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Abstract: The development and implementation of safe natural alternatives to synthetic pesticides are
urgent needs that will provide ecological solutions for the control of plant diseases, bacteria, viruses,
nematodes, pests, and weeds to ensure the economic stability of farmers and food security, as well as
protection of the environment and human health. Unambiguously, production of botanical pesticides
will allow for the sustainable and efficient use of natural resources and finally decrease the use of
chemical inputs and burden. This is further underlined by the strict regulations on pesticide residues
in agricultural products and is in harmony with the Farm to Fork strategy, which aims to reduce
pesticide use by 50% by 2030. Thus, the present work aims to compile the scientific knowledge of the
last 5 years (2017–February 2023) regarding the Mediterranean plants that present biopesticidal effects.
The literature review revealed 40 families of Mediterranean plants with at least one species that have
been investigated as potential biopesticides. However, only six families had the highest number of
species, and they were reviewed comprehensively in this study. Following a systematic approach,
the extraction methods, chemical composition, biopesticidal activity, and commonly used assays for
evaluating the antimicrobial, pesticidal, repellant, and herbicidal activity of plant extracts, as well
as the toxicological and safety aspects of biopesticide formulation, are discussed in detail. Finally,
the aspects that have not yet been investigated or are under-investigated and future perspectives
are highlighted.

Keywords: biopesticides; plant extracts; essential oils; extraction methods; chemical composition;
antimicrobial activity; insecticidal activity; herbicidal activity; alternative agriculture

1. Introduction

Climate change and environmental degradation are severe threats worldwide, and
their consequences can cause serious impacts on our planet. Recognizing the importance
of these threats to humanity, on 11 December 2019, the EU Commission presented the
European Green Deal, which consists of a set of policy initiatives that aim to neutralize
climate by 2030 and render Europe the first climate-neutral continent by 2050 [1]. One
of these initiatives is the reduction of greenhouse gas emissions by at least 55% by 2030
compared to 1990 levels. To achieve 2030 climate targets, the EU Commission has also
adopted a set of strategies in various sectors such as transportation, industry, energy, and
agriculture [2].

Amongst them, the Farm to Fork strategy is characterized as the heart of the European
Green Deal and aims to accelerate the transition to a sustainable food system. The objective
of this strategy is to ensure food safety in an environmentally sustainable manner, simulta-
neously maximizing environmental, health, and social benefits. To accelerate the transition
to sustainable and healthy food systems, this strategy aims to reduce pesticide use by 50%
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by 2030 by applying low-input sustainable agriculture or simply alternative agriculture,
amongst others [2].

Pesticides are any substance or mixture of substances of chemical or biological ingre-
dients intended for repelling, destroying, or controlling any pest or for regulating plant
growth [3]. The term “pesticide” applies to insecticides, herbicides, fungicides, rodenticides,
molluscicides, wood preservatives, and various other substances used to control pests.
Pesticides also include plant growth regulators, defoliants, and desiccants. Their use has
increased 50% since 1950, and it is estimated that 2.5 million tons of industrial pesticides are
now used each year [4]. Moreover, global pesticide use is expected to show an increasing
trend in the future, and it is expected to reach a value of 4.5 million tons by 2030 [5,6].

Although pesticides have a principal role in crop production, intensive and improper
use of them can cause numerous detrimental effects on human health and the environment
and reduce the safety of agricultural products, which has raised major public and scientific
concern in the last few decades [7–9]. For humans, dermatological, gastrointestinal, neuro-
logical, carcinogenic, respiratory, reproductive, and endocrine effects are representative
adverse health effects that have been associated with pesticide exposure [10].

The human and environmental health risks that are associated with the use of chemical
pesticides, as well as the aims set by the Farm to Fork strategy, have led to an increasing de-
mand for the development of alternative eco-friendly pesticide formulations. Biopesticides
have long been recognized as attractive alternatives to synthetic chemical pesticides for
pest control because they present important properties, with their non-toxic nature being
the most significant [11–13].

Biopesticides aim to control plant-damaging pests, insects, and fungi and are gener-
ally categorized into three groups: (i) microbial biopesticides (containing microorgan-
isms like bacteria, fungi, viruses, and protozoan or entomopathogenic nematodes as
active ingredients that attack specific pest species), (ii) biochemical biopesticides (con-
taining naturally occurring substances that control pests via non-toxic mechanisms), and
(iii) plant-incorporated protectants (containing substances produced by plants from genetic
material that has been added to the plant) [11,12]. The practice of using plant deriva-
tives in agriculture has a long history of at least two and a half millennia, dating back to
ancient Greece and Rome [14]. Botanical pesticides are characterized by bioactive mix-
tures/extracts/compounds from plant materials that serve as insecticides and repellents
but also as bactericides, fungicides, herbicides, and nematicides [15]. In general, botanical
pesticides contain numerous compounds that can be volatile and belong to different chemi-
cal groups such as aldehydes, ketones, alcohols, heterocycles, ethers or oxides, phenols,
esters, amines, amides, flavonoids, and terpenes, amongst others. All of these compounds
are produced as secondary metabolites and can present activities against pests, insects,
and pathogenic fungi. Representative examples are the well-documented antimicrobial
and antioxidant properties that present various terpenoids and phenolic compounds [13].
However, few biopesticide formulations have been commercialized up to now. The main
limitations concern their reduced storage stability and sensitivity to environmental condi-
tions, as well as the high production cost, which should be overcome in the near future. In
this direction, the improvement of the formulation to increase and maintain the activity of
biopesticides could be a solution [13]. Moreover, the use of widely available plants as raw
materials can also contribute to overcoming the existing limitations.

