on finding thermodynamically feasible flux distributions by exploiting
the directional constraints on reactions for which the feasible ∆rG range is either strictly negative or
strictly positive. Thermodynamic analysis has been successfully applied to some microbial metabolic
models, e.g., Escherichia coli [19,20,22], Saccharomyces cerevisiae [19,23], and Geobacter sulfurreducens [24],
more recently the method has also being applied to a human model [23,25]

3.1. Second Law of Thermodynamics and Reactions Directionality

A system in thermodynamics is defined as a part of the universe that is of interest which, in our
case, is the cell. The remainder of the universe is referred to as the surroundings. A system is
classified as either closed or open, depending on whether it can exchange matter and energy with
its surroundings. Thus, cells are open systems since they require external energy and nutrients,
and release products into their surroundings.

There are two fundamental laws of thermodynamics:

• The first law is the conservation law which states that energy can neither be created nor destroyed.
In a closed system energy is constant.

• The second law states that spontaneous natural processes increase the overall entropy of
the universe.

The criterion of spontaneity is difficult to grasp because the entropy of the universe cannot be
measured. For biological systems, where constant temperature and pressure apply, spontaneity is
defined by the Gibbs free energy (∆G ≤ 0). For a generic reaction (Equation (1)), the Gibbs free
energy of the reaction (∆rG) can be estimated by Equation (2); where R is the ideal gas constant, T the
temperature and [I]k the concentration of reactant I at the power of its stoichiometric coefficient k.
∆rG determines the directionality of a reaction, i.e., the net flux of the reaction occurs in the direction
where ∆rG is negative.

aA + bB→ cC + dD, (1)

∆rG′j = ∆rG′0j + RTln

(
[C]c[D]d

[A]a[B]b

)
, (2)
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∆rG′0j = ∑ Sij∆fG
′0
i , (3)

∆rG depends on metabolites’ concentration (in the example reaction: A, B, C, and D) and the
standard Gibbs energy of reaction (∆rG0); which finally depends on the standard Gibbs energy
of formation of the metabolites (∆fG0) and the stoichiometric coefficients (represented by Sij,
the stoichiometric coefficient of metabolite i in reaction j) (see Equation (3)). Thus, the directionality
of reactions depends on the metabolites’ concentrations and their thermodynamic properties. The ‘'’
notation indicates physiological conditions are assumed rather than the standard biological conditions
(which correspond to pH 7, zero ionic strength, 1 molar concentration in aqueous solution, 1 bar
pressure, and 25 ◦C) [26]. It is important to consider these physiological conditions because it has been
shown that pH and ionic strength significantly influence ∆fG [27,28].

3.2. ∆fG0 for Physiological Conditions

∆fG0 represents Gibbs energy at standard conditions (denoted by the superscript 0). Intracellular
conditions, however, are different from the standard conditions and it is essential to account for real
cell conditions in terms of pH and ionic strength.

A more rigorous treatment when calculating the standard Gibbs energy of formation is to use
activity (ai) instead of concentration (ci) of species. The activity coefficient (yi) correlates activity and
concentration by the equation ai = yi × ci. To account for ionic strength, the extended equation of
Debye-H
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For biochemical reactions, pH is assumed to be constant. What could be accomplished by
the buffering capacity of intracellular proteins, so it is not necessary to balance hydrogen ions [26].
At constant pH and other than 7, the standard transformed Gibbs energy of species, i.e., the Legendre
transform [29] of the standard Gibbs energy of formation is defined as:

∆fG
′0
i = ∆fG

0∗
i −NH∆G

(
H+
)

, (9)
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where NH is the number of hydrogen atoms in the species. Substituting Equation (7) for the protons
Gibbs energy yields:

∆fG
′0
i = ∆fG

0∗
i −NH{∆fG

0∗(H+
)
+ RTln

(
10−pH

)
}, (10)

Finally, the combination of Equations (8) and (10) produces an overall equation to calculate the
standard transformed Gibbs energy of formation that accounts for physiological conditions (pH and
ionic strength):

∆fG
′0
i = ∆fG

0
i −NH(i)RTln

(
10−pH

)
−

2.91482
(
z2

i −NH(i)
)
I1/2

1 + 1.6I1/2
, (11)

3.3. ∆fG0 for Reactants as Groups of Species

Thermodynamics of biochemical reactions involves the study of reactions present in a living
organism. From the point of view of thermodynamics, the main difference between biochemical and
chemical reactions is that enzyme-catalyzed reactions are written in terms of reactants (e.g., ATP)
that are made up of a sum of species (e.g., ATP4-, HATP3-, and MgATP2-) while chemical reactions
are written in terms of species [26]. Therefore, it is necessary to account for all the species involved.
To reduce the complexity of the calculations it is easier to work with reactants instead of individual
species. The Gibbs energy of a reactant j is calculated by pseudo-isomers groups, whereby at chemical
equilibrium all species (pseudo-isomers) have the same Gibbs free energy of formation, which is
represented by ∆fGj; and the concentration of the reactant (isomer group) cj is the sum of the
concentration of species:

cj =
N

∑
i=1

ci, (12)

where N is the number of species i in the pseudo-isomer group. The Gibbs free energy of formation of
the pseudo-isomer group is represented by:

∆fGj = ∆fG
′0
j + RTln

(
cj
)
, (13)

The ∆fGi of the individual species at chemical equilibrium is given by:

∆fGi = ∆fG
′0
i + RTln(ci), (14)

Finally using Equations (13) and (14) in Equation (12), and assuming that ∆fGj = ∆fGi, the equation
to calculate ∆fGj

0 can be deduced [26]:

∆fG
′0
j = −RTln

{
N

∑
i=1

exp

[
−∆fG′0i

RT

]}
, (15)

The notation ∆fG′0j is used to show that it is a function of pH and ionic strength. It is important
that the standard transformed Gibbs energy of formation of a reactant is not the sum of the standard
transformed Gibbs energy of its species.

