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Abstract: Black ginseng (BG) is processed ginseng traditionally made in Korea via the steaming
and drying of ginseng root through three or more cycles, leading to changes in its appearance due
to the Maillard reaction on its surface, resulting in a dark coloration. In this study, we explored
markers for differentiating processed ginseng by analyzing the chemical characteristics of BG. We
elucidated a new method for the structural identification of ginsenoside metabolites and described
the features of processed ginseng using UPLC-QTOF-MS in the positive ion mode. We confirmed
that maltose, glucose, and fructose, along with L-arginine, L-histidine, and L-lysine, were the key
compounds responsible for the changes in the external quality of BG. These compounds can serve
as important metabolic markers for distinguishing BG from conventionally processed ginseng. The
major characteristics of white ginseng, red ginseng, and BG can be distinguished based on their
high-polarity and low-polarity ginsenosides, and a precise method for the structural elucidation of
ginsenosides in the positive ion mode is presented.

Keywords: white ginseng; red ginseng; black ginseng; steaming process; metabolomics; Maillard
reaction; ginsenoside

1. Introduction

In South Korea, processed ginseng is represented by three main types: white ginseng
(WG), red ginseng (RG), and black ginseng (BG) [1,2]. WG is manufactured by drying
ginseng without undergoing a steaming process, and it is characterized by its bright color.
In contrast, RG is steamed once and then dried, resulting in a red color.

BG is traditionally made in South Korea by repeatedly steaming and drying ginseng
at least three times. During the repeated steaming process, the outer surface darkens due to
the Maillard reaction, giving it its characteristic dark color. Ginseng primarily contains over
30% starch and approximately 12% protein [3]. When ginseng is processed using steam,
it undergoes the Maillard reaction, leading to browning, which is attributed to reducing
sugars from starch and amino-carbonyl reactions from proteins [4,5].

The major component in BG, ginsenosides, is associated with various physiological
activities. Through the repeated steaming process, polar ginsenosides decrease. Conversely,
less polar ginsenosides gradually increase as a result of the repetitive steaming process.
The main reactions, including hydrolysis, dehydration, and isomerization reactions, occur
at C-20 of the ginsenosides. Hydrolysis primarily takes place at C-3 and C-6 [6].

BG contains minor ginsenosides such as G-Rg3, G-Rk1, and Rg5, which are not present
in unprocessed ginseng [7,8]. These components are associated with various physiological
functions, including anticancer, fat reduction, and anti-inflammatory effects [9–11].

Research on the active ingredients of BG is diverse and ongoing. However, there is
limited research on the transformation process from ginseng to BG. Additionally, while
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there have been numerous studies on ginseng and RG metabolism, research on BG is
lacking [12,13].

In this study, we aimed to explore the components that can determine the quality of
BG and elucidate their correlations. We describe the representative markers of BG through
a metabolomic approach to the major active ingredients.

2. Materials and Methods
2.1. Materials and Equipment

Ginseng used as the raw material to manufacture the BG samples was 5-year-old
ginseng harvested in November 2022. The harvested ginseng was used to process BG after
removing foreign substances using a ginseng washing machine. The dried BG was ground
using a grinder and sieved to a 100-mesh size for use as the sample.

The solvents used in this study included methanol (high-performance liquid chromatog-
raphy (HPLC)-grade, Duksan, Ansan-si, Republic of Korea), tertiary distilled water, acetoni-
trile (ACN, HPLC-grade, J.T Baker, Phila, PA, USA), ethanol (HPLC-grade, Duksan), hex-
ane (HPLC-grade, Duksan), and dichloromethane (HPLC-grade, Duksan). Benzo[a]pyrene
standards and internal standards were prepared by dissolving benzo[a]pyrene (98%, Sigma-
Aldrich Co., Darmstadt, Germany) and 3-methylcholine (100 ppm, Sigma-Aldrich Co.)
in ACN at a concentration of 1 µg/mL, followed by serial dilution. Free amino acid
17S standard mixtures (2.5 µmol/mL, Merck Co., Darmstadt, Germany) were used after
serial dilution in 0.1 N HCl (Merck Co., Germany). The free sugar standards included
glucose (99.9%, Sigma-Aldrich Co.), fructose (99%, Sigma-Aldrich Co.), maltose (99%,
Sigma-Aldrich Co.), xylose (99%, Sigma-Aldrich Co.), rhamnose (99%, Sigma-Aldrich Co.),
arabinose (99%, Sigma-Aldrich Co.), and sucrose (99.9%, Sigma-Aldrich Co.). They were
dissolved in distilled water to a concentration of 1 mg/mL, followed by serial dilution.

Analysis was performed by HPLC-refractive index detection (RID; Agilent, Santa
Clara, CA, USA), fluorometric detection (FLD; Agilent) using an Agilent 1200 series HPLC
system, liquid chromatography with tandem mass spectroscopy (LC-MS/MS) system
(QTRAP 4500, SCIEX, Pte, Ltd., Toronto, ON, Canada), a color difference meter (KONICA
MINOLTA SENSING, Inc., Tokyo, Japan), and ultrasonic extraction device (JEIO TECH,
UC-20, Co., Daejeon, Republic of Korea). For metabolite analysis, ultra-high-performance
liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS;
SCIEX, Pte, Ltd.), nitrogen concentrator (CHONGMIN TECH, Seoul, Republic of Korea),
and solid phase extraction (LABTECH, Namyangju-si Republic of Korea) were used.

