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Abstract: Metabolomics is emerging as a powerful systems biology approach for improving pre-
clinical drug safety assessment. This review discusses current applications and future trends of
metabolomics in toxicology and drug development. Metabolomics can elucidate adverse outcome
pathways by detecting endogenous biochemical alterations underlying toxicity mechanisms. Fur-
thermore, metabolomics enables better characterization of human environmental exposures and
their influence on disease pathogenesis. Metabolomics approaches are being increasingly incor-
porated into toxicology studies and safety pharmacology evaluations to gain mechanistic insights
and identify early biomarkers of toxicity. However, realizing the full potential of metabolomics
in regulatory decision making requires a robust demonstration of reliability through quality as-
surance practices, reference materials, and interlaboratory studies. Overall, metabolomics shows
great promise in strengthening the mechanistic understanding of toxicity, enhancing routine safety
screening, and transforming exposure and risk assessment paradigms. Integration of metabolomics
with computational, in vitro, and personalized medicine innovations will shape future applications in
predictive toxicology.
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1. Introduction

Metabolomics, the global study of metabolites in a biological system, has emerged as
a powerful technology for elucidating mechanisms of toxicity and improving preclinical
drug safety assessment. By providing a direct snapshot of biochemical activity and a func-
tional readout of cellular responses, metabolomics data can help unravel adverse outcome
pathways, strengthen extrapolation of preclinical findings, and aid regulatory decision
making regarding potential safety liabilities. This article reviews key opportunities where
metabolomics approaches can inform and transform current paradigms in preclinical toxi-
cology evaluation during drug development. The utility of metabolomics for elucidating
adverse outcome pathways, incorporating human exposure and mechanistic information,
and enhancing predictive toxicity evaluation is discussed [1]. Quality assurance considera-
tions, which are essential for regulatory acceptance of metabolomics data, are highlighted.
Overall, metabolomics represents a promising opportunity to strengthen the scientific basis
of safety assessment and improve preclinical hazard characterization.

Adverse outcome pathways (AOPs) represent a conceptual framework for organiz-
ing existing toxicological knowledge to support chemical risk assessment and regulatory
decision making [2]. AOPs link molecular initiating events to downstream key events at
increasing levels of biological organization, culminating in an adverse outcome relevant
to risk assessment. By capturing the current understanding of causal connections within
plausible chains of events leading to toxicity, AOPs provide a mechanistic rationale to aid
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toxicity prediction. Metabolomics provides direct insights into biochemical activity and per-
turbations that occur downstream of gene expression changes. Consequently, metabolomics
data can help anchor omics-derived AOPs to adverse outcomes and strengthen causal links
between key events. Metabolomics data can help anchor omics-derived adverse outcome
pathways (AOPs) to adverse outcomes and strengthen causal links between key events.
Metabolomics represents an effective approach for identifying additional AOPs that may
be occurring in parallel with an already assigned AOP, as well as providing physiological
support and expanding knowledge of those AOPs relevant to a particular exposure [3].
Metabolomics can measure changes in endogenous metabolites involved in a wide variety
of biochemical pathways and associate those changes with exposure to specific chemi-
cals and adverse biological outcomes. In the context of ecological risk assessment, omics
datasets, including metabolomics, enable a more precise definition of the molecular ini-
tiating event (MIE) and the selection of biomarkers relevant for assessing effects and/or
exposure [4]. Omics data provide gene- and pathway-level readouts that can be used for
selecting measurable and relevant biomarkers. For example, metabolomics has been used
to describe the AOPs of silver nanoparticles [5], selenium as it relates to brain toxicity [6],
and the pharmaceutical spironolactone [3]. Metabolomics can also be used to find similar-
ities between biological responses to different chemicals to facilitate chemical grouping
for read-across of adverse events. Metabolomics is a powerful tool used to investigate
the responses of metabolite profiles in organisms exposed to various substances. For in-
stance, a study applied metabolomics to investigate the responses of metabolite profiles
in zebrafish exposed to acetochlor and butachlor, two substances that could disrupt the
thyroid and sex steroid endocrine systems in zebrafish [7]. Metabolomics can give insights
into toxicity pathways and mechanisms, e.g., metabolomics is an emerging approach used
to identify and discover metabolic biomarkers, providing a series of metabolic signatures
that elucidate the pathological changes in diseases, including Parkinson’s disease [8]. This
technology links various metabolic molecular mechanisms to neuronal activity alterations,
protein changes or genetic mutations, and mitochondrial dysfunction. Metabolomics also
serves the identification of early, sensitive, causal biomarkers, e.g., it revealed biomarkers of
drug-induced liver injury that provided mechanistic clues [9,10]. The concept of bridging
in vitro and in vivo effects using metabolomics to evaluate an adverse outcome pathway
(AOP) for neuronal mitochondrial toxicity across multiple models is supported by several
studies [11,12].