3.4. Gibbs Energy of Transport Reactions

A reaction that occurs between two compartments is considered a transport reaction; an example is
the reaction of ATP synthase in the oxidative phosphorylation pathway, where protons are transported
across the mitochondrial membrane (for eukaryotes) or the cell membrane (for prokaryotes).
To calculate the Gibbs energy of a transport reaction, the reaction is first divided between the part
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that takes place in one compartment and the transmembrane transport portion, in order to separately
calculate their ∆rG′0, and finally the ∆rG′0’s are added up [30]:

∆rG′0 = ∆rG′0compi
+ ∆rG ′0transport , (16)

The calculation of ∆rG′0 of the transport term should take into account the pH and the membrane
potential gradient between compartments. Under physiological conditions (pH 6= 7 and ∆pH 6= 0,
ionic strength 6= 0 and ∆Ψ 6= 0 (the difference in membrane potential between compartments)), ∆rG′0

of transport is not zero and must be considered in the calculation of ∆rG′0 of a transport reaction. It is
dependent on ∆Ψ and ∆pH [31]:

∆rG′0transport = ∆∆ψG + ∆∆pHG , (17)

∆∆ΨG(kJ/mol) = nF∆Ψ , (18)

∆∆pHG(kJ/mol) =
N

∑
i=1

si∆fG
′0
j − 2.3RT

N

∑
i=1

siNH(i)pHi, (19)

where n is the net charge transported through the membrane, F is the Faraday constant, si is the
stoichiometric coefficient of the transported species i, and ∆fG′0j is the transformed Gibbs energy of
transported metabolite j.

3.5. Example 1: Standard Transformed Gibbs Energies of Yeast Glycolysis Reactions at Physiological Conditions

To calculate the standard transformed Gibbs energy of reactions, ∆rG
′0, it is necessary to account

for the physiological conditions of yeast. These are assumed to be: cytosolic pH of 7 and internal
ionic strength of 0.15 M [19]. Using these values and the charge, number of protons and ∆fG0 of the
species involved in the reactions, Equations (11) and (15) can be employed to calculate the standard
transformed energy of the compounds involved in the reactions (see Table 1). The ∆fG0 of NAD has
been set to a reference value of zero and used to determine ∆fG0 of NADH.

Table 1. Standard transformed Gibbs energy for metabolites involved in glycolysis.

Metabolite ∆fG0 [kJ/mol] Charge (zi)
Number of

H Atoms (NH) ∆fG′0 [kJ/mol]

3-Phospho-glyceroyl phosphate −2356.14 −4 4 −2206.35
−2401.58 −3 5

2-Phospho-glycerate −1496.38 −3 4 −1341.51
−1539.99 −2 5

3-Phospho-glycerate −1502.54 −3 4 −1347.41
−1545.52 −2 5

ADP −1906.13 −3 12 −1425.17
−1947.1 −2 13
−1971.98 −1 14

ATP −2768.1 −4 12 −2292.28
−2811.48 −3 13
−2838.18 −2 14

Glycerone phosphate −1296.26 −2 5 −1095.82
−1328.8 −1 6

Fructose 6-phosphate −1760.8 −2 11 −1316.55
−1796.6 −1 12

Fructose 1,6-bisphosphate −2601.4 −4 10 −2206.14
−2639.36 −3 11
−2673.89 −2 12

Glyceraldehyde 3-phosphate −1288.6 −2 5 −1088.16
−1321.14 −1 6

Glucose −915.9 0 12 −428.06
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Table 1. Cont.

Glucose 6-phosphate −1763.94 −2 11 −1319.75
−1800.59 −1 12

H2O −237.19 0 2 −155.88
NAD 0 −1 26 1056.29

NADH 22.65 −2 27 1117.50
Phosphoenolpyruvate −1263.65 −3 2 −1189.04

−1303.61 −2 3
Pi −1096.1 −2 1 −1059.30

−1137.3 −1 2
Pyruvate −472.27 −1 3 −351.01

The final ∆rG′0 values calculated for the standard transformed Gibbs energy for the reactions
of glycolysis under physiological conditions in yeast are in Table 2. These can be calculated with
Equation (3) using the values in Table 1. For example, the glucokinase (HEX1) reaction:

∆rG′0HEX1
= Sglucose,HEX1∆fG′0glucose + SATP,HEX1∆fG′0ATP + Sglucose 6P,HEX1∆fG′0glucose 6P + SATDP,HEX1∆fG′0ADP

= (−1) ∗ (−428.06) + (−1) ∗ (−2292.28) + (1) ∗ (−1319.75) + (1) ∗ (−1425.17)
= −24.58kJ/mol

Table 2. Standard transformed Gibbs energy for reactions of glycolysis. HEX1: Hexokinase,
PGI: Glucose 6-phosphate isomerase, PFK: Phosphofructokinase, FBA: Fructose-bisphosphate
aldolase, TPI: Triose-phosphate isomerase, GAPD: Glyceraldehyde 3-phosphate dehydrogenase,
PGK: Phosphoglycerate kinase, PGM: Phosphoglycerate mutase, ENO: Enolase, PYK: Pyruvate kinase.