2.2. Steam Processing and Appearance Observation

Ginseng was dried in a drying facility at 40 ◦C for 6 h to prevent cracking during
steaming, left at room temperature for 12 h, and then used to produce BG. The steaming
process is shown in

Lightness (L), redness (a), and yellowness (b) were quantified on the surface of the
ginseng sample using a colorimeter. Each manufactured sample was measured three times.

2.3. Sample Preparation
2.3.1. Benzo[a]pyrene

BAP and 3-methylcholinerene standards were each dissolved in ACN to a concentra-
tion of 1 µg/mL. Appropriate amounts of standard and internal standards were accurately
taken and diluted with ACN to prepare 3, 5, 10, 20, and 40 ng/mL of BAP and 50 ng/mL of
internal standard. Then, 5.0 g of each sample was precisely weighed. After adding 100 mL
of water, ultrasonic extraction was performed for 90 min. After adding 100 mL of hexane
and 1 mL of internal standard solution, the mixture was homogenized for 5 min, followed
by ultrasonic extraction for 30 min. The hexane layer was transferred to a separatory funnel.
After adding 50 mL of hexane to the water layer, the mixture was shaken twice, and the
hexane layer was taken and combined in the separatory funnel. After adding 50 mL of
water to the hexane layer and washing, the hexane layer was dehydrated, filtered using a
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filter paper containing sodium sulfate, and then concentrated under reduced pressure in a
water bath at 45 ◦C until about 2 mL of hexane remained. A Florisil cartridge was used after
10 mL of dichloromethane and 20 mL of hexane were sequentially activated by addition
at a rate of 2–3 drops per second. The extract was placed in an activation cartridge. Then,
20 mL of a mixture of hexane and dichloromethane (3:1) was eluted at a rate of 2–3 drops
per second. The eluted solution was concentrated under nitrogen gas in a water bath at
35 ◦C. The residue was dissolved in 1 mL of ACN and filtered through a membrane filter
of 0.20 µm or less to prepare the test solution [14]. Figure 1.
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2.3.2. Free Sugar

Each saccharide standard product (fructose, glucose, sucrose, maltose, arabinose, and
rhamnose) was dried for 12 h, dissolved in distilled water, mixed, and used to prepare
serial dilutions. For each test solution, 0.5 g of the homogenized sample was precisely
weighed. Then, 25 mL of 50% MeOH was added, refluxed at 85 ◦C, and cooled to room
temperature. In the case of turbidity, the supernatant was centrifuged for 10 min and then
filtered using a 0.45 µm filter to prepare the test solution [15].

2.3.3. Free Amino Acid

Herbert’s method was used for free amino acid preparation [16]. Briefly, 0.1 g of the
sample was taken into a Teflon capping test tube, 10 mL of 6 N hydrochloric acid was
added, nitrogen gas was blown, and the sample was hydrolyzed for 3 h in an autoclave at
121 ◦C. The hydrolysate was filtered through a 0.45 µm PTFE filter, and impurities were
removed using a C18 cartridge and then used as the sample solution.

2.3.4. Ginsenoside Metabolite

The sample (1 g) was placed in a 50 mL conical tube with 9 mL of 70% MeOH and
shaken. Ultrasonic extraction was performed for 30 min [17]. The extract was centrifuged
(4000 rpm, 10 min) and filtered through a 0.2 µm syringe filter. Afterward, an SPE cartridge
(C18, 2000 mg) was used, which was activated in order with 5 mL of methanol and 5 mL
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of water, loaded with 1 mL of the filtrate, and then washed with 5 mL of water. After
additional washing with 10 mL of methanol, the eluate was concentrated with nitrogen.
The concentrate was re-dissolved in 0.5 mL of each extraction solvent, filtered through a
0.2 µm syringe filter, and then injected into the device for analysis.

2.4. Analysis of BAP by HPLC-FLD

An Agilent 1200 series HPLC system equipped with an FLD detector and an Eclipse
Plus C18 column (4.6 × 150 mm, 3.5 µm) was used to analyze the BAP content. The
injection amount was 10 µL. The flow rate was set at 1.0 mL/min. The column temperature
was maintained at 30 ◦C. The excitation and fluorescence wavelengths were set at 294 and
404 nm, respectively, for the analysis. A gradient elution of solvent A (water) and solvent
B (ACN) was used as follows: 0–30 min, 30% A and 70% B; 30–31 min, 5% A and 95% B;
31–36 min, 5% A and 95% B; 36–37 min, 30% A and 70% B; 37–45 min, 30% A and 70% B.

2.5. Analysis of Free Sugar by HPLC-RID

An Agilent 1200 series HPLC system equipped with an RID detector was used to
analyze free sugar content. ZORBAX carbohydrate (4.6 × 250 mm, 5 µm) was used in the
column. The injection amount was 10 µL. The flow rate was 1.0 mL/min, and the column
temperature was 35 ◦C. The mobile phase was analyzed for 30 min using water (A) and
ACN (B) at a ratio of 75:25 (v:v).