As plant-based natural pesticides have gained considerable attention in the few last
years and development of them is still a growing trend, there is an urgent need to compile
the current scientific knowledge about plants presenting biopesticidal effects, especially for
the countries where the source plants are readily available and where conventional formula-
tions comprising synthetic pesticides are both expensive and dangerous to humans and the
environment. Being aware of the above, numerous researchers have focused on the evalua-
tion of extracts and essential oils with biopesticidal properties from plants of Mediterranean
countries. Therefore, this study provides an overview of the current research on botanical
pesticides native to Mediterranean countries for the period of 2017–February 2023.
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Based on the overview, the extraction methods, chemical composition, biopesticide
activity, and commonly used assays for evaluating the antimicrobial, pesticidal, repellant,
and herbicidal activity of plant extracts are discussed. Special attention is also devoted to
toxicological and safety aspects that should be considered before the commercialization
of biopesticide formulations. Finally, the gaps in the literature that should be investigated
and future perspectives are highlighted.

2. Mediterranean Plants That Have Been Recently Investigated for Biopesticidal Activity

The literature review between 2017 and February 2023 revealed 40 families with at
least one species of scientific interest as potential biopesticides (Table 1). Among them,
six families had the highest number of species and are presented in detail below. It is
worth mentioning the existence of other families like Meliaceae and Rutaceae, which
are of great scientific interest, but as scientific articles focused on these species native to
Mediterranean countries were not published in the examined period, these families are
not analyzed below. The biological activity of the species (and generally of the families)
is determined by the chemical composition of the secondary metabolites. According to
Pichersky and Gang [16], secondary metabolites are compounds whose biosynthesis is
restricted to selected plant groups and serve specific needs of the plant (e.g., insect attraction,
resistance to salt or drought).

2.1. Lamiaceae

Lamiaceae (or Labiatae) is a family of plants composed of 7530 species [17] (trees,
shrubs, subshrubs, and herbs) that are characterized by annual or perennial carriage [18,19].
It can be found all over the planet and has several species of aromatic plants that are used
in medicine, in the pharmaceutical and food industries [20], and as ornamental plants.
The most interesting species, with several biological applications, belong to the genera
Thymus (e.g., Thymus vulgaris), Origanum (e.g., Origanum vulgare), Salvia (e.g., Salvia ros-
marinus) and common garden sage (e.g., Salvia officinalis), Melissa (e.g., Melissa officinalis),
Levandula (e.g., Lavandula angustifolia), Mentha (e.g., Mentha spicata), and Ocimum (e.g., Oci-
mum basilicum) [21]. Essential oils of these species have been reported to possess strong
insecticidal, acaricidal, fungicidal, and herbicidal activity, in addition to other biological
activity such as antioxidant, antitumor, anti-inflammatory, antiviral, analgesic, antitussive,
antiasthmatic, and antimicrobial activitiy [22–24].

All of this activity is determined by the chemical composition of the essential oils. In
general, the species of Lamiaceae produce large amounts of secondary metabolites and,
based on the volatility of the compounds, they can be distinguished into two groups:

• Species that mainly produce volatile terpenoids in their essential oils;
• Species that mainly produce nonvolatile metabolites and poor essential oils [19].

According to Table 1, Lamiaceae species are especially rich in monoterpenes and
sesquiterpenes, as they were found to be frequent constituents of Lamiaceae essential
oils. More specifically, the essential oils are characterized by large quantities of some
well-known compounds, like carvacrol (Origanum, Satureja, and Thymus species), camphor
(Lavandula species and S. rosmarinus), menthol (Mentha species), and thymol (Origanum
and Thymus species), that can present biological activities individually or synergistically
with other compounds [25,26]. In general, the chemical composition of essential oils is
affected by several factors, such as species, seasonality, plant age, and geographic location,
as well as the extraction method [27]. For example, the composition of the essential oil of
Thymus vulgaris varies both qualitatively and quantitively among plants collected from
different geographical locations (Spain, Serbia, and Tunisia) and was investigated by
Valcárcel et al. [28], Sarić-Krsmanović et al. [29], and Ben Jabeur et al. [30].

2.2. Asteraceae

Asteraceae (or Compositae) is the largest family of plants in the Angiosperms [31]. It
is represented by more than 24,000 described species, which constitute 10% of all flowering



Metabolites 2023, 13, 967 4 of 40

species [32] and are characterized by annual or perennial carriage. Most of the species
are herbaceous, and only a small number are shrubs and trees [33]. It includes crops
with nutritional (lettuce, artichoke, chicory), medicinal (echinacea and chamomile), and
ornamental value (chrysanthemum, dahlia, zinnia, gerbera, and others). The family is
distributed all over the world, except in Antarctica [34]. The species of the Asteraceae
family have pharmaceutical applications, as they possess antioxidant, anti-inflammatory,
antimicrobial, diuretic, and wound-healing properties [35]. In addition, insecticidal [36] and
fungicidal activity [37] has also been reported for their essential oils. The above activities are
attributed to their phytochemical profile, which consists of terpenoids, lignans, saponins,
polyphenolic compounds, phenolic acids, sterols, and polysaccharides [38]. Terpenoids and
especially monoterpenes and sesquiterpenes are abundant [39]. Monoterpenes have been
reported to act as AChE inhibitors in various insects [40], whereas sesquiterpene lactones
have been characterized as constituents with great biological value [41].