rxnID Extended Reaction ∆rG′0 (kJ/mol)

HEX1 Glucose + ATP = Glucose 6-phosphate + ADP −24.58
PGI Glucose 6-phosphate = Fructose 6-phosphate 3.20
PFK Fructose 6-phosphate + ATP = Fructose 1,6-bisphosphate + ADP −22.48
FBA Fructose 1,6-bisphosphate = Glycerone phosphate + Glyceraldehyde 3-phosphate 22.15
TPI Glycerone phosphate = Glyceraldehyde 3-phosphate 7.66

GAPD Glyceraldehyde 3-phosphate + Pi + NAD = NADH + 3-Phospho-glyceroyl phosphate 2.32
PGK 3-Phospho-glyceroyl phosphate + ADP = 3-Phospho-glycerate + ATP 8.16
PGM 3-Phospho-glycerate = 2-Phospho-glycerate 5.90
ENO 2-Phospho-glycerate = Phosphoenolpyruvate + H2O −3.41
PYK Phosphoenolpyruvate + ADP = Pyruvate + ATP −29.08

It is important to note that reactions in Table 2 are written without H+ because, as it has been
explained in Section 3.2, pH is assumed to be constant (in this case at pH 7). On the other hand,
the atoms of water are accounted for during the calculation of ∆rG′0.

In general, each reaction within a pathway is required to have a negative ∆rG for the pathway to
proceed in the forward direction. Within an organism it is desired that, even allowing for variation
in substrate and product concentration, the overall thermodynamic feasibility of a reaction is not
affected. Therefore, typically the first and last reactions in a pathway have large negative ∆rG′0 to
allow a very low substrate concentration and a high final product concentration without changing the
thermodynamic feasibility of the pathway. This, in turn, means that the directionality of those reactions
cannot be changed by manipulation of metabolite concentrations in a metabolic engineering exercise.
In Table 2 it can be observed that reactions HEX1 and PYK have large negative ∆rG′0, illustrating the
previous concept.

3.6. Application of Network Thermodynamics to Large-Scale Models

The application of network thermodynamics to large-scale models has three critical limitations:
(1) lack of large-scale knowledge of network components; (2) lack of knowledge of thermodynamics
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properties (such as ∆fG0 and ∆rG0) of components at genome scale; and (3) lack of a structure to
integrate the knowledge of different levels of biological networks [32].

In order to overcome the second limitation mentioned above, the so-called group contribution
method is applied to estimate ∆fG0 and ∆rG0 [33,34]. Group contribution is a tool to increase the
thermodynamic information due to the very limited availability of experimental data. For example,
for the E. coli K-12 MG1655 genome-scale model (GeM) [35] experimental measurements of ∆rG0 are
only available for 8.1% of the 2077 model reactions [36].

In order to estimate ∆fG0, this method divides each metabolite into groups. Each group
represents a contribution to the final Gibbs energy (see Equation (20)), and can be estimated by
linear regression, i.e.,

∆fG
0
i = Po + ∑

j
nijPj , (20)

where Po is a constant contribution (called the origin), Pj is the contribution of the jth group and nij

is the number of times that the group j is in the compound i. In some cases extra contributions have
to be added to account for other structural characteristics of the compound, such as aromatic rings
and amide groups. This methodology has been recently updated using newly available experimental
data to more accurately estimate group contributions and also includes new groups (e.g., molecules
involving sulfur, nitrogen, and halogen structures) [36]. The updated method can determine the
∆rG0 of 93% of reactions in the KEGG database [37]. Pseudoisomeric group contribution is the latest
extension of the group contribution method which, instead of decomposing compounds, it is based on
groups for the pseudo-isomers (different protonation states) that made up the compounds. Therefore,
it is able to estimate Gibbs energy with higher accuracy than group contribution for a larger range of
pH conditions [38].

Recently a new approach that takes advantage of the larger coverage of pseudoisomeric group
contribution method and the better accuracy of experimental data was developed to estimate
Gibbs energies. The approach called component contribution method consistently combines both
sources of Gibbs energy avoiding conflicts of reference point and violations of the first law of
thermodynamics [39].

3.7. Example 2: Standard Gibbs Energy of Formation of Glucose Estimated by the Group Contribution Method

Initially the chemical structure of glucose should be broken down into functional groups, using the
most specialized possible groups. This is the most demanding task in the use of the group contribution
method to determine the standard Gibbs energy of formation. To be able to use the methodology,
the compound should be represented in its more common state in aqueous solution at standard
conditions (i.e., pH = 7 and T = 25 ◦C) (see Figure 2).
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Glucose in ring form must be considered in the calculation of the final ∆fG0. Using the group
contributions reported by Mavrovouniotis [33], the final value for ∆fG0 of glucose is −898.07 [kJ/mol],
differing from the experimentally-observed value of −915.9 [kJ/mol] by 2% (see Table 3). Using the
recently upgraded group contribution method [36] the ∆fG0 is estimated to be −913.90 [kJ/mol],
which is substantially closer to the experimental value. Furthermore, the estimation of neutral glucose
∆fG0 by component contribution [39] is −916.3 [kJ/mol], even closer to the experimental value.

Table 3. Calculation of the ∆fG0 of glucose by the group contribution method. OH-groups are
distinguished according to their attachment to primary or secondary carbon atoms. Contributions of
groups -O- and >CH- take into account their presence in a ring.