By supporting AOP development, metabolomics strengthens predictive toxicity assess-
ment based on elucidating mechanisms of chemical perturbations. Metabolomics promises
to play a key role in elucidating the connection between chemical exposure and human
health. The exposome encompasses the totality of environmental exposures an individual
experiences across a lifetime [13]. Chemical exposome research utilizing metabolomics can
shed light on how such exposures interplay with genes and lifestyle to influence pathogen-
esis. For example, metabolomics analysis of urine can detect metabolic changes following
chemical exposures [14]. Furthermore, the ability to acquire metabolomics snapshots of
individuals represents a powerful tool for elucidating connections between chemical ex-
posures, metabolic disturbances, and disease outcomes in human population studies [15].
By aiding more accurate exposure assessment and linking exposures to biological impacts,
metabolomics research can transform our understanding of environmental influences on
human health.

Metabolomics approaches are increasingly being applied in toxicology and safety phar-
macology to elucidate mechanisms of toxicity, identify predictive safety biomarkers, and en-
hance routine screening [16–21]. By detecting endogenous metabolite alterations indicating
biochemical perturbations, metabolomics provides functional readouts of pathology that
link traditional toxicity endpoints to mechanistic pathways. For example, metabolomics
has shown utility for revealing mechanisms underlying organ toxicity of drugs and en-
vironmental chemicals [22]. Furthermore, incorporating metabolomics into repeat-dose
toxicology studies can provide additional weight of evidence and insights beyond standard
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parameters [23]. Metabolomics can also inform in vitro to in vivo extrapolation (IVIVE)
for safety assessment by anchoring in vitro assays to meaningful apical endpoints [24].
Overall, metabolomics shows promise for strengthening mechanistic understanding in
safety assessment. The Organisation for Economic Co-operation and Development (OECD)
has also recognized the potential of metabolomics in regulatory toxicology, paving the way
for applications in hazard (or adverse outcome) identification, chemical grouping to inform
biologically based read-across of toxicity, identifying metabolic points-of-departure, and
potentially other areas [25].

Quality assurance needs are key for the utility of metabolomics to support drug de-
velopment and regulatory decisions. While metabolomics holds tremendous potential for
informing preclinical drug safety evaluation, expanded use will require robust quality as-
surance and demonstration of reliability for regulatory decision making [26,27]. Key needs
include standardized protocols for sample preparation and data acquisition, metabolite
identification validation, ongoing quality control using reference materials, transparency in
data analysis workflows, and structured reporting formats to support interpretation [28,29].
Furthermore, fit-for-purpose qualification of specific metabolomics approaches will be nec-
essary for regulatory acceptance. Collaborative efforts between metabolomics researchers,
toxicologists, and regulators to establish best practices and evaluation frameworks will
enable the translation of metabolomics innovations into improved safety testing paradigms.

In summary, metabolomics approaches are poised to transform preclinical drug safety
assessment by elucidating adverse outcome pathways, incorporating exposome and mech-
anistic information, and enhancing predictive toxicity evaluation. However, realizing
the full potential of metabolomics will require continued focus on quality assurance and
qualification to support regulatory decision making. Overall, metabolomics represents a
promising opportunity to strengthen the scientific basis of safety assessment and improve
preclinical hazard characterization.