2.3. Apiaceae

Apiaceae (or Umbelliferae) is a family of mostly aromatic annual, biennial, or perennial
herbs and less often shrubs or trees. It consists of 442 genera and 3575 species and has a
worldwide distribution mostly in the northern temperate regions and high altitudes in the
tropics [42]. The family includes crops with nutritional, medicinal, and industrial use. They
also can be used as beverages, spices, cosmetics, and fragrances [43]. The essential oils of
many species have been exploited successfully for insecticidal activity [44], fungicidal [45],
and herbicidal activity [46]. This activity is correlated with their chemical composition,
which consists of more than 760 different constituents [47,48]. Monoterpenes, phthalides,
terpenoids, phenylpropanoids (coumarins and phenylpropenes), and polyacetylenes are
commonly found in Apiaceae plants [49].

2.4. Cistaceae

The Cistaceae family consists of 8 genera and 180 species (shrubs and herbs) dis-
tributed in temperate and subtropical regions of the northern hemisphere, especially the
western Mediterranean region [50]. Five of the eight genera (Cistus, Fumana, Halimium,
Helianthemum, and Tuberaria) are native to this region, whereas the remaining three (Crocan-
themum, Hudsonia, and Lechea) are native to temperate regions in the Americas [51]. The
phytochemical profile of the Cistus species and especially the high amounts of polyphenolic
compounds (especially catechins) provide them with the ability to withstand extreme condi-
tions [52]. The Cistaceae family also has a long history in medicine due to its pharmaceutical
value (anti-inflammatory, antiulcerogenic, wound-healing, and antimicrobial properties).
The main compounds of Cistus essential oils are monoterpenes (pinene, borneol, camphor,
and carvacrol), sesquiterpenes (viridiflorol and zingiberene) and diterpenes (manoyl oxide
and abietatriene) [53]. Species of the family have been examined successfully against the
Geotrichum candidum var. citri-aurantii fungus in citrus [54].

2.5. Cupressaceae

The Cupressaceae family is a family of resinous, monoecious, and dioecious shrubs
and trees (125 species) with a worldwide distribution [55]. The species present anti-
inflammatory, anticancer, antimicrobial, insecticidal, and antifungal activity [24,56]. They
mainly contain terpenes (monoterpenes and sesquiterpenes), alkaloids (piperidines), and
polyphenols (phenolic acids, flavonoids, proanthocyanidins, lignans, acetophenones, and
stilbenes). The species have an important role in drug development, and their phytochem-
icals can be used as a natural source for future drugs [57]. They also present significant
repellent and insecticidal activity against various pests [58,59] and pathogens [60]. Juniper
essential oils also showed promising results in weed control [61].
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2.6. Brassicacae

The Brassicaceae family includes many economically important species that are culti-
vated for human food, animal feed, edible oil, and biofuel. A great number of weeds also
belong to this family [62]. It consists of 3709 species and has a worldwide distribution,
except in Antarctica [63]. The species contains a variety of secondary metabolites, and
based on literature data, the the organosulphur compounds (glucosinolates), phenolic
acids and flavonoids were found to be the most significant [64]. In particular, glucosinates
provide benefits to human health by reducing risk for degenerative diseases but also in
plant health by inducing resistance to insects and pathogens [65]. Morra et al. [66] and
Konecka et al. [67] demonstrated the herbicidal and insecticidal activity of seed meal and
oil, respectively, from Sinapis alba L.

Table 1. Overview of extraction methods and isolated compounds of Mediterranean plant species.

Family/Plant Species Extraction Methods * Major Isolated Compounds References

Acanthaceae

Acanthus dioscoridis L. m n.a. ** [44]

Amaranthaceae

Achyranthes aspera L. se Flavonoids; saponins; tannins; steroids; cardiac
glycosides; alkaloids; anthrequinones; terpenoids [68]

Anacardiaceae se

Pistacia atlantica Desf. h

EO leaves: terpinen-4-ol; (p)-cymene; α-pinene;
spathulenol EO fruits: terpinen-4-ol; sabinene;

α-pinene. EO bark: α-pinene; myrtenol; verbenol
(rans-); β-pinene

[69]

Pistacia atlantica Desf. h [70]

Pistacia khinjuk Stocks. h Fruit oil: b-pinene; sabinene; leaf oil: spathulenol;
b-pinene [70]

Pistacia lentiscus L. se n.a. [71]

Apiaceae

Anethum graveolens L. h L-phellandrene; carvone; limonene [72]

Bifora radians M. Bieb. m n.a. [44]

Carum carvi L. h Carvone; D-limonene; α-myrcene; dihydrocarvone [73]

Carum carvi L. p Limonene; carvone [46]

Carum carvi L. m, sub (+) Carvone; d-limonene [45]

Coriandrum sativum L. m n.a.