Group Contribution 1

[kJ/mol]
Contribution 2

[kJ/mol]
# Occurrences Total Contribution 1

[kJ/mol]
Total Contribution 2

[kJ/mol]

Ori −103.4 0.0 1 −103.4 0.0
OH- (secondary) −131.5 −173.8 4 −525.9 −695.0

-O- (ring) −101.7 −153.2 1 −101.7 −153.2
>CH2 7.1 6.8 1 7.1 6.8

>CH- ( ring) −10.9 20.3 5 −54.4 101.3
OH- (primary) −119.7 −173.8 1 −119.7 −173.8

Total - - - −898.07 −913.89
1 Contributions from Mavrovouniotis et al. [33]; 2 Contributions from Jankowski et al. [36].

3.8. Incorporation of Quantitative Metabolite Data into Metabolic Networks

The first attempt to analyze thermodynamic feasibility of pathways instead of individual reactions
was done by Mavrovouniotis, who also introduced the use of physiological conditions (∆rG) instead
of standard conditions (∆rG0) [40].

To date, the range of ∆rG defined by physiologically feasible concentrations of metabolites has
been widely applied to check for thermodynamic feasibility of reactions and pathways; as well
as to evaluate reversibility of reactions and to possibly constrain the metabolite concentration
range [19,20,22,30,41,42]. One interesting example is a study of the thermodynamic feasibility of
biodegradation pathways [41]. Another interesting example is the creation of the metabolic GeM
iHJ873 of E. coli, which incorporates thermodynamic properties of all network metabolites. It is
based on the model iJR904 [43], but 85 compounds for which ∆fG have neither been determined
experimentally nor are able to be estimated by the group contribution method have been eliminated.
For this model a thermodynamic feasibility analysis of the reactions was achieved with new ∆rG0

values, considering all metabolites in concentrations of 1 mM instead of 1 M and, thus, being more
consistent with physiological concentrations [30].

More recently, NET analysis was introduced [19], which applies thermodynamic principles to
a GeM metabolic network to check for thermodynamic feasibility of metabolite datasets. NET analysis
can also expand measured metabolite datasets by adding extra thermodynamically feasible metabolite
concentration ranges that were not measured and can be used to predict putative regulatory sites.
This algorithm incorporates the second law of thermodynamics and ∆fG′0 into a defined model.
The optimization algorithm applied by NET analysis minimizes and maximizes ∆rG′ of each reaction
in the network one by one (Equation (21)), resulting in the estimation of the ∆rG′k range for all
network reactions. The initially irreversible reactions (rj) in the network constrain their respective
∆rG′j (represented by Equations (22) and (23)). The measured metabolite concentrations and the
physiological concentration range add more constraints into the optimization approach (expressed in
Equation (25)); also, the range of redox cofactor ratios can be incorporated as constraints. The final
optimization is expressed as:

min/max ∆rG′k, (21)

s.t. ∆rG′j< 0 ∀ rj >0, (22)

∆rG′j > 0 ∀ rj < 0, (23)
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∆rG′j = ∑
i

Sij∆fG
′
i, (24)

∆fG
′
i = ∆fG

′o
i + RTln(ci), (13)

cmin
i ≤ ci ≤ cmax

i , (25)

Equations (13) and (24) describe the calculation of ∆r G ′. By this optimization the putative
regulatory sites are calculated, these are reactions whose ∆r G ′ is far from zero (reactions far
from thermodynamic equilibrium are generally defined by ∆rG′max < −10 [kJ/mol]), and are
likely to be genetically or allosterically regulated [19]. In an analogous process, by changing the
optimization objective to metabolite concentration, the range of all metabolite concentrations is
calculated. The method was applied to E. coli and S. cerevisiae. Seven existing E. coli metabolite
datasets were checked for consistency and only four were found to be thermodynamically feasible.
For S. cerevisiae, it was shown that compound concentrations in the different compartments of the cell
can be estimated from average cell concentrations. The MATLAB software anNET implements NET
analysis on a user-friendly platform and is freely available for academic use [44]. NExT, an open-source
MATLAB implementation of NET analysis was later developed to correct calculations of Gibbs
energy of transport reactions [45]. Thermodynamics-based metabolic flux analysis (TMFA) goes one
step further, estimating metabolic flux distributions utilizing thermodynamic constraints directly by
metabolic flux analysis (MFA) [20]. The result is a thermodynamically feasible flux profile. The method
has been applied to E. coli [20] and Geobacter sulfurreducens [24]. For E. coli, putative regulatory
sites were calculated and it was shown that 30 out of 86 of these sites are the first steps in their
respective pathways.

Another approach to estimate flux distribution and metabolite concentration is to direct and
simultaneously incorporate mass balance and thermodynamic constraints in a single optimization
problem [46]. The advantage of this approach is the incorporation of measured metabolite
datasets into the search for feasible flux distributions. However, the complex optimization objective,
which simultaneously minimizes or maximizes the flux solution and the difference between the
measured metabolite concentrations and the thermodynamically feasible concentrations, makes the
algorithm cumbersome and slow.