1.1. Adverse Outcome Pathways vs. Pathways of Toxicity

A broader assessment of metabolites, as enabled by metabolomics, lends itself to the
identification of affected pathways in toxicological research. Adverse outcome pathways
(AOPs) and pathways of toxicity (PoTs) represent related conceptual frameworks for
organizing toxicological knowledge to support risk assessment. While complementary,
they have been defined with distinct perspectives [30]. AOPs were introduced in the field
of ecotoxicology and focus on linking mechanistic data to apical hazards or outcomes
relevant to regulatory decision making [2]. AOPs connect a molecular initiating event to
subsequent key events using causal relationships to provide a plausible narrative explaining
how chemical perturbation leads to an adverse effect [31]. They play a critical role in the
design of integrated testing strategies [32,33], also known as integrated approaches to
testing and assessment (IATA) [34]. However, AOPs do not require a full understanding or
representation of every step in the pathway.

In contrast, PoTs aim to provide a molecular definition of all processes mediating
adverse outcomes induced by toxicants in a given cellular context [35] (Figure 1). PoTs
intend to map the necessary and sufficient pathways eliciting toxicity to support predictive
hazard assessment and move away from animal testing. Furthermore, PoTs emphasize
understanding dose-dependent dynamics and temporal relationships.

While AOPs represent a very structured organization of scientific knowledge from
chemical exposure to population effects, PoTs use experimental models and multi-omics
approaches to link chemical exposure to cellular effects.

While AOPs offer a pragmatic framework to incorporate existing data for regulatory
purposes, PoTs represent a more ambitious goal of mapping all key toxicity pathways as a
new paradigm for safety assessment. Metabolomics approaches, by detecting endogenous
changes indicative of biochemical impacts, can help strengthen the development of both
AOPs and PoTs. However, fully realizing the vision of PoT-based toxicology will require
major advances in high-throughput systems approaches and pathway mapping tools.
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Ultimately, AOPs and PoTs both seek to leverage mechanistic knowledge but differ in
scope and application. They are the critical link from the exposome to the understanding
of disease [36,37]. The critical role of evidence-based approaches in their development and
validation has been discussed elsewhere [38,39].
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1.2. Metabolomics to Understand Human Exposure Contributions to Disease and Treatment
Efficacy

Metabolomics has emerged as a powerful technology for gaining insights into how
human exposures impact metabolic pathways and influence disease outcomes. By pro-
filing global changes in endogenous small molecules, metabolomics provides functional
biomonitoring data that complements traditional exposure assessments [40] (Figure 2).

Some key applications of metabolomics for elucidating exposure contributions to
human disease include the following:

Characterizing Effects of Drug Exposures: Metabolomics has been widely applied
in pharmacology and toxicology to delineate drug exposure impacts on metabolic path-
ways [18,41]. This ranges from the development of biomarkers and early toxicity tests to
preclinical drug development and increasingly regulatory toxicology. The global study of
metabolism via metabolomics has significant implications for pharmacologic science. By
capturing the overall physiological status of an organism, metabolomics studies offer a
comprehensive understanding of how drugs influence the body’s biochemistry at a macro
level. Metabolomics also has potential applications in clinical pharmacology, where it can
provide insights into drug responses and safety profiles.

Elucidating Dietary and Nutritional Influences: As diet represents a major source of
diverse small molecule exposures, metabolomics holds promise for elucidating nutritional
influences on health. This plays a role as a covariable of pathogenesis and treatment efficacy
or even allows tailored nutrition as co-treatment [42].
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Understanding Lifestyle Factor Impacts: Various lifestyle factors have been inves-
tigated using metabolomics approaches. Tobacco smoke exposure, alcohol consumption,
physical activity, and sleep patterns are lifestyle exposures that can be addressed with
metabolomics [43] and possibly impact drug efficacy.

Elucidating Mixture Effects: Real-world exposures involve complex mixtures of
chemicals and other stressors; most patients receive multiple drugs. Metabolomics pro-
vides an opportunity to evaluate the integrated biological impacts of co-exposures [44].
The technology often allows the detection of mixture-associated effects not evident from
individual exposures.