Crithmum maritimum L. h Dill apiole; γ-terpinene; carvacrol methyl ether [74]

Crithmum maritimum L. h
Dillapiole; γ-terpinene (French EO), limonene;
γ-terpinene (central Italy EO); thymol methyl

ether; γ-terpinene (Sicilian EO)
[75]

Cuminum cyminum L. h α-Pinene; o-cymene; cuminaldehyde; ç-terpinene [73]

Cuminum cyminum L. p Cuminic acid [76]

Daucus carota L. h α-Pinene; β-pinene; borneol; myrcene [77]

Daucus lopadusanus Tineo m n.a. [78]

Foeniculum vulgare Mill. h Anethole [79]

Foeniculum vulgare Mill. h α-Pinene; anethole; D-limonene; L-fenchone [73]

Foeniculum vulgare Mill. p Trans-anethole; limonene; fenchone [80]
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Table 1. Cont.

Family/Plant Species Extraction Methods * Major Isolated Compounds References

Helosciadium nodiflorum (L.)
W.D.J. Koch h Myristicin; (Z)-β-ocimene [81]

Heracleum sphondylium L. h Octyl acetate; octyl butyrate; octyl hexanoate [74]

Pimpinella anisum L. h Anethole; D-limonene; estragole; o-cymene [73]

Pimpinella anisum L. p Transanethole [80]

Pimpinella anisum L. h (E)-anethole; methyl chavicol [74]

Smyrnium olusatrum L. h Curzerene; iso-furanodiene;
furanoeremophil-1-one; germacrone; myrcene [81]

Apocynaceae

Calotropis procera (Aiton)
W.T. Aiton se n.a. [82]

Nerium oleander L. m n.a. [83]

Nerium oleander L. se n.a. [83]

Asclepiadaceae

Periploca angustifolia Labill. m n.a. [78]

Asphodelaceae n.a.

Asphodelus ramosus L.
subsp. ramosus m, ultra n.a. [58]

Asteraceae [71]

Achillea millefolium L. h Chamazulene; 1,8-cineole [36]

Achillea millefolium L. m n.a. [44]

Achillea millefolium L. m, sub n.a. [45]

Achillea ptarmica L. m n.a. [84]

Achillea millefolium L. m n.a. [84]

Anthemis deserti Boiss. m n.a. [85]

Arctium lappa L. m n.a. [84]

Artemisia inculta Delile h Camphor (19); 1,8-cineole (12); p-cymeneborneol [28]

Artemisia absinthium L. h Sabinene (23.8%); β-myrcene (15.5%) [36]

Bidens tripartite L. m n.a. [84]

Carduus acanthoides L. m n.a. [84]

Carduus nutans subsp. leiophyllus
(Petrović) Stoj. & Stef. m n.a. [84]

Centaurea cyanus L. m n.a. [84]

Centaurea jacea L. m n.a. [84]

Centaurea scabiosa L. m n.a. [84]

Cirsium arvense (L.) Scop. m n.a. [84]

Cynara cardunculus L. var.
altilis DC. m Caffeoylquinic acids; apigenin; luteolins;

lactone cynaropicrin [86]

Dittrichia viscosa (L.) Greuter m α-Costic acid; inuloxin A [87]

Dittrichia viscosa (L.) Greuter n.a. ** α-Costic acid; inuloxin A; inuloxin C [88]

Echinops ritro L. var. tenuifolius m n.a. [84]

Echinops spinosissimus Turra m n.a. [78]
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Table 1. Cont.

Family/Plant Species Extraction Methods * Major Isolated Compounds References

Gnaphalium uliginosum L. m n.a. [84]

Glebionis coronaria (L.) Spach se Camphor [89]

Leontodon hispidus L. m n.a. [84]

Pentanema britannica (L.) D. Gut.
Larr., Santos-Vicente, Anderb., E.

Rico & M.M. Mart. Ort.
m n.a. [84]

Pulicaria crispa (Forssk.) Oliv. m n.a. [90]

Santolina chamaecyparissus L. h Artemisia ketone; β-phellandrene; vulgarone B;
β-myrcene [36]

Santolina chamaecyparissus L. h 1,8-Cineole; 8-methylene-3-oxatricyclo
[5.2.0.02,4] nonane [91]

Silybum marianum (L.) Gaertn. m n.a. [84]

Sonchus arvensis L. m n.a. [84]

Tanacetum vulgare L. m n.a. [92]

Tanacetum vulgare L. h α-Thujone; 1,8-cineole [36]

Taraxacum officinale F.H. Wigg.
subsp. officinale m, sub n.a. [45]

Tripleurospermum inodorum (L.)
Sch. Bip. m n.a. [84]

Solidago virgaurea L. h Pentadecanol; germacrene D [29]

Boraginaceae

Glandora prostrata (Loisel.)
D.C.Thomas se n.a. [93]

Onosma visianii Clementi se Isobutylshikonin; isovalerylshikonin [94]

Brassicaceae

Brassica rapa L. se n.a. [71]