For all of the algorithms described above, the focus is on the calculation of feasible metabolite
concentrations and/or flux distributions using known reaction directionalities as constraints. The idea
of using metabolomics data and thermodynamic constraints to assign reaction directionality in
a metabolic network was recently reported by Fleming and co-workers [22]. In this work, the physiological
ranges of metabolite concentrations were used in the iAF1260 E. coli metabolic model [35] to determine
the directions of reversible reactions by calculating minimum and maximum of ∆rG of each reaction
in the network individually. A priori, all reactions were considered reversible [22]. They found that
the joint use of the experimentally determined and the estimated (by group contribution method)
∆rG′0 increased the scope and accuracy of the predictions. The previous approach individually
assigns directions to initially reversible reactions without taking into account the network context.
When the network topology is considered, individual irreversible reactions could cause another
reaction to become irreversible through metabolites concentration constraints, therefore a wide
propagation of the thermodynamic constrains may take place. NET analysis, despite of initially being
developed to thermodynamically validate metabolomics data; it is possible to use it in reverse to assign
directionalities based on metabolites’ concentration ranges [23]. This approach was used to perform
a network thermodynamically curation of a yeast and a human metabolic model, Yeast 5 and Recon 1,
respectively. In addition to thermodynamically assigning and validating directionalities of the network
reactions, some interesting biological insights were found: (1) the use of different mechanisms by
different organisms to overcome unfavorable thermodynamics of the phosphoribosylaminoimidazole
carboxylase reaction; and (2) the different compartmentalization of proline metabolism in yeast cells
and humans [23].



Metabolites 2016, 6, 45 13 of 24

The reader is referred to Atam’s review [47] for further information on the latest publications on
network thermodynamic analysis. In this review the reduction of biologically relevant elementary
flux modes (EFMs) by a thermodynamic feasibility analysis is presented as one of the latest
applications of networks thermodynamics. EFMs represent the network metabolic capabilities,
however, the enumeration of EFMs is a cumbersome problem, thus, the reduction of EFMs to
biologically relevant ones is an extremely useful approach. The first attempt of thermodynamic
analysis of EFMs was realized to an E. coli metabolic network [48]. Later, a full NET analysis
of EFMs was performed for a yeast model [49]. The latest approach is tEFMA, a software that,
while enumerates the EFMs is checking for thermodynamics feasibility in order to reduce the time in
the EFMs generation [50,51].

3.9. Non-Equilibrium Thermodynamics for Enzymatic Reactions

Cellular systems are open, which share mass and energy with their surroundings outside, and they
have many internal processes that operate far from equilibrium. At thermodynamic equilibrium the
flow through cellular pathways would be zero and the cell would stop functioning. A good example is
the process of passive diffusion, where a concentration gradient is required (driving force).

The second law of classical thermodynamics together with the Gibbs energy of reactions can be
used to determine the feasibility of metabolite concentrations and directions of reactions; however,
it does not provide any information about the reaction rates. Non-equilibrium thermodynamics studies
the relationship between flow and thermodynamic driving force, known as the flow-force relationship.
This relationship state that flux depends on both capacity and driving force (Equation (26)); for example,
the flow of water in a tube is a function of the diametric area of the tube (which is called capacity) and
the energy that is moving the water. The relationship can be expressed as:

Flow ≈ capacity × force , (26)

In the specific case of enzymatic reactions the metabolic flux is a function of the enzyme activity
(capacity) and thermodynamic driving force (force):

Flux ≈ enzyme activity × thermodynamic driving force , (27)

The thermodynamic driving force in non-equilibrium thermodynamic is called affinity, A,
which is equal to −∆rG (function of metabolomics). At near equilibrium with excess capacity, there is
a proportional relation between flux (v) and affinity (A):

v = LA, (28)

where L is the phenomenological coefficient that represents the enzyme capacity (enzyme activity) [52].
In other words, a doubling in affinity should lead to a doubling in flux. This relationship has been
demonstrated to apply across a fairly broad flux range of non-equilibrium reversible reactions when
there is mass conservation [53]. In the case of non-equilibrium irreversible reactions there is an offset
and the relationship is linear rather than proportional [53,54]. It remains true, however, that reactions
under thermodynamic driving force, as opposed to capacity control, will be characterized by an increase
in affinity with increased flux.

The previous concept can be illustrated by the example of a simple reversible unimolecular
reaction (S→ P). At steady state, and when the sum of substrate (Cs) and product (Cp) concentrations
is kept constant (i.e., Cp + Cs = C), the net rate can be expressed in terms of affinity [52,54]:

v
vsmax

=
exp

(
A
RT

)
− 1((

Ks
C

)
+ 1
)

exp
(

A
RT

)
+
(

vsmax
vpmax

)((
Kp
C

)
+ 1
) , (29)
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where vsmax and vpmax are the maximum forward and backward reaction rates, respectively, and Ks

and Kp are the Michaelis–Menten constants.
Figure 3 shows the reaction rate as a function of affinity when the concept of mass conservation

applies, from this figure is clear that for the thermodynamically reversible reaction a proportional
relationship is found between the reaction rate and affinity for a wide range of reaction rates. In the
case of the thermodynamically irreversible reaction it is possible to observe a linear relationship [55].Metabolites 2016, 6, 45 14 of 23 
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The strongest assumption made in the previous analysis is that C is kept constant. While this
assumption is generally valid, it has been shown that this is not the case for some pathways. In such
cases the concentrations have other physical constraints. For example, Rottenberg [53] showed that if
the concentration of substrate or product was kept constant, the relationship between the reaction rate
and affinity was nearly linear [53].

A generalized approach for kinetic approximation of enzymatically catalyzed reactions was
subsequently developed, namely linlog kinetics [56]. This approximation is based on the previous
described thermodynamic principles, but also considers the presence of allosteric effectors by including
them with logarithmic concentrations in the equation. However, because there are currently few in vivo
measurements of regulator concentrations, in practice this remains only a good theory, which has the
potential to become useful with improvements in measurement methods.