2.6. Analysis of free Amino Acids by UPLC-MS/MS

A QTRAP 4500 series MS/MS system (SCIEX, USA) equipped with a UPLC (Agilent)
system and Intrada IMTAKT amino acid column (3.0 × 150 mm, 3.0 µm) was used to
analyze the amino acid content. The injection amount was 2 µL. The flow rate was set
at 0.3 mL/min. The column temperature was maintained at 40 ◦C. A gradient elution of
solvent A (water) and solvent B (ACN) was used as follows: 0–4 min, 20% A and 80% B;
4–14 min, 0% A and 100% B; 14–16 min, 0% A and 100% B; 16.1–20 min, 80% A and 20% B.

The MS analysis conditions used the positive ion mode. The curtain gas and collision
gas were set to 30 and 3, respectively. The ion spray voltage and ion source temperature
were set to 5500 and 550, respectively.

2.7. Analysis of Ginsenoside Metabolite by UPLC-QTOF-MS

An X500R series QTOF-MS system (SCIEX, Pte, Ltd.) equipped with a UPLC (Agilent)
system and CORETECS T3 column (2.1 × 150 mm, 1.6 µm, Waters, Milford, MA, USA) was
used to analyze ginsenoside metabolites. The injection amount was 1 µL. The flow rate was
set at 0.35 mL/min. The column temperature was maintained at 30 ◦C. A gradient elution
of solvent A (0.1% formic acid + water) and solvent B (0.1% formic acid + ACN) was used
as follows: 0–10 min, 85% A and 15% B; 10–40 min, 50% A and 50% B; 40–45 min, 50% A
and 50% B; 45–50 min, 30% A and 70% B; 50–60 min, 5% A and 95% B; 60–65 min, 85% A
and 15% B; 65–80 min, 85% A and 15% B.

QTOF-MS analysis was conducted in the TOF-MS mode with a mass range of
100–1500 m/z. The ion source gas and curtain gas were set to 50 and 30, respectively.
The ion source temperature was maintained at 500 ◦C. The declustering potential (DP) and
collision energy (CE) values were set to 50 and 15 V, respectively. The spray voltage and
CE spread were adjusted to 4500 and 10 V, respectively. The analysis was performed in the
positive mode.

2.8. Statistical Analysis

Statistical analysis was conducted using the SPSS 18 (SPSS Inc., Chicago, IL, USA)
program, and a one-way analysis of variance was performed to assess the significance
of differences among means (p < 0.01). Multiple range testing using Duncan’s method
was employed to compare significant differences. Multivariate analysis, including princi-
pal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA),
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was conducted using MarkerView 1.3.1 (AB Sciex, Pte, Ltd., Toronto, ON, Canada) and
MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/, accessed on 18 August 2020). For
visualization, the data were analyzed using a heatmap, and significance was determined at
the p < 0.05 level.

3. Results
3.1. Appearance Change Characteristics of BG

WG and RG were used as control groups to compare the external characteristics of BG.
The color difference values are as shown in Figure 2.
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The color difference measurement results indicated a decrease in brightness, repre-
sented by the ∆L value, and an increase in redness, represented by the ∆a value. Yellowness,
indicated by the ∆b value, decreased. Ginseng’s reducing sugars were reported to be de-
composed into 5-hydroxymethyl-2-furaldehyde (5-HMF) during BG production. Following
this, 5-HMF then combines with amino acids and proteins to generate melanoidins, the
final products of the Maillard reaction, thus promoting browning [18].

The results of free sugars that affect the change in appearance quality by BG processing
are shown in Table 1.

Table 1. Free sugar content by black ginseng steaming process.

Free Sugar
Steaming Times

2022 MWG 2022 MRG 2022 MBG

Rhamnose N.D N.D 87.42 ± 6.96
Xylose N.D N.D 20.38 ± 2.78 ****

Fructose 2.71 ± 0.25 2.81 ± 0.24 32.31 ± 2.65 ****
Glucose 3.06 ± 0.27 3.18 ± 0.34 19.16 ± 0.86 ****
Sucrose 147.05 ± 1.65 74.32 ± 1.89 **** 10.28 ± 0.56 ****
Maltose 82.43 ± 4.01 76.75 ± 7.45 10.74 ± 1.02 ****

The data are expressed as the mean ± SD (n = 3); **** p < 0.0001, compared to 2022 WG.

WG exhibits high levels of sucrose and maltose, indicating a state where no physic-
ochemical reactions have occurred due to the absence of the steaming process. When
processed into RG, sucrose decreased by approximately 50%, while fructose and glucose
levels remained unchanged. Since sucrose typically undergoes hydrolysis to fructose and
glucose, the observed lack of increase in sucrose levels in RG suggests its utilization in
browning reactions. In a study by Kim et al., it was reported that when sucrose was steamed
at 100 ◦C for more than 30 h, 95% of sucrose was hydrolyzed into glucose and fructose
and used for browning reaction [19]. Maltose was found to have the highest content in
WG and decreased by over 80% when processed into BG. Maltose is considered to be

https://www.metaboanalyst.ca/
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a disaccharide consisting of two glucose units that can be hydrolyzed into glucose and
subsequently utilized in browning reactions. Jee et al. has reported an increasing trend in
the presence of rhamnose and xylose in non-cellulosic carbohydrates under the influence
of organic acids and high-temperature conditions [20]. In our study, it is also presumed
that these sugars increase due to repeated maturation processes and the rise in organic
acids. Additionally, ginsenosides in ginseng contain various sugars, such as glucose, xylose,
arabinose, and rhamnose, attached to the non-reducing ends of saponin structures [21].
These sugars are known to be unstable under conditions of heat, acid, or alkali, resulting in
their decomposition. However, rhamnose and xylose are considered to have no impact on
the browning reactions in BG.