Diplotaxis erucoides (L.) DC. se n.a. [71]

Diplotaxis virgata (Cav.) DC. se n.a. [71]

Hirschfeldia incana (L.) Lagr.-Foss. se n.a. [71]

Sinapis alba L. m n.a. [66]

Cannabaceae

Humulus lupulus L. m, sub n.a. [45]

Humulus lupulus L. m α-Humulene; myrcene; trans-caryophyllene [95]

Caryophyllaceae

Saponaria officinalis L. m n.a. [96]

Chenopodiaceae

Atriplex halimus L. m n.a. [78]

Chenopodium murale (L.) S.
Fuentes & al. se Flavonoids; saponins; tannins; steroids; cardiac

glycosides; alkaloids; anthrequinones; terpenoids [68]

Cistaceae

Cistus albidus L. se n.a. [71]

Cistus albidus L. m n.a. [54]
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Table 1. Cont.

Family/Plant Species Extraction Methods * Major Isolated Compounds References

Cistus criticus L. m n.a. [54]

Cistus crispus L. m n.a. [54]

Cistus ladanifer L. se n.a. [71]

Cistus ladanifer L. m n.a. [54]

Cistus laurifolius L. se n.a. [71]

Cistus laurifolius L. m n.a. [54]

Cistus monspeliensis L. m n.a. [54]

Cistus populifolius L. m n.a. [54]

Cistus salviifolius L. m n.a. [54]

Convolvulaceae

Convolvulus arvensis L. se Flavonoids; saponins; tannins; steroids; cardiac
glycosides; alkaloids; anthrequinones; terpenoids [68]

Cupressaceae

Juniperus communis L. h α-Pinene; sabinene; β-myrcene; limonene;
terpinen-4-ol; germacrene D; δ-cadinene [59]

Juniperus communis L. p α-Pinene; myrcene [60]

Juniperus communis L. n.a. α-Pinene; sabinene; limonene [97]

Juniperus communis var.
saxatilis Pall. h α-Pinene; sabinene; b-pinene; terpinen-4-ol;

β-elemene [59]

Juniperus excelsa M. Bieb. h α-Cedrol; α-limonene; α-pinene [61]

Juniperus oxycedrus L. h α-Pinene; limonene; β-caryophyllene [59]

Juniperus phoenicea L. m, ultra n.a. [58]

Juniperus sabina L. h Sabinene [61]

Dennstaedtiaceae

Pteridium αquilinum (L.) Kuhn m Linolenic acid; phytol; palmitic acid; stearic
acid; citronellol [98]

Eqoisetaceae

Equisetum αrvense L. m, sub n.a. [45]

Fabaceae

Cassia senna L. m n.a. [85]

Retama raetam (Forssk.) Webb m Alpinumisoflavone; hydroxyalpinumisoflavone;
laburnetin; licoflavone C; retamasin B; ephedroidin [99]

Sophora alopecuroides L. m Alcaloids [100]

Ulex europaeus L. se n.a. [93]

Hypericaceae

Hypericum aegypticum L. m n.a. [78]

Hypericum perforatum L. m, sub n.a. [45]

Juncaceae

Juncus compressus Jacq. p Effusol; juncusol [101]

Lamiaceae
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Table 1. Cont.

Family/Plant Species Extraction Methods * Major Isolated Compounds References

Calamintha menthifolia Host m
Gallic acid; caffeic acid; 2-hidroxy-cinnamic acid;

kaempferol; callistephin chloride; p-coumaric acid;
idaenin chloride; (+)-catechin hydrate

[102]

Hyssopus officinalis L. h Cis-pinocamphone; b-phellandrene; b-pinene [60]

Hyssopus officinalis L. h 1,8-Cineole; b-pinene [91]

Lavandula intermedia Emeric
ex Loisel. h Linalyl acetate; linalool [91]

Lavandula angustifolia Mill. h Linalyl acetate; linalool; geranyl acetate; terpineol [28]

Lavandula angustifolia Mill. h Linalool; coumarin; α-terpineol; caryophyllene
oxide; coumarin [103]

Lavandula angustifolia Mill. m, sub n.a. [45]

Lavandula dentata L. h Eucalyptol; fenchone; camphor [104]

Lavandula angustifolia Mill. n.a. β-phellandrene; 1,8-cineole;
terpinen-4-ol; caryophyllene [97]

Lavandula canariensis Mill. m n.a. [105]

Melissa officinalis L. h Geranial; neral; citronellal [29]

Mentha piperita L. m n.a. [106]

Mentha piperita L. h Menthone; menthol; limonene [28]

Mentha piperita L. h Menthol; menthone [46]

Mentha piperita L. m, sub n.a. [45]

Mentha piperita L. n.a. Menthofuran; menthol [97]

Mentha spicata L. h Carvone; 1,8-cineole; menthol [28]

Mentha spicata L. m n.a. [107]

Mentha suaveolens Ehrh. h Piperitenone oxide; bornel [69]

Mentha suaveolens Ehrh. h Piperitenone oxide; piperitenone; limonene;
D-germacrone; t-caryophyllene [28]

Mentha suaveolens Ehrh. m, ultra n.a. [58]

Mentha x verticillata L. se n.a. [71]

