Supplementary Material ## Atlantinone A, a Meroterpenoid Produced by *Penicillium ribeum* and Several Cheese Associated *Penicillium* Species Petur W. Dalsgaard ¹, Bent O. Petersen ², Jens Ø. Duus ³, Christian Zidorn ⁴, Jens C. Frisvad ⁵, Carsten Christophersen ⁶ and Thomas O. Larsen ⁵,* | Table 1. NMR d | lata of atlantinone A | a | (2) | ١. | |----------------|-----------------------|---|-----|----| |----------------|-----------------------|---|-----|----| | Position 1 H 1α 1.33 1H | , m 31.5 | |---|------------| | 2α 1.73 1H | | | 3 4.07 1H | - | | 4 | 36.4 | | 5 1.32 1H | , m 50.7 | | 6α 1.16 1H | | | 7α 1.93 1H | - | | 8 | 40.7 | | 9 1.80 1H | , s 45.4 | | 10 | 44.8 | | 11 5.35 1H | , s 124.4 | | 12 | 131.8 br.s | | 13 | 55.3 | | 14 | 67.5 br.s | | 15 ^b | | | 16 | 112.0 br.s | | 17 ^b | | | 18 1.47 3H | , s 6.9 | | 19 | 170.6 | | 20 1.09 3H | , s 15.8 | | 21 1.71 3H | , s 19.5 | | 22 1.25 3H | , s 16.5 | | 23 | 174.4 | | 24 1.05 3H | , s 27.2 | | 25 0.92 3H | , s 21.8 | | 19-OMe 3.48 3H | , s 51.1 | ^a Measured in DMSO- d_6 (¹H at 500 MHz, ¹³C at 125 MHz) and referenced to solvent residual signals and solvent signals at 2.50 ppm (¹H-NMR) and 39.50 ppm (¹³C-NMR). Numbering is arbitrary and follows the system used for citreohybridone derivatives (4); ^b Signals not observed. **Structural elucidation.** The ¹H-NMR spectrum (Table 1) of **2** showed the presence of an olefinic proton (δ_H 5.35, C_{11} -H), one methoxy group (δ_H 3.48, C_{19} -OMe), one methyl group attached to a double bond (δ_H 1.71, H₃-21), and four methyl groups connected to quaternary carbons [δ_H 0.92 (H₃-25), 1.05 (H₃-24), δ_H 1.09 (H₃-20), 1.25 (H₃-22)]. The ¹³C-NMR exhibits 24 carbon signals including signals assigned to two carbonyl carbons [δ_C 170.6 (C-19), δ_C 174.4 (C-23)], two olefinic carbons [δ_C 124.4 (C-11), δ_C 131.8 (C-12)], two oxygenated carbons [one methine (δ_C 83.0, C-3) and one methoxycarbonyl (δ_C 51.1, C_{19} -OMe)]. The signals originating from C-15 and C-17 was not observed owing to the fast equilibrium between the C-17-oxo-C-15-hydroxy, and C-17-hydroxy-C-15-oxo tautomeres. Analogue findings have been reported for other andrastins (*1*, *3*). The gross structure of **2** *Metabolites* **2012**, *1* was determined by detailed analyses of one and two dimensional NMR spectra. From COSY data we inferred the presence of three partial structures; X-CH₂-CH₂-CH-X; X-CH₂-CH₂-CH-O-X and -CH-CH=. The HMBC cross peaks revealed these fragments to form part of the skeleton of ring A, B and C. The ${}^3J_{\text{H-C}}$ established the presence of geminal methyl groups (C-24 and C-25) on the A ring together with a lactone bridge. ## Supplementary Figure 1. Important HMBC connectivities in (2). The low field shift of H-3 (δ 4.07) placed the oxygen on C-3. The HMBC connectivities between H-1b, H-3, H-5 and C-23 established the γ -lactone ring bridging C-3 and C-10. Broad carbon signals (C-14 and C-16) and the high field shifted carbon at δ 6.9 (C-18) are indicative of the presence of keto-enol tautomerism at the cyclopentane ring (ring D) as in andrastin A, B, C and D (I, J). The remaining elements of **2** were connected as shown in Figure 2 in accordance with the HMBC connectivities observed.