4. Quantification of Metabolic Phenotype Using 13C Fluxomics

13C fluxomics provides a measure of the metabolic phenotype, namely the in vivo enzyme
activity measured as the molar flux through each reaction in the network. Only the most peripheral
fluxes, such as uptake and secretion rates, can be measured directly with quantitative metabolite
analysis, while fluxes within a metabolic network are inferred from stoichiometric models. Four major
approaches for metabolic flux analysis have been developed over the last two decades: kinetic
modeling [57], flux balance analysis (FBA) [58,59], dynamic flux modeling [60,61], and 13C metabolic
flux analysis (13C-MFA) [62].
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As we have seen in the case of non-equilibrium thermodynamics, kinetic modelling relies on
knowledge of the kinetic parameters of all enzymes under study. These parameters are usually very
hard, or even impossible, to determine in vivo and, therefore, the application of kinetic modelling
currently remains limited to small local networks.

FBA, also commonly called metabolic flux analysis (MFA), allows the calculation of net-fluxes
in the cell using mass balancing, which means that the overall sum of all molar fluxes entering and
leaving a metabolite pool must be zero. It can be applied to underdetermined networks with the use of
constraints (e.g., reversibility of reactions, upper and lower boundaries of rates, etc.), the inclusion
of co-factor balances and/or the application of an optimization function (e.g., to maximize growth).
While it fails to resolve parallel pathways [63] and reversibility of enzymes [64,65], it is applicable to
very large networks (>500 reactions), such as genome-scale models. Most importantly, it can be used
in a predictive way to study “what if” scenarios prior to any lab work; for example, gene essentiality
by in silico gene knockout. Dynamic flux modeling is an extension of MFA, where the same approach
is used to estimate internal metabolic fluxes relying on external metabolomics data, but in this case
is metabolomics data over-time, therefore, fluxes over-time are estimated. The approach is useful to
describe fluxes of transition states. However, similarly to conventional MFA, it is unable to estimate
fluxes for parallel pathways and reversibility of enzymes.

13C-MFA is another extension of FBA. In this approach, precursors enriched in the stable
carbon isotope 13C are introduced into the metabolic system under study. Metabolism subsequently
redistributes the labelled carbon atoms. The level of 13C enrichment in metabolites is measured via
MS or NMR spectroscopy. These enrichments are used together with stoichiometric constraints of the
network to quantify intracellular metabolic fluxes. This enables resolution of parallel pathways and
reversibility of enzymes. In contrast to traditional FBA, co-factor balances are not used as constraints
for flux calculations, but can be inferred from flux results. Typically, 13C-MFA focuses on central
carbon metabolism delivering a flux estimate that describes the metabolic state of a cell at a given time.
There are several detailed reviews of 13C-MFA [66–69].

13C-MFA was first developed for bacteria [70] and yeasts [71] and has predominantly been used
for the study of microbial growth in a defined medium on a single carbon source, which greatly
simplifies determination of uptake and secretion rates, closure of mass balances and labelling analysis
of target metabolites. In recent years, 13C-MFA has been combined with other omics techniques
for in-depth characterization of microbial systems [72,73]. This combination of techniques provides
a deeper understanding of the underlying regulation and its uses have been diverse, e.g., metabolic
engineering, drug design, or basic biological research. With the development of more sophisticated
quantitative metabolomics methods and the availability of faster modelling algorithms, 13C-MFA will
be more readily applicable to more complex systems.

13C-MFA relies on the assumption that the system is at a pseudo-steady state, e.g., the molar
flux through a metabolite pool is orders of magnitude larger than changes in concentration of this
metabolite over time, so that changes in concentrations do not significantly affect the fluxes. Thus,
the rate of change in metabolite concentration, c, over time is assumed to be nil. Mathematically, this is
expressed as:

dc
dt

= Sv = 0, (30)

where S and v denote the stoichiometric matrix and the flux vector, respectively.
The pseudo-steady state assumption is generally valid for continuous cultures and during

unlimited exponential growth. Exceptions are extreme transient states or accumulation of compatible
solutes in the system. In addition, it is assumed that there is no isotope effect, meaning that enzymes
do not have a significant preference for labelled or non-labelled substrates and that the system is well
mixed. Moreover, recent publications have shown that the isotope effect, if present, has a negligible
impact on metabolism [74,75]. Simulation is easier if the system under study is also at its isotopic
steady state, e.g., the labelling distributions of the metabolites are stable. Consequently, it depends
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on the pool size of metabolites and the fluxes through the pool determine how long it takes for the
labelling distribution in the pool to reach the isotopic steady state. For free intracellular amino acids,
for example, this can be reached within minutes to hours [73], while proteinogenic amino acids derived
from protein hydrolyzates will take several cell doublings before the isotopic steady state is reached.

For a more dynamic analysis, free intracellular pools of low abundant metabolites are ideal
(e.g., sugar phosphates in glycolysis) because the isotopic steady state is quickly achieved and the
measurement of enrichment kinetics is unnecessary.

4.1. Performing a 13C Metabolic Flux Analysis

13C-MFA can be separated into four different phases (Figure 4).Metabolites 2016, 6, 45 16 of 23 
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1. Experimental design is important because very costly tracer substrates can be ineffective when used
in a suboptimal design. For design, the stoichiometry and the atom transitions must be known.
By performing labelling experiments in silico for the expected range of fluxes, it is possible to
determine the most suitable labelled substrate(s) to use and the most suitable labelled metabolites
to analyse by MS or NMR, e.g., the metabolites for which labelling patterns are most responsive to
changes in fluxes. These metabolites can be derived from macromolecules, such as proteinogenic
amino acids or free intracellular metabolites. The choice depends on available sample size and
equipment sensitivities.