Mentha viridis (L.) L. m n.a. [85]

Nepeta cataria L. h n.a. [108]

Nepeta curviflora Webb & Berthel. h

2-Isopropyl-5-methyl-3-cyclohexen-1-one;
(-)-spathulenol; cis-Z-α-bisabolene epoxide;

widdrol; (E,Z)-5,7-dodecadiene;
dihydronepetalactone; 4-propyl-cyclohexene

[109]

Nepeta nuda L. subsp. pubescens h

Pinene; 1-ethyl-1H-pyrrole;
1-cycloethyl-1-(2-methylenecyclohexyl ethanol;

3-methyl-2-cyclohexen-1-one;
2,3-dimethyl-3-hexanol

[109]

Origanum elongatum (Bonnet)
Emb. & Maire h Carvacrol; p-cymene; g-terpinene [110]

Origanum majorana L. h n.a. [108]

Origanum syriacum L. subsp.
syriacum h Carvacrol [25]
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Table 1. Cont.

Family/Plant Species Extraction Methods * Major Isolated Compounds References

Origanum virens Hoffmanns.
& Link h p-Cymene; carvacrol; linalool; a-terpinene;

myrcene; b-caryophyllene [28]

Origanum vulgare L. h [108]

Origanum vulgare L. h Terpinene; cis-p-menth-2-en-1-ol; terpinen-4-ol;
thymol; α-terpinene [111]

Origanum vulgare L. se n.a. [71]

Phlomis tuberosa L. m n.a. [44]

Prasium majus L. M n.a. [78]

Rosmarinus officinalis L. h Verbenone, a-pinene [112]

Rosmarinus officinalis L. h Camphor; 1,8-cineole; a-pinene; endoborneol;
camphene; verbenone [28]

Rosmarinus officinalis L. h Camphor; verbenone; eucalyptol (1,8-cineole) [103]

Rosmarinus officinalis L. n.a. α-Pinene; linalool; piperitone [97]

Rosmarinus officinalis L. m n.a. [106]

Rosmarinus officinalis L. m, sub n.a. [45]

Salvia officinalis L. m n.a. [90]

Salvia officinalis L. h Thujone (trans); camphor; cineole,1,8 [110]

Salvia officinalis L. h Cis-thujone; camphor; viridiflorol; 1,8-cineole;
trans-thujone; camphene; manool [29]

Salvia officinalis L. h Camphor; thujone; isothujone [103]

Satureja hortensis L. h Carvacrol; gamma-terpinene; paracymene [72]

Satureja hortensis L. h Carvacrol; o-cymene; γ-terpinene; thymol [113]

Satureja hortensis L. m, sub n.a. [45]

Satureja montana L. h Carvacrol; p-cymene; borneol; thymoquinone;
1-octen-3-ol [28]

Satureja montana L. h Carvacrol, followed by its precursor p-cymene [114]

Thymus leucotrichus Halácsy h Thymol; p-cymene; g-terpinene; carvacrol [28]

Thymus leucotrichus Halácsy h o-Cymene; α-pinene; ç-terpinene; camphene [73]

Thymus leucotrichus Halácsy h p-Cymene; geraniol; thymol; carvacrol [29]

Thymus leucotrichus Halácsy p Thymol; p-cymene; linalool; caryophyllene oxide [26]

Thymus leucotrichus Halácsy h Thymol; p-cymene; γ-terpinene; caryophyllene
oxide [30]

Thymus leucotrichus Halácsy h Thymol; p-cymene; γ-terpinene [60]

Thymus leucotrichus Halácsy se n.a. [71]

Thymus leucotrichus Halácsy m, sub Thymol; p-cymene; carvacrol; γ-terpinene [45]

Thymus atticus Čelak. h Carvacrol; o-cymene [110]

Thymus atticus Čelak. h Thymol; p-cymene; g-terpinene; carvacrol [28]

Ziziphora clinopodioides Lam. h Pulegone; piperitenone; isomenthone [115]

Lauraceae

Laurus nobilis L. sfe n.a. [116]

Laurus nobilis L. se n.a. [71]
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Table 1. Cont.

Family/Plant Species Extraction Methods * Major Isolated Compounds References

Myrtaceae

Myrtus communis L. h α-Pinene; 1,8-cineole [79]

Oleaceae

Olea europaea cv. Lechín de Sevilla se n.a. [71]

Olea europea cv. Arbequina se n.a. [71]

Olea europea cv. Cornicabra se n.a. [71]

Olea europea cv. Empeltre se n.a. [71]

Olea europea cv. Erantoio se n.a. [71]

Olea europea cv. Picual se n.a. [71]

Papaveraceae

Glaucium flavum Crantz m n.a. [78]

Poaceae

Echinochloa crus-galli (L.) P. Beauv. m Loliolide; tricin [117]

Elytrigia repens (L.) Nevski m, sub n.a. [45]

Polygonaceae

Polygonum aviculare L. m, sub n.a. [45]

Polygonum bistorta (L.) Samp. m, sub n.a. [45]

Pinaceae

Cedrus atlantica (Endl.) Carrière n.a. α-Pinene; himachalane; β-himachalene [97]