In summary, metabolomics serves as a critical link between human exposures and
resultant biochemical alterations that influence disease outcomes and treatment efficacy,
also enabling personalized medicine [45]. By offering insight into exposure-induced dis-
turbances in metabolic pathways, metabolomics holds great promise to elucidate envi-
ronmental contributions to pathogenesis and reveal molecular mechanisms underlying
clinical outcomes.

2. Metabolomics Data Quality Assurance in Preclinical Drug Safety Assessment

The emergent field of metabolomics is providing new opportunities to gain insights
into drug safety and toxicity through comprehensive profiling of metabolic changes. How-
ever, as with any new technology, there are quality issues and sources of variability that
need to be addressed to ensure metabolomics data can be reliably utilized in preclinical
drug safety workflows [21].

There are several potential sources of variability that can impact the quality of
metabolomics data:

Biological variability between study subjects and across study groups: Biological
variability between study subjects and across study groups can significantly impact the
quality of metabolomics data. This variability can be due to individual differences in
metabolism, diet, lifestyle, and other factors. It is important to account for this variabil-
ity in the study design and statistical analysis to improve the quality of metabolomics
data [46–48].

Remedies: Careful experimental design with sufficient replication and randomization
of study subjects to account for individual variability; blocking on key factors known to
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influence metabolism (sex, age, genotype, etc.); and use of linear mixed-effects models in
data analysis to model biological variability.

Sample collection and handling procedures: Sample collection and handling proce-
dures are crucial in metabolomics studies. Inappropriate sample collection or storage can
result in high variability, interferences with instrumentation, or degradation of metabolites.
Therefore, it is important to follow specific standard operating procedures (SOPs) for the
collection, preparation, and storage of metabolomics samples [49,50].

Remedies: Develop and validate standard operating procedures (SOPs) for each
sample type; use consistent sampling time points relative to study conditions; standard-
ize processing workflows (e.g., stabilization and aliquoting); employ automated sam-
ple handling where possible to reduce errors; and validate storage conditions to ensure
sample integrity.

Metabolite extraction methods: Metabolite extraction methods can also impact the
quality of metabolomics data. The extraction efficiency and repeatability can be highly
variable across protocols, tissues, and chemical classes of metabolites. Therefore, the choice
of extraction method should be carefully considered based on the sample type and the
metabolic compounds of interest [51,52].

Remedies: Assess extraction efficiency/variability for method and sample type; use
multiple complementary extraction protocols for broad coverage if needed; include techni-
cal replicates in extractions to monitor process variability; and select methods minimizing
metabolite losses or artifacts.

Analytical instrumentation: Gas chromatography (GC), liquid chromatography (LC),
and mass spectrometry (MS), as well as nuclear magnetic resonance (NMR) plays a crucial
role in metabolomics studies. However, instrumental drifts, such as fluctuations in retention
time and signal intensity, can pose challenges, particularly in large untargeted metabolomics
studies. Therefore, quality control (QC) samples are often used to improve the validity of
these studies [23,43].

Remedies: Employ quality control samples and reference materials to monitor per-
formance; set acceptance criteria for instrument stability (retention times and internal
standards); use randomization in analytical run sequences to minimize batch effects; and
perform periodic instrument maintenance and calibration.

Data acquisition parameters and protocols: These parameters and protocols can also
influence the quality of metabolomics data. For example, the number of variables (peaks,
chemical shifts, ions, etc.) can be very large, while the number of observations remains
usually low in metabolomics datasets. Therefore, appropriate data analysis methods are
needed to handle this high dimensionality [43].

Remedies: Perform injections of standards to optimize acquisition parameters up-
front; use a randomized run order and bracketed injections of QC samples; monitor QC
metrics (peak intensities, shapes, and blanks) to ensure stable performance; employ au-
tomated data acquisition workflows to minimize analyst-induced variability; and share
methods/protocols to improve transparency and reproducibility.

Data processing pipelines for peak identification, quantification, and statistical
analysis: data processing pipelines for peak identification, quantification, and statistical
analysis are crucial for the quality of metabolomics data. Various strategies for technical
improvements in metabolomics have been aimed at raising data quality, including methods
to reduce the effects of sample matrices, maximize sensitivity during detection, separate
isomers, reduce ion suppression, and improve instrument performance [43].