The free amino acid results are shown in Table 2.

Table 2. Free amino acid content by black ginseng steaming process (Unit: mg/g).

Free Amino Acid 2022-MWG 2022-MRG 2022-MBG

L-alanine 4.68 ± 0.19 5.19 ± 0.26 4.92 ± 0.26
L-Arginine 15.49 ± 0.37 16.71 ± 0.68 * 5.24 ± 0.12 ****

L-Aspartic acid 7.96 ± 0.51 7.81 ± 0.41 6.63 ± 0.30 *
L-Cystine 0.95 ± 0.04 0.94 ± 0.05 0.63 ± 0.02 ***

L-Glutamic acid 7.10 ± 0.05 4.68 ± 0.10 **** 4.76 ± 0.09 ****
Glycine 3.06 ± 0.15 3.05 ± 0.05 3.10 ± 0.25

L-Histidine 3.07 ± 0.04 3.05 ± 0.05 1.91 ± 0.02 ****
L-Isoleucine 4.84 ± 0.07 5.03 ± 0.13 4.78 ± 0.09
L-Leucine 2.33 ± 0.09 2.35 ± 0.11 2.23 ± 0.01
L-Lysine 4.23 ± 0.09 3.15 ± 0.08 **** 0.97 ± 0.01 ****

L-Methionine 0.68 ± 0.04 0.84 ± 0.06 * 0.86 ± 0.05 **
L-Phenylalanine 3.67 ± 0.04 3.82 ± 0.07 * 3.63 ± 0.03

L-Proline 2.97 ± 0.05 2.68 ± 0.03 *** 2.57 ± 0.05 ***
L-Serine 3.26 ± 0.13 3.35 ± 0.06 3.07 ± 0.06

L-Threonine 4.23 ± 0.09 4.25 ± 0.16 3.91 ± 0.08 *
L-Tyrosine 2.88 ± 0.09 2.99 ± 0.03 2.38 ± 0.09 ***

L-Valine 2.87 ± 0.04 2.83 ± 0.04 2.75 ± 0.04 *
The data are expressed as the mean ± SD (n = 3); * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, compared to
2022 WG.

When compared to the control groups, WG and RG, the major reduced amino acid
contents were identified in the following order: L-arginine, L-lysine, and L-histidine. In
previous studies by Do and others, the sugars that promoted ginseng browning reactions
were maltose, glucose, and fructose, following the same order [22]. This study yielded
ginseng amino acid results consistent with those studies, showing that arginine, histidine,
and lysine promoted browning reactions [22].

Free sugars can undergo dehydration and rearrangement reactions to generate 5-HMF
from hexoses [23]. Significantly, 5-HMF serves as an intermediate compound in the Mail-
lard reaction and acts as a precursor to melanoidins, which are the final products of this
reaction [18]. This conversion is notably promoted under acidic conditions and is primarily
observed in traditional herbal medicines like black ginseng. It is acknowledged as an an-
tioxidant compound that tends to increase with prolonged high temperature and repetitive
heat treatments [24].

Therefore, reducing sugars and reducing amino acids can be utilized as metabolic
markers to distinguish between BG, WG, and RG, and browning compounds, such as
melanoidins and 5-HMF, can also be used as markers.

3.2. Analysis of BG Ginsenoside Metabolites

In the metabolic analysis of ginseng species, mass spectral patterns, primarily negative
ions, have been emphasized as key for structural elucidation. Negative ion patterns offer the
advantage of high instrument sensitivity, allowing for detection even at low concentrations.
In positive ion patterns, hydrogen ions (H+, m/z 1.007), ammonium ions (NH4

+, 18.03 m/z),
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sodium ions (Na+, m/z 22.99), and potassium ions (K+, m/z 38.96) can be additionally
detected. This facilitates the straightforward differentiation of ginsenoside intact molecules
and the accurate confirmation of fragment ion patterns as sugars are removed. In this study,
a total of 79 ginsenosides were structurally elucidated, and their quantitative composition
was predicted based on ion intensity (Table 3).

Table 3. Identification of ginsenoside compounds by UPLC-QTOF-MS analysis in positive ion mode.