Picea abies (L.) H. Karst. n.a. Limonene; bornyl acetate; δ-cadinene; α-muurolol;
δ-cadinol [97]

Pinus pinea L. se n.a. [71]

Plantaginaceae

Plantago albicans L. m n.a. [85]

Poaceae

Echinochloa crus-galli (L.) P. Beauv. m Loliolide and tricin [117]

Punicaceae

Punica granatum L. se n.a. [93]

Rosaceae

Prunus dulcis (Mill.) D.A. Webb n.a. Fatty acids [97]

Ranunculaceae

Nigella sativa L. m, sub n.a. [45]

Rutaceae

Ruta chalepensis L. m n.a. [105]

Ruta chalepensis L. n.a. [118]

Ruta graveolens L. se n.a. [93]

Salicaceae

Populus nigra L. m Alkanes; sterols; aliphatic and triterpenoic
alcohols; acidic compounds [119]

Populus tremula L. m n.a. [120]
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Table 1. Cont.

Family/Plant Species Extraction Methods * Major Isolated Compounds References

Solanaceae

Hyoscyamus niger L. m Vanillic acid [121]

Solanum villosum Mill. m n.a. [85]

Urticaceae

Urtica dioica L. m n.a. [122]

Urtica dioica L. m, sub n.a. [45]

Urtica sp. se n.a. [71]

Verbenaceae

Lantana camara L. m n.a. [118]

Zygophyllaceae

Tribulus terrestris L. m Flavonoids; saponins; tannins; steroids; cardiac
glycosides; alkaloids; anthrequinones; terpenoids [68]

Zygophyllum eichwaldii C.A. Mey. m n.a. [85]

* Extraction methods: m: maceration, se: Soxhlet extraction, h: hydrodistillation, sub: subcritical fluid ex-
traction, p: purchased or provided, ultra: ultrasound-assisted method, sfe: supercritical fluid extraction.
** n.a.: not available.

3. Extraction Methods and Determination of the Chemical Composition of Plant
Extracts/Essential Oils

The active compounds can be isolated from plant tissues with different extraction
methods (Figure 1) using selective solvents. The extraction method is the first step to
separating the active compounds from the raw material. The choice of extraction method is
so crucial that it can affect further separation, as well as the chemical composition of the
extracts [123].
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Figure 1. Conventional and non-conventional extraction methods [124,125].

In general, the features of the plant extracts and essential oils are dependent on the
molecular weight and chemical types of the compounds extracted. The selection of the
appropriate extraction method, as well as the appropriate conduction of the method, is
important, as it can specify the quality and consequently the potential activity. For example,
failure and error during the experimental procedure can lead to changes in chemical
composition, discoloration, and off odor, reducing the overall quality of plant extracts and
essential oils [13]. Moreover, raw material, the plant parts, solvent, temperature, pressure,
and time are considered the most common factors affecting extraction processes [124].

Based on the literature data presented in Table 1, the most used methods are hydrodis-
tillation, Soxhlet extraction or hot continuous extraction, and maceration. They belong to
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the conventional extraction methods that are mainly based on the extracting power of the
different solvents and the application of heat and/or mixing [124]. The wide use of the
conventional extraction techniques is based on the general advantages that they possess
and include their simplicity, applicability at high temperatures, low investment cost, and
selection of the appropriate solvent [125]. In contrast, their major limitations are the long
extraction time, the requirement of high-purity solvents and the thermal decomposition of
thermolabile compounds, and the poor extraction efficiency in some cases [124,125].

The basic characteristics of each extraction method, as well as the specific advantages
and disadvantages, are reported below:

• Hydrodistillation: This is a traditional, simple method for the extraction of active
compounds and especially essential oils from plants. Even though it can be used in
fresh plant material, is is preferrable to use the method with dried plant material in
order to preserve it from enzymatic degradation [126]. As some volatile components
may be lost at high extraction temperatures, this method cannot be used for ther-
molabile compounds [127]. In this method, water and oil are exclusively separated
through condensation to retain all the essential properties of the plant part used for
the extraction [128]. It involves three main physicochemical processes: hydrodiffusion,
hydrolysis, and heat decomposition [129]. Three types of hydrodistillation can be dis-
tinguished: (a) water distillation, (b) water and steam distillation, and (c) direct steam
distillation [124]. Umpiérrez et al. [130] reported that the essential oils produced by
different distillation methods did not differ in their chemical content in two Asteraceae
plants. Hydrodistillation with the Clevenger-type apparatus has been used in most of
the extractions, as can be seen in Table 1. It is a steam distillation technique with which
the active compounds are extracted with the use of steam generated outside the tank in
a steam generator or in a boiler. It can determine the percentage of volatile oils present
in the oil-bearing material [131]. This method is preferred because (i) the released
steam can easily be controlled and (ii) no thermal decomposition of oil constituents
occurs because the temperature does not exceed 100 ◦C. On the other hand, it has been
reported to require equipment that increases the cost of the method [128].

• Soxhlet extraction or hot continuous extraction: This is a continuous extraction method
with high extraction efficiency that requires less time and solvent consumption than
other methods (maceration or percolation) [132]. It is used for plant material that is
partially soluble in the chosen solvent and for plant material with insoluble impuri-
ties [133]. There is also no need for filtration of the extract [126]. On the other hand, the
device must not be shaken, and the long extraction time may lead to the degradation
of thermolabile compounds [134].