2. Performing the experiment: Pseudo-steady state conditions require balanced growth throughout
the tracer experiment. It is essential that no nutrient limitations, for example oxygen in aerobic
experiments, occur during the experiment. Biomass composition should remain fairly constant
and the mass balances of the system for at least one macro-nutrient, for example carbon or
nitrogen, should be closed. Bioreactors guarantee such a controlled environment with balanced
growth, but it has been shown that shake flasks and microplate systems can also deliver these
conditions within certain limits [76].

3. Quantitative metabolomics: All major substrates and products need to be accurately quantified.
For MFA the biomass itself is an important product. Its major composition (DNA/RNA, protein,
carbohydrate, lipid contents) determines a whole range of anabolic fluxes. Finally, MS [77] or
NMR [70] equipment are required to quantify the labelling enrichment in the target metabolites
(e.g., GC/MS analysis of proteinogenic amino acids). Accurate isotope ratios, although not
absolute quantification, of those metabolites is essential.

4. Flux estimation and sensitivity analysis: Flux estimation is an iterative process in which the
stoichiometric and atom mapping networks are used to calculate labelling outputs while
achieving the experimentally observed uptake, secretion, and growth rates. At each iteration
the calculated labelling outputs are compared to the experimentally determined ones and the
resulting fluxes are updated until the differences between calculated and measured labellings are
minimized. At the end of this fitting process, the sensitivity of fluxes is further evaluated using
statistical procedures. As a result, each flux is obtained with a certain confidence interval.
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While phases 2 and 3 demand sophisticated experimental and analytical procedures, phases 1
and 4 require sophisticated modelling software. We recently implemented one of the fastest algorithms
for 13C-MFA, the EMU (Elementary metabolite unit) approach [78], in the easy to use, open source
software package called OpenFLUX [79] (https://sourceforge.net/projects/openflux/). This software
can be used for experimental design, as well as for flux estimation and sensitivity analysis. It currently
supports the most common platform for labelling analysis, mass spectrometry, but because it is open
source users can include their own code in order to use NMR fine spectral information. It also supplies
the atom transitions for common reactions of central carbon metabolism, but can be custom designed
for any network. In addition to OpenFLUX there are several software packages available to facilitate
steady state isotope 13C flux analysis, the most popular are: FiatFlux [80], Metran [81], Isodesing [82],
and 13CFLUX2 [83], an updated version of 13CFLUX [69]. The different packages differ in the
complexity of inputs required, the data processing method, precision of results, computational time,
friendliness of the user interface, possibility to modify source code, software language, and flexibility.
Recently new software packages, INCA [84] and OpenMebius [85], were developed to perform
isotopically non-stationary 13C metabolic flux analysis.

4.2. Example 3: Integration of Quantitative Metabolite Data, Thermodynamics and 13C Fluxomics Based on
Saccharomyces Cerevisiae GeM

Saccharomyces cerevisiae S288C was cultured on a chemically defined medium containing glucose
and glutamate as carbon and nitrogen sources. Aerobic cultivation was performed in a bioreactor at
pH 6.0 and 30 ◦C in continuous mode at a measured dilution rate of 0.29 [h−1]. Samples were taken
during steady state after five residence times.

Quenching was performed as described in [86] and extraction was done in boiling water
containing internal standards.

Extracellular glucose, ethanol, glycerol, and organic acids, as well as intra- and extracellular amino
acids, were quantified using HPLC as described by Dietmair et al. [10]. Analysis of endo-metabolites
by LC-ESI-MS/MS was performed on an ABSciex 4000 QTRAP mass spectrometer (ABSciex, Concord,
Canada) coupled to a HPLC instrument. Using an ion-pairing method adapted from Luo et al. [14].
In order to reduce the influence of matrix effects, the standards were prepared in a fully 13C-labelled
yeast extract, obtained from a continuous culture on universally labelled (U13C) glucose at a dilution
rate of 0.2.

In addition, a separate tracer experiment for 13C flux analysis under identical conditions was
performed. This was necessary since the 13C tracer alters the mass distributions of target metabolites,
leading to mismatches with the MRM’s set up in the LC-ESI-MS/MS analysis. The physiological match
between the tracer and non-tracer experiment was ensured using HPLC and growth data. A 20:80
mix of 99% [1-13C] glucose and 99% [U-13C] glucose was used as the labelled substrate together with
naturally-distributed glutamate. Cell hydrolysis and labelling analysis are described elsewhere [72,87].

To apply NET analysis the yeast consensus GeM, Yeast 5 [88] was modified as previously
described [23], in order to be able to use thermodynamics the following changes of the model were
needed [23]:

• reactions catalyzed by different enzymes in either direction should be lumped together resulting
in a reversible reaction, otherwise a thermodynamic equilibrium state with a zero Gibbs energy of
reaction will be considered for both of them;

• in thermodynamics, reactions are described in terms of reactants instead of species. For example
the species HCO3−, CO3

2−, CO2, and H2CO3 are grouped as the reactant CO2tot because aqueous
phase carbon dioxide is distributed in those species;

• for reactions that contain CO2tot, H2O was added to the opposite side of the reaction in order to
balance oxygen atoms; and

• the oxidized and reduced flavin adenine dinucleotide (FAD) in mitochondria were replaced by
oxidized and reduced FADenz in order to represent the enzyme-bound FAD cofactor.

https://sourceforge.net/projects/openflux/
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Based on the same GeM, an EMU model for 13C flux estimation was created in OpenFlux [79].
The model contained 406 metabolic reactions. Flux analysis was performed using the stoichiometric
rates for substrate uptake, product formation and anabolism alongside the labelling enrichment
data of 18 mass distribution vectors from proteinogenic amino acids as determined by GC/MS.
The concentration range for each metabolite and a range of ∆rG for each reaction were estimated
using NExT [45]. Initially, broad concentration ranges were used in order to check the model’s
thermodynamic feasibility.