Peak No. tR
(min) Identified Compounds Molecular

Formula

Theoretical
Exact

Mass (Da)

Precursor Ion/or
Adduct Ions

Mean
Measured
Mass (Da)

Mass Error
(ppm)

1 9.65 Ginsenoside Re4 C47H80O18 933.5417 933.5417[M+H+],
955.5236[M+Na+] 955.52463 1

2 9.68 Notoginsenoside R3
isomer C48H82O19 962.5450 963.5523[M+H+],

985.5342[M+Na+] 985.53504 0.8

3 9.97 20-O-glucoginsenoside Rf C48H82O19 962.5450 985.5342[M+Na+] 985.5308 −3.5
4 10.52 Notoginsenoside R1 C48H80O18 932.5339 955.5236[M+Na+] 955.5202 −3.7
5 11.699 Ginsenoside Rg1 C42H72O14 800.4922 823.4814[M+Na+] 823.47802 −4.1

6 11.792 Ginsenoside Re C48H82O18 946.5501 947.5573[M+H+],
969.5393[M+Na+] 969.53561 −3.8

7 13.26 Malonyl-ginsenoside Rg1 C45H74O17 886.4926 887.4998[M+H+],
909.4818[M+Na+] 909.48202 0.2

8 14.292 Malonyl-ginsenoside Re C51H84O21 1032.5500 1033.5577[M+H+],
1055.5397[M+Na+] 1055.54048 0.7

9 14.62 Vinaginsenoside R8 C48H82O19 962.5445 963.55231[M+H+],
985.53425[M+Na+] 985.5356 1.4

10 16.85 Vinaginsenoside R4 C48H82O19 962.5445 963.55231[M+H+],
985.53425[M+Na+] 985.53597 1.7

11 17.6 Vinaginsenoside R1 C44H74O15 842.5022 843.51005[M+H+],
865.49199[M+Na+] 865.49287 1

12 18.349 Pseudoginsenoside F11 C42H72O14 800.4922 801.4994[M+H+],
823.4814[M+Na+] 823.47777 −4.4

13 18.384 Ginsenoside Rf C42H72O14 800.4922 801.4994[M+H+],
823.4775[M+Na+] 823.47753 −4.7

14 18.484 Pseudoginsenoside RT5 C36H62O10 654.4338 655.4415[M+H+],
677.4235[M+Na+] 677.42414 0.9

15 19.628 Notoginsenoside R2 C41H70O13 770.4816 771.48892[M+H],
793.47086[M+Na] 793.4676 −4.1

16 20.23 Notoginsenoside R4(s) C59H100O27 1240.6452 1241.6524[M+H+],
1263.6344[M+Na+] 1263.62963 −3.8

17 20.9 Ginsenoside Rg2(s) C42H72O13 770.4816 785.5045[M+H+],
807.4865[M+Na+] 807.48683 1.7

18 20.93 Ginsenoside Rh1(s) C36H62O9 784.4973 785.5045[M+H+],
807.4865[M+Na+] 807.48683 0.4

19 20.965 Ginsenoside Rg2(r) C42H72O13 638.4394 661.4286[M+Na+] 661.42859 0

20 21.34 Ginsenoside Rh1(r) C36H62O9 784.4973 785.5045[M+H+],
807.4865[M+Na+] 807.4868 0.4

21 21.67 Ginsenoside F3 C41H70O13 770.4816 771.4889[M+H+] 771.48649 −3.1

22 21.83 Ginsenoside F1 C36H62O9 638.4394 639.4466[M+H+],
661.4286[M+Na+] 661.4286 1.9

23 21.87 Ginsenoside Ra2 C58H98O26 638.4394 1211.6419[M+H+],
1233.6238[M+Na+] 1233.62517 1.8

24 21.98 Ginsenoside Ra3 C59H100O27 1210.6346 1241.6524[M+H+],
1263.6344[M+Na]+ 1263.63442 1.1

25 22.24 Ginsenoside F5 C41H70O13 1240.6452 771.48892[M+H],
793.47086[M+Na] 793.47221 1.7

26 22.32 Notoginsenoside R4(r) C59H100O27 1240.6452 1241.6524[M+H+],
1263.6344[M+Na+] 1263.63638 1.6

27 22.396 Ginsenoside Rb1 C54H92O23 1108.6029 1109.6102[M+H+],
1131.5921[M+Na+] 1131.5928 0.6

28 22.95 Malonyl Ginsenoside Ra3 C62H102O30 1326.6450 1327.6528[M+H+],
1349.6348[M+Na+] 1349.63545 0.5

29 23.13 Malonyl Ginsenoside Rb1 C57H94O26 1194.6033 1195.6106[M+H+],
1217.5925[M+Na+] 1217.59302 0.4

30 23.2 Ginsenoside Ro C48H76O19 1078.5924 1079.5996[M+H+],
1101.5816[M+Na+] 1101.5813 −0.3
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Table 3. Cont.