Remedies: Leverage quality metrics to filter poor quality data features; use multiple
algorithms for identification/quantification to reduce errors; incorporate replicate injections
and pooled QC samples to assess process variability; and employ statistical methods suited
for high dimensionality data.

In conclusion, small variations in any step of the metabolomics workflow, from ex-
perimental design to data analysis, can introduce noise and bias, leading to irreproducible
results [23]. Adhering to quality assurance protocols throughout the metabolomics work-
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flow allows critical assessment and improvement in factors contributing to variability,
enhancing reproducibility. A comprehensive discussion of best practices strengthens confi-
dence in utilizing metabolomics for safety assessment. Careful experimental design and
standardization of procedures are critical. Quality control (QC) procedures, such as the use
of reference materials, quality control samples, and evaluation of technical replicates, are es-
sential for monitoring variability and ensuring the day-to-day performance of metabolomics
assays [24]. Quality assurance (QA) protocols, including staff training, method validation,
and standard operating procedures, establish the robustness and reliability of the overall
metabolomics workflow.

Adhering to QA/QC protocols promotes intra- and inter-laboratory reproducibility,
allowing metabolomics data to be compared across studies and sites [22]. Ongoing commu-
nity efforts have established some consensus QA/QC practices and reporting standards for
metabolomics through interlaboratory studies, published guidelines, and the development
of reference materials [21,22,53]. Viant et al. and Kirwan et al. suggested reporting stan-
dards [54,55]. Wider adoption of these standards will improve the quality and consistency
of metabolomics data utilized in preclinical drug safety assessment.

3. Role of Metabolomics in Toxicology

Metabolomics has emerged as a powerful tool for studying the toxicity and safety of
drugs and environmental chemicals. By comprehensively analyzing the small molecule
metabolites in biological systems, metabolomics provides insights into metabolic pathways
disrupted by toxicants and can identify early biomarkers of toxicity. Some examples of how
metabolomics has advanced toxicology research include providing mechanistic insights
into compound toxicity or early metabolic biomarkers of toxicity.

An example of metabolomics studies providing mechanistic insights into compound
toxicity is the study of acetaminophen (APAP). APAP is a commonly used analgesic and
antipyretic drug, but it poses a major risk of liver injury when taken in excess of the
therapeutic dose. The hepatotoxicity is initiated by the formation of a reactive metabolite
N-acetyl-p-benzoquinone imine (NAPQI), which depletes cellular glutathione and forms
protein adducts on mitochondrial proteins. This leads to mitochondrial oxidative and
nitrosative stress, resulting in liver injury [56]. Metabolomics studies of acetaminophen
toxicity in rodents [57–59] showed alterations in bile acid metabolism and increased ox-
idative stress markers prior to overt signs of liver injury, providing mechanistic clues to
the pathogenesis of acetaminophen hepatotoxicity. Additionally, metabolites related to
glutathione metabolism and oxidative stress, such as cysteine-glutathione disulfide and
oxidized glutathione, were increased by acetaminophen. Another example of identification
is the metabolomic analysis of lung cell tissues from different species exposed to cigarette
smoke, which revealed the disruption of glycolysis, the Krebs cycle, choline metabolism,
and additive oxidative stress, elucidating the metabolic impact of cigarette smoke on the
lungs [60–62]. Metabolomics profiling showed decreased glucose and elevated lactate,
indicating an inhibition of glycolysis. Additionally, alterations in Krebs cycle metabolites
like fumarate and malate were observed, suggesting impairment of mitochondrial function.
Phosphocholine levels were increased, and glycerophosphocholine levels decreased in
smoke-exposed rat lungs, reflecting disruption of choline metabolism. Markers of oxidative
stress like glutathione disulfide were also elevated. The metabolomics data provided a
detailed picture of the metabolic pathways perturbed by cigarette smoke in the lungs,
including glycolysis dysfunction, oxidative stress, and altered choline metabolism. Simi-
larly, metabolite profiles of HepG2 cells treated with 35 test substances resulted revealed
concentration–response effects and patterns of metabolome changes that are consistent
for different liver toxicity mechanisms (liver enzyme induction/inhibition, liver toxicity,
and peroxisome proliferation) [63]. In an in vitro model of MPP+-inducible Parkinson-
ism, metabolomic flux analysis was able to characterize the cell death of dopaminergic
neurons [64].
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Examples of identification of early metabolic biomarkers of toxicity using metabolomics
include a serum metabolomics study, which identified metabolite biomarkers of liver and
kidney toxicity in rats, with some biomarkers detectable prior to changes in classical clin-
ical chemistry markers of tissue injury [65]. Metabolomics analysis showed liver toxins
decreased amino acids and increased bile acids in rat serum, while kidney toxicants al-
tered tricarboxylic acid cycle (TCA) metabolites and prostaglandins. Elevations in serum
bile acids were detectable earlier than ALT increases with liver toxicants, while TCA cy-
cle changes preceded creatinine increases for kidney toxicants. This demonstrates the
potential of metabolomics for discovering early metabolic biomarkers of organ toxicity.
Another example is a metabolomic analysis, which discovered biomarkers for early detec-
tion of nephrotoxicity. The study found that one of the earliest and strongest metabolic
changes induced by the three nephrotoxicants was an increase in urinary excretion of
2-oxoglutarate [66]. Metabolomics profiling was also used to detect early effects of environ-
mental and lifestyle exposure to cadmium in a human population. The study concluded
that metabolic profiling has the potential to identify novel biomarkers and molecular
signatures of the effects of exposure to many environmental toxicants [14].