Subsequently, metabolite data of the Saccharomyces cerevisiae fermentation was used.
Concentrations of amino acids, nucleotides, and some metabolites of the central carbon metabolism
were measured. A broad concentration range was assigned to non-measured metabolites. The measured
metabolite concentration dataset was found to be thermodynamically feasible. Using this dataset
we were able to predict a new irreversible reaction in the pentose phosphate pathway (Figure 5),
namely D-ribulose-5-phosphate 3-epimerase. The reaction was shown to operate in the direction of
production of Xylulose-5-phosphate with ∆rG in the range of −2.2 to −1.0 [kJ/mol]. 13C fluxomics
independently confirmed that the net flux of this reaction was in the direction the metabolite data and
the thermodynamics predicted (Figure 5). Two other reversible reactions in the network were predicted
to be irreversible: D-ribose-5-phosphate ketol-isomerase and triose-P-isomerase. In these cases the ∆rG
was between −1.3 and −0.2 (kJ/mol) and 0.22–28.32 [kJ/mol], respectively (Figure 5). The predicted
directionality contradicted the observed net fluxes in the 13C fluxomics. This highlights the fact that
a ∆rG range close to equilibrium (∆rG = 0) meaning that the reaction is likely to be reversible. In fact,
the 13C fluxomics also showed a high reversibility for these reactions. There was no measurement
of di-hydroxy acetone phosphate (DHAP) available, which may help to fix the directionality of the
triose-P-isomerase reaction, underlining the importance of complete metabolite datasets.

In summary, this example shows how the different datasets are complementary to one another
and can be used to gain deeper insights into metabolism and higher confidence in the results.
Thermodynamics is useful to check the quality of the metabolomics data and 13C fluxomics to describe
the metabolic phenotype. Moreover, when opposing information on reactions directionality was found
between the methods, the reactions are close to equilibrium and should be described as reversible. If it is
not possible to estimate metabolic fluxes with 13C fluxomics due to the impossibility to reach metabolic
pseudo-steady state or the feeding with labeling substrate is too expensive, thermodynamic-based
network analysis is presented as a powerful tool to determine a reactions’ directionality, information
that can be used with conventional MFA to determine a reduced solution space for the metabolism of
the studied organism.
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Figure 5. Intracellular metabolite concentrations and metabolic fluxes in Saccharomyces cerevisiae S288C
during growth on glucose and glutamate as carbon sources in continuous culture. The dilution rate
is 0.29. Metabolite concentrations are represented as circles corresponding to their concentration in
[µmol/gCDW]. Concentrations were set equal to mm2. After back-calculating to the radius of the circle,
the 10-fold radius was used to create the circles in the figure. Net fluxes are presented. In the case of
reversible reactions, depicted by a double arrow, the net direction is indicated with a small arrow next
to the flux value. ∆rG values were predicted by using NExT. Dashed lines indicate flux direction based
on thermodynamic modelling. Dotted lines show the predicted flux direction by the thermodynamic
modelling contradicted by 13C fluxomics where ∆rG is close to zero. For simplification, only a small
section of the network is shown and for clarity some fluxes are omitted. Each metabolite node is
balanced in the full network.

5. Conclusions

Despite a great increase in sensitivity, selectivity, and coverage of the platforms to measure
metabolomics, it is still not possible to generate a full organism’s quantitative metabolomics data.
Furthermore, when 13C-labelled metabolites are required the availability of standards become an issue
due to the high price of these labelled metabolites. An approach recently applied to overcome this
issue is the use of labelled internal standards generated by culturing microbes with labelled carbon
substrates. However, the generated labelled metabolites will depend on the used organism and
the reproducibility is highly dependent on the standardization of the culture conditions. Therefore,
there are still challenges that need to be overcome in order to increase metabolomics data quality.

The introduction of the second law of thermodynamics into a metabolic network will determine
directionality of initially-reversible reactions, constraining the solution space of metabolic networks
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using experimental data and thermodynamics principles. With the increase on coverage an accuracy of
Gibbs energy determination is now possible to include thermodynamics constraints into metabolic flux
determinations. The determination of compartment/organelle specific metabolite concentrations is in
its infancy, presenting an extra challenge when working with compartmentalized models, such us yeast
and humans. Despite NET analysis being able to estimate compartment-specific ranges of metabolites
concentrations from average cell metabolites concentrations, the higher coverage of compartment
specific metabolomic data will increase the power of network thermodynamics approaches.

Here an example was presented on how quantitative metabolomics data: endo- and
extra-metabolites’ concentrations and enrichment level of isotopically-labelled metabolites are used
to determine an organism metabolic phenotype. Two different approaches were employed: 13C
fluxomics and network thermodynamics analysis. It was shown that both approaches complement
each other. However, some discrepancies were found which are mainly explained by the need of;
(1) more accurate Gibbs energy or known errors of the Gibbs energy values; and (2) higher coverage of
endo-metabolomics data. Moreover, other omics data, such as proteomics and transcriptomics, could be
used in combination with the previous technologies to provide a deeper biological understanding of
the organism metabolic phenotype and regulation.
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