Peak No. tR
(min) Identified Compounds Molecular

Formula

Theoretical
Exact

Mass (Da)

Precursor Ion/or
Adduct Ions

Mean
Measured
Mass (Da)

Mass Error
(ppm)

31 23.3 Ginsenoside Rc C53H90O22 956.4981
957.5053[M+H+],

975.5397[M+H++NH4
+],

979.4873[M+Na+]
979.48822 0.9

32 23.468 Ginsenoside Ra1 C58H98O26 1210.6346 1211.6419[M+H+],
1233.6238[M+Na+] 1233.62397 0.1

33 23.985 Malonyl Ginsenoside
Ra2/ra1 C61H100O29 1296.6345 1297.6423[M+H+],

1319.6242[M+Na+] 1319.62522 0.7

34 24.122 Malonyl Ginsenoside Rc C56H92O25 1164.5928 1165.6000[M+H+],
1188.5898[M+H+Na+] 1188.58585 −3.3

35 24.345 Ginsenoside Rb2 C53H90O22 1078.5924 1079.5996[M+H+],
1101.5816[M+Na+] 1101.58222 0.6

36 24.515 Malonyl ginsenoside Rb1
isomer C57H94O26 1194.6028 1195.6106[M+H+],

1217.5925[M+Na+] 1217.59381 1

37 24.75 Pseudo ginsenoside RT1 C47H74O18 926.4870 927.49479[M+H+],
944.52134[M+NH4

+] 944.52255 1.3

38 24.752 Ginsenoside Rb3 C53H90O22 1078.5924 1079.5996[M+H+],
1101.5816[M+Na+] 1101.58357 1.8

39 24.968 Malonyl Ginsenoside Rb3 C56H92O25 1164.5922 1165.6000[M+H+],
1187.5819[M+Na+] 1187.582 0

40 25.072 Malonyl Ginsenoside Rb2 C56H92O25 1164.5928 1165.6000[M+H+],
1187.5819[M+Na+] 1187.58208 0.1

41 25.433 Malonyl Ginsenoside Rb3
isomer C56H92O25 1164.5922 1165.6000[M+H+],

1187.5819[M+Na+] 1187.582 0

42 26.372 Ginsenoside Rd C48H82O18 946.5501 947.5573[M+H+],
969.5393[M+Na+] 969.54125 2

43 26.616 Ginsenoside Rs1 C55H92O23 1120.6024 1121.6102[M+H+],
1143.5921[M+Na+] 1143.59365 1.3

44 27.07 Malonyl Ginsenoside Rd
isomer C51H84O21 1032.5505 1033.5577[M+H+],

1055.5397[M+Na+] 1055.5406 0.8

45 27.47 Malonyl Ginsenoside Rd C51H84O21 1032.5500 1033.5577[M+H+],
1055.5397[M+Na+] 1055.53985 0.1

46 27.607 Ginsenoside Rs2 C55H92O23 1120.6024 1121.6102[M+H+] 1121.60602 −3.7
47 28.359 Gypenoside XVII C48H82O18 946.5501 969.5393[M+Na+] 969.5398 0.5
48 29.48 Ginsenoside Ra7 C57H94O23 1146.6180 1147.6258[M+H+] 1169.60771 −0.1

49 29.712 Notoginsenoside Fe C47H80O17 916.5390 917.5468[M+H+],
939.5287[M+Na+] 939.51939 −10

50 30.486 Ginsenoside Rg6 C42H70O12 766.4867 767.4940[M+H+],
789.4759[M+Na+] 789.47806 2.7

51 30.498 Ginsenoside Ra8 C57H94O23 1146.6180 1147.6258[M+H+],
1169.6078[M+Na+] 1169.60795 0.1

52 30.695 Vinaginsenoside R16 C47H80O17 916.5390 917.5468[M+H+],
939.5287[M+Na+] 939.5298 1.1

53 31.17 Ginsenoside Rd2 C47H80O17 916.5390 917.54683[M+H+],
939.52877[M+Na] 939.53091 2.3

54 31.18 Ginsenoside Rg4 C42H70O12 766.4867 767.4940[M+H+],
789.4759[M+Na+] 789.47808 2.7

55 31.23 Gypenoside L C42H72O14 800.4922 801.4994[M+H+],
823.4814[M+Na+] 823.47816 −4

56 31.51 Ginsenoside Rk3 C36H60O8 620.4288 621.4361[M+H+],
643.4180[M+Na+] 643.41944 2.2

57 32.488 Ginsenoside Rh4 C36H60O8 620.4288 621.4361[M+H+],
643.4180[M+Na+] 643.42013 3.2

58 32.83 Vinaginsenoside R3 C48H82O17 930.5547 931.56248[M+H+],
953.54442[M+Na+] 953.54494 0.5

59 33.7 Ginsenoside F2 C42H72O13 784.4973 785.5045[M+H+],
807.4865[M+Na+] 807.4893 3.5

60 33.98 Ginsenoside Z-R1 C42H66O14 794.4447 812.47908[M+NH4
+],

817.43448[M+Na+] 812.48052 1.8

61 34.865 3-Acetyl-ginsenoside F1 C38H64O10 680.4494 681.45722[M+H+],
703.43917[M+Na+] 703.44024 1.5

62 36.068 Ginsenoside Rg3(s) C42H72O13 784.4973 785.5045[M+H+],
807.4865[M+Na+] 807.48781 1.6

63 36.749 Ginsenoside Rg3(r) C42H72O13 784.4973 785.5045[M+H+],
807.4865[M+Na+] 807.48771 1.5

64 37.115 Protopanaxatriol C30H52O4 476.3866 477.3938[M+H+],
499.3757[M+Na+] 499.37701 2.5
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Table 3. Cont.