In summary, as these and further non-comprehensive examples (Table 1) illustrate,
metabolomics has provided toxicologists with a powerful systems biology tool to gain
mechanistic insights, discover early biomarkers, and assess interindividual differences in
response to toxins. Metabolomics allows a comprehensive analysis of metabolic pathway
perturbations from toxicant exposure, bridging the gap between mechanistic research
and classical toxicity endpoints. The ability to detect subtle metabolite changes prior
to overt signs of organ damage enables metabolomics to identify early biomarkers of
toxicity for improved risk assessment. Furthermore, metabolomic analyses can uncover
metabolic differences underlying interindividual variability in susceptibility to toxicants.
Continued development of metabolomics technologies and databases will further enhance
the application of metabolomics in 21st-century predictive toxicology and advance the field
of toxicology toward personalized and precision medicine.

Table 1. Some examples of metabolomics used in toxicology. This non-comprehensive list gives
examples of studies successfully employing metabolomics. ∆ = changed, ↓ = reduced, ↑ = increased.

Compound/Substance
and Model Mechanistic Insights Biomarkers Identified References

Acetaminophen (APAP) in rats Mitochondrial oxidative and nitrosative
stress; bile acid metabolism changes cysteine-glutathione disulfide [56–59]

Cigarette smoke in lung cells
Disruption of glycolysis, Krebs cycle,

choline metabolism, and additive
oxidative stress

glucose↓ lactate↑
∆ fumarate/malate [60–62]

35 test substances in liver cells
Patterns of liver enzyme

induction/inhibition, liver toxicity, and
peroxisome proliferation

diverse [63]

MPP+ in neurons Dopaminergic neuron death pathways diverse [64]

Liver toxicants in rats Early metabolomic changes amino acids, bile acids↑; [65]

Kidney toxicants in rats Early metabolomic changes ∆ TCA cycle; urinary
2-oxoglutarate↑ [65,66]

Phenoxy herbicides in rats Liver and kidney toxicity Diverse pattern [67]

2- and 3-aminopropanol in rats Similarity of compounds allowing
read-across Diverse pattern [68]

Spironolactone in
fathead minnows

Changes in liver linked to declines in
fecundity and other reproductive-

related endpoints

∆ amino acid, tryptophan,
and fatty acid metabolism [3]
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Table 1. Cont.