Peak No. tR
(min) Identified Compounds Molecular

Formula

Theoretical
Exact

Mass (Da)

Precursor Ion/or
Adduct Ions

Mean
Measured
Mass (Da)

Mass Error
(ppm)

65 39.19 Ginsenoside MC C41H70O12 754.4867 755.4940[M+H+],
777.4759[M+Na+] 777.47753 2

66 40.061 Ginsenoside CY C41H70O12 754.4867 755.4940[M+H+],
777.4759[M+Na+] 777.47797 2.6

67 40.79 Ginsenoside Rs3 C44H74O14 826.5073 827.51513[M+H+],
849.49708[M+Na+] 849.49804 1.1

68 41.56 Ginsenoside Rs4 C44H72O13 808.4967 809.50457[M+H+],
831.48651[M+Na+] 809.50558 1.2

69 43.59 Ginsenoside Rk1 C42H70O12 766.4867 767.4940[M+H+],
789.4759[M+Na+] 789.47753 2

70 44.786 Ginsenoside Rg5 C42H70O12 766.4867 767.4940[M+H+],
789.4759[M+Na+] 789.47768 2.2

71 45.863 Ginsenoside CK C36H62O8 622.4445 623.4517[M+H+],
645.4336[M+Na+] 645.43508 2.2

72 47.211 Ginsenoside Rh2(s) C36H62O8 622.4445 623.4517[M+H+],
645.4336[M+Na+] 645.4345 1.3

73 47.798 Ginsenoside Rh2(r) C36H62O8 622.4445 623.4517[M+H+],
645.4336[M+Na+] 645.43508 2.2

74 48.11 Pseudo ginsenoside Rh2 C36H62O8 622.4439 623.45175[M+H]+,
645.43369[M+Na+] 645.43447 1.2

75 49.34 Ginsenoside Rs5 C44H72O13 808.4967 809.50457[M+H+],
831.48651[M+Na+] 831.48782 1.6

76 52.171 Ginsenoside Rk2 C36H60O7 604.4339 627.4231[M+Na+] 627.42291 −0.3
77 52.62 Ginsenoside Rh3 C36H60O7 604.4339 627.4231[M+Na+] 627.42329 0.3

78 56.123 Protopanaxadiol C30H52O3 460.3916 461.3989[M+H+],
483.3808[M+Na+] 483.3809 0.1

79 60.9 Ginsenoside Rs6/Rs7 C38H62O9 662.4388 663.4466[M+H+],
685.4286[M+Na+] 685.43639 11.4

The total ion chromatograms (TIC) of major ginsenosides found in WG, RG, and BG
are shown in Figure 3.
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The TIC of major ginsenosides observed in WG, RG, and BG are presented in the
following figure. In the case of WG, the more polar ginsenoside components are prominent
in the 0–20 min region, characterized by a higher proportion of solvent A (water). For RG,
polar ginsenosides decreased, while less polar ginsenosides became more prominent in
the 30–50 min range where solvent B (ACN) predominated. BG exhibited an increased
presence of less-polar ginsenoside components compared to RG.

The structural identification of ginsenosides in BG is shown in Figure 4.
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Glu: 180.0634 Da (C6H12O6).
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In the structural identification of ginsenoside, sodium ions and ammonium ions
showed a pattern that could identify the parent molecule. For example, the exact mass
parent molecule value of G-Rg1 (C42H72O14) was at m/z 800.4922. When a sodium ion
is attached to the parent molecule, the theoretical value is 823.4819, and the mass value
observed in this study was m/z 823.4827, which was an accurate structural identification
with a ppm error within 0.1. G-Rg1 has a structure with a total of two glucose, each attached
at C-6 and C-20. In conclusion, the pattern in which water molecules (H2O) were removed
and the pattern in which glucose was removed from the parent structure was confirmed.

The comparison of WG and BG used PCA (Principal Component Analysis) and
OPLS-DA (Orthogonal Partial Least Squares Discriminant Analysis) analysis to compare
metabolites. The results are shown in Figure 5.
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PCA is typically employed when all variable attributes are denoted as X, while PLS
and OPLS are used when the variable attributes are separated into X and Y. X is generally
designated as the variable controlling the process, and Y is utilized to specify the numerical
values representing the outcomes influenced by X [25].

The PCA values for PC1 and PC2 were 98.9% and 0.9%, respectively, signifying the
separation of metabolites between WG and BG. Subsequently, an OPLS-DA was conducted
based on the PCA results. Orthogonal T scores 1 and 2 represented 1.6% and 95.3%,
respectively, amounting to a total of 96.9%. This clearly indicates the segregation of
ginsenoside metabolites between WG and BG.
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In the context of the VIP score, a value of 1.0 or higher is commonly considered to
indicate an important variable, while a score of 0.8 or lower is not deemed significant [26].

The results of extracting ginsenoside metabolites with a VIP (Variable Importance in
Projection) score of 1.0 or higher from the OPLS-DA models for WG and BG, along with
variables showing a p-value of less than 0.01 in the T-test, are shown in Figure 6.
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According to the VIP score analysis, the major ginsenosides present in WG included
malonyl ginsenoside (MG) Rg1, MG-Rb1, MG-Rc, MG-Rd, ginsenoside(G) Rg1, G-Ra1, G-
Re, G-Ro, G-Rb1, notoginsenoside (NG) R1, NG-R2, and 20-O-glucoginsenoside Rf. These
compounds serve as discernible markers for differentiation. These results were visualized
using heatmap analysis.