Compound/Substance
and Model Mechanistic Insights Biomarkers Identified References

Dioxin-exposed humans
vs. control Distinct metabolite profiles 24 urinary steroid-related

biomarkers [69]

Tributyltin in zebrafish Affected steroid biosynthesis metabolism Diverse [70,71]

6-propyl-2-thiouracil in zebrafish (Neuro-) developmental toxicity
methionine↓, tyrosine↑,

pipecolic acid↑ and
lysophosphatidylcholine↑

[72]

Arecoline in rats ∆ lipid metabolism, amino acid
metabolism, and vitamin metabolism

∆ D-Lysine,
N4-Acetylaminobutanal, and

L-Arginine
[73]

4. State of the Art of Metabolomics in Toxicology

Metabolomics has emerged as a transformative approach in toxicology (Figure 3). This
technology enables us to delve into the biochemical fingerprints that cellular processes
leave behind, thereby offering unique insights into the adverse outcome pathways (AOPs)
and the underlying mechanisms of toxicity [74,75]. This article aims to provide an overview
of the current state of metabolomics in toxicology and discusses its future trends, focusing
on its role in preclinical drug safety assessment.
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Addressing the challenges of toxicology in the 21st century [76]: Metabolomics is
ideally positioned as a powerful tool for collecting rich mechanistic information indicating
not only the extent of a toxic insult but also its underlying mechanisms. The metabolome
of a sample, that is, the concentrations of these metabolites at a given time, can be thought
of as a metabolic “fingerprint” representative of the state of the organism at that time.

Discovering Adverse Outcome Pathways (AOPs): Traditional toxicological studies
have been largely dependent on empirical observations, often overlooking the biochemical
changes that precede visible symptoms. One objective in developing AOPs is to connect
biological changes that are relevant to risk assessors to molecular- and cellular-level al-
terations that might be detectable at earlier stages of chemical exposure. Metabolomics,
however, allows for the identification of early biomarkers and signaling pathways that
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can serve as AOPs, which link the initial molecular interaction of a substance with its final
adverse effect [2]. This adds a layer of granularity to toxicological assessments, enabling
more precise risk evaluations and interventions. Metabolomics represents an effective
approach for not only identifying the presence of additional AOPs that may be occurring
in parallel with an already assigned AOP but also for providing physiological support and
expanding knowledge of those AOPs relevant to a particular exposure.

Metabolomics and Human Exposure: The contribution of metabolomics extends
to assessing the biological impact of environmental exposure. By analyzing metabolite
profiles, scientists can gauge the influence of various xenobiotics, thus elucidating the
exposure contribution to diseases [35,77]. Metabolomics offers a panoramic view of how
endogenous metabolites interact with environmental toxins, a step closer to the exposome
concept, which represents the totality of human environmental exposures from conception
onwards [13]. Recently, the vision of a Human Exposome Project was developed [78,79]:
The “Future Directions Workshop—Advancing the Next Scientific Revolution in Toxicology”
sponsored by the Basic Research Office, Office of the Under Secretary of Defense for
Research and Engineering covers a wide range of topics related to toxicology, including the
concept of the Human Exposome. Based on the information available in the document, here
is a summary of the vision of a Human Exposome Project: The project envisions mapping
and quantifying the myriad of external factors, including chemicals, biological agents,
and lifestyle factors, alongside internal processes such as metabolism and inflammation.
The project’s goal is to integrate these diverse data sets to create a more holistic picture
of how environmental factors interact with genetic predispositions to influence health
and disease. At its core, the Human Exposome Project seeks to revolutionize the field
of toxicology by shifting the focus from individual toxicants to the complex interplay of
various environmental factors. This involves the use of advanced technologies such as
high-throughput screening, bioinformatics, and systems biology to analyze and interpret
large datasets. The project aims to provide insights into the mechanisms of disease, identify
new biomarkers for early disease detection, and inform risk assessment and preventive
strategies. It represents a paradigm shift in understanding human health and disease,
highlighting the importance of environmental factors in shaping health outcomes.

Role of Metabolomics in Toxicology: Beyond preclinical drug safety, metabolomics
has applications in mechanistic toxicology, forensic toxicology, and regulatory toxicology. It
is instrumental in drug development pipelines, complementing other “omics” technologies
like genomics and proteomics [36]. Its potential to generate high-throughput data makes it
valuable for large-scale toxicological screenings and in the formation of integrated testing
strategies (ITSs) [27].

Quality Assurance in Metabolomics: As metabolomics becomes increasingly inte-
grated into regulatory toxicological studies, there is a growing need for quality assurance
and standardized protocols. Efforts like Good Cell Culture Practice and Good Read-Across
Practice are laying the foundation for methodological harmonization [80,81]. Ensuring data
quality and comparability across different laboratories is essential for the credibility and
applicability of metabolomics data.

5. Future Trends in Metabolomics for Toxicology

Metabolomics is poised to transform the field of toxicology by providing unprece-
dented insights into the metabolic perturbations caused by toxicants. Advances in com-
putational tools, in vitro models, and personalized medicine will shape the trajectory of
metabolomics in toxicology research and regulatory applications. Key future trends include
the following (Figure 4):
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Artificial Intelligence in Metabolomics: The massive quantity and complexity of
metabolomics data necessitates advanced computational methods for data interpreta-
tion. Machine learning and artificial intelligence tools are rapidly emerging in toxicol-
ogy [82–84] and will glean meaningful biological insights from complex metabolomics
data sets. For example, deep learning neural networks can infer properties from simi-
lar compounds with test data [85] and integrate multi-omics data and predict toxicity
outcomes [86]. Maertens et al. (2017) demonstrated that certain machine learning algo-
rithms for metabolomic network analysis of estrogen-stimulated MCF-7 cells outperform
traditional over-representation analysis, quantitative enrichment analysis, and pathway
analysis [87]. Unsupervised clustering algorithms can uncover latent data structures to
classify toxicants by mechanism of action [88]. As metabolomics studies continue produc-
ing expansive, multi-dimensional data, artificial intelligence and big data analytics will
become integral to deriving value from metabolomics for toxicity risk assessments.

Integrating metabolomics with other ‘omics’ technologies: The combination with
omics such as genomics, proteomics, and transcriptomics offers a comprehensive and
holistic approach to understanding the biological impact of drugs [89,90]. This multi-omics
integration enables a deeper insight into the systemic effects of drug-induced changes,
providing a more complete picture of the molecular landscape. Metabolomics, which
focuses on the end products of cellular processes, can reveal the functional consequences
of genetic and protein alterations caused by drug exposure. By correlating metabolomic
data with genomic variations and protein expression patterns, researchers can identify
specific biomarkers and mechanistic pathways involved in drug toxicity and efficacy. This
integrative approach not only enhances the accuracy of preclinical drug safety assessments
but also paves the way for personalized medicine. It allows for the identification of individ-
ual susceptibility to drug-induced adverse effects based on a person’s unique molecular
profile, thereby improving drug safety and efficacy. Additionally, the combination of these
‘omics’ technologies fosters a more robust understanding of the interplay between different
biological layers, ultimately leading to more effective and safer therapeutic interventions.

Microphysiological Systems: Combining metabolomics with microphysiological
systems (MPSs) [91–93], such as organ-on-a-chip or 3D organoid models, offers more
physiologically relevant platforms for toxicology studies [94,95]. Metabolomics analysis of
lab-on-a-chip devices containing multiple connected microorganisms can provide system-
wide insights into compound effects [96]. Moreover, MPSs derived from stem cells allow
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toxicant screening against specific genotypes, enabling personalized toxicity evaluation [97].
Integrating metabolomics with advanced in vitro models will enhance the prediction of
compound toxicity in humans.

Personalized Toxicology: The emergence of precision medicine has kindled inter-
est in developing personalized toxicology approaches tailored to individual risk pro-
files. Metabolomics is poised to enable personalized toxicology by capturing individual
metabolic variability in response to drugs and toxicants [98]. For example, metabolomics
could identify vulnerable subpopulations at greater risk for adverse effects. Addition-
ally, baseline metabolomics profiles may one day guide more precise toxicological risk
assessments and interventions for individuals.

In conclusion, metabolomics is revolutionizing 21st-century toxicology through a sym-
biotic relationship with computational tools, microphysiological systems, and personalized
medicine. As these fields continue advancing, metabolomics will become an indispensable
pillar of modern toxicology, unlocking unprecedented insights into xenobiotic perturbations
and enabling more predictive, accurate and individualized safety assessments.
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