RG and BG were compared using the same method, and the results are shown in Figure 7.
The PCA analysis yielded PC1 and PC2 values of 98.3% and 1%, respectively. This

result indicates the separation of metabolites between RG and BG. Subsequently, an OPLS-
DA analysis was performed based on the PCA results. Orthogonal T scores 1 and 2
showed values of 3.1% and 95.6%, respectively. In total, these values accounted for 98.7%,
confirming the differentiation of ginsenoside metabolites between RG and BG.

The results of extracting ginsenoside metabolites from the OPLS-DA model of RG and
BG for significant variables with a VIP score of 1.0 or more and p-values from the T-test of
less than 0.01 are shown in Figure 8.

A total of 98.7% separation was confirmed between RG and BG in terms of ginsenoside
metabolites. According to the VIP score analysis, the major ginsenoside metabolites in
RG included MG-Rb1, MG-Rb2, vina-ginsenoside R8, NG-R1, NG-R4, G-Rg1, G-Re, G-
Ra1, G-Ra2, G-Rb1, and G-Rd. In contrast, the ginsenoside metabolites distinguishing BG
from RG were gypenoside XVII, G-Rg5, G-Rs3, and G-Rk1, in that order. RG undergoes a
single steaming and drying process, leading to the partial hydrolysis of major ginsenosides.
Unlike BG, RG is steamed once and then dried, so some major ginsenosides are hydrolyzed.
However, malonyl ginsenoside was present in trace amounts.
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4. Discussion

BG is reported to contain significant amounts of 5-HMF and melanoidin components
due to the repeated steaming process. These compounds have been extensively documented
in numerous articles for their robust antioxidant properties and potential cancer-preventing
effects [27–29]. In this study, we discussed the formation of browning compounds through
the action of reducing sugars and reducing amino acids. We confirmed that maltose,
glucose, and fructose were the key substances in major browning reactions involving L-
arginine, L-histidine, and L-lysine. Phenolic compounds have been reported to increase
during the repetitive steaming process, with maltol playing a crucial role as the primary
antioxidant. This suggests that maltol can serve as a significant metabolic marker for
differentiating BG from conventional processed ginseng [30].

A precise structural elucidation method for BG’s ginsenoside metabolites in the posi-
tive ion mode was provided in this study. It allows for the accurate confirmation of adduct
ion patterns and the patterns of glycoside detachment in the saponin structures. The
major differentiating ginsenoside between WG and BG was malonyl ginsenoside. Malonyl
ginsenosides refer to acidic ginsenosides in which the carboxyl group of malonic acid is
esterified with neutral ginsenosides. Malonyl ginsenosides were reported to constitute
35–60% of the total ginsenoside content in unprocessed Korean ginseng [31].

The primary difference between RG and BG lies in the concentration of minor ginseno-
sides, primarily attributed to the number of steaming cycles. The structural characteristics
related to this are shown in Figure 9.
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Figure 9. Major ginsenoside structures during the black ginseng manufacturing process;
(A): Protopanaxadiol/Protopanaxatriol; (B): (E)-3β,6α,12β-trihydroxydammar-20(22),24-diene;
(C): 3β,6α,12β-trihydroxydammar-20(21),24-diene; G: Ginsenoside; M: malonyl; Glc: β-D-
Glucopyranosyl; Rha: α-L-Rhamnopyranosyl; Ara(fur): α-L-arabinofuranosyl; Ara(pyr): α-L-
arabinopyranosyl; Xyl: β-D-xylopyranosyl; Ac: acetyl.
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During the production of BG, protopanaxadiol (PPD)-type G-Rb1 and G-Rc undergo
hydrolysis reactions, leading to the removal of the glycosyl moiety at C-20, resulting in
their conversion to G-Rg3. Subsequently, G-Rg3 is further transformed into G-Rk1 and
G-Rg5 through hydrolysis. In the case of protopanaxatriol (PPT)-type saponins, G-Re loses
one glucose molecule at C-20, becoming G-Rg2, which further transforms into G-Rg4 and
G-Rg6 through additional hydrolysis. This repetitive steaming process leads to a significant
increase in the concentration of less polar ginsenosides. [32–34].

BG is rich in low-polarity ginsenosides compared to other processed ginseng types,
making it a promising candidate for future functional food applications.

5. Conclusions

This study confirmed that during the processing of BG, the major factors responsible
for the changes in its appearance are reducing sugars and reducing amino acids, which
serve as key precursors for the formation of browning compounds. These elements can
be utilized as significant metabolic markers to distinguish ginsenosides in ginseng species
and processed ginseng products.

A method for the structural elucidation of ginsenosides using UPLC-QTOF-MS in the
positive ion mode and the differentiation of ginsenoside metabolites was presented. This
represents a novel approach with the potential for application in various research fields.

BG is abundant in less polar ginsenosides, setting it apart from other processed ginseng
types. This characteristic enhances its potential value as a future functional food ingredient.
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