• Maceration: This is a solid–liquid extraction and one of the most widely used tech-
niques in the medicinal and aromatic plant industry. It is a separation technique to
remove a solute from a solid mixture with the help of a solvent [126]. It is an appropri-
ate method for thermolabile compounds [133]. The success of the method depends on
the solvent, the plant part, and the starting material and extraction time. On the other
hand, the large volume of solvents used and the long extraction time are the main
disadvantages of the method [128].

The selection of the solvent is especially crucial amongst the factors previously re-
ported for extraction. Solubility, selectivity, polarity, cost, and safety should be considered
for the selection of the solvent [135]. Figure 2 shows different solvents used for the ex-
traction of different active compounds from plant species. In general, methanol, ethanol,
acetone, and water are preferred. Saaba et al. [136], analyzing the methanolic, ethanolic,
acetonic, and aqueous extracts from different medicinal plants (such as Juniperus phoenicea
L. and Asphodelus microcarpus Salzm. & Viv.), concluded that there were significant differ-
ences in the quantitative characterization of the different extracts depending on the solvent
used. According to their results, the acetonic and methanolic extracts seemed to be most
promising. The solvents have different polarities, and this affects the content of the active
compounds, as well as their pesticidal activity. Water, methanol, and ethanol are used for
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the extraction of polar compounds (hydrophilic), whereas hexane and dichloromethane are
used for the extraction of nonpolar compounds (lipophilic) [134,137].
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Fractionation is also a widely used process that follows the extraction of raw material
and aims to isolate specific compounds belonging mainly to the same chemical category. It is
a continuous process that ends after the isolation of the compound of interest and demands
several solvents, which are added based on their polarity (from less to more polar) [126,135].
Fractionation has been used for the isolation of alkaloids from Sophora alopecuroides L.
extract [138], phenolic compounds from Humulus lupulus L. [95], and isoflavones and
flavones from Retama raetam [99].

Qualitative and quantitative analysis of phytochemicals presented in extracts/essential
oils can be performed using chromatographic and identification techniques [133]. Mass
spectrometry (MS) is a powerful analytical tool that is used to identify unknown compounds
and has been applied to a very wide range of areas, including biochemical sciences. Mass
spectrometry provides abundant information for the structural elucidation of unknown
compounds, especially when tandem mass spectrometry (MS/MS) is applied [139]. Most
of the scientific works reported herein have used gas chromatography–mass spectroscopy
(GC-MS) for phytochemical analysis of biopesticides [28,75,79]. It is a combined analytical
technique that plays an essential role in the phytochemical analysis of plant extracts
containing biologically active compounds [140]. Advantages of the technique include
(i) the efficiency of gas chromatography separation, (ii) the good qualitative information
and high sensitivity provided by mass spectrometry (MS), and (iii) the identification of
unknown compounds by comparison with library spectra [141].

It is worth mentioning that high-performance liquid chromatography (HPLC) [90,94],
liquid chromatography–mass spectroscopy (LC-MS) [87], and nuclear magnetic resonance
(NMR) [87,121] have also been employed for the identification of secondary metabolites.
The chromatographic and identification techniques have proven that the qualitative and
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quantitative variation of secondary metabolites in the same species depend on (i) genetic
factors, (ii) environmental causes (light, temperature, soil water, soil fertility, and salinity),
(iii) geographical origin, (iv) harvest stage, (v) part of the plant, (vi) processing modalities,
and (vii) storage time [12,13,142].

4. Biological Activity of Plant Extracts and Essential Oils

Literature data indicate that plant extracts have promising antimicrobial, insecticidal,
and herbicidal activity. Key findings of several recent studies focusing on the antimicrobial,
insecticidal, and herbicidal activity of Mediterranean plant extracts and essential oils are
presented in detail in Tables 2–4. Their activity was also examined regarding plant bacteria,
viruses, nematodes, and other pathogens (Table 5). Although numerous studies have
evaluated the biological activity of plant extracts and essential oils, in most cases the
observed activity was not correlated with specific components. The biological activity
was attributed to the synergistic effects of the different compounds [28]. Nevertheless,
there were cases where the biological activity was correlated with specific compounds.
Indicatively, γ-terpinene and myristicin were found to possess insecticidal activity and
were effective on Culex quinquefasciatus larvae [75].

Table 2. Recent studies on antimicrobial activity of Mediterranean plant extracts/essential oils.

Fungus Tested Family Plant References

Alternaria alternata
Lamiaceae Lavandula canariensis Mill.

[105]
Rutaceae Ruta chalepensis L.

Alternaria solani
Lamiaceae

Mentha piperita L.
[106]

Rosmarinus officinalis L.

Poaceae Echinochloa crus-galli (L.) P. Beauv. [117]

Alternaria spp.
Lamiaceae

Thymus leucotrichus Halácsy

[60]Hyssopus officinalis L.

Cupressaceae Juniperus communis L.

Botrytis cinerea

Cupressaceae
Juniperus communis L.

[59]Juniperus oxycedrus L.
Juniperus communis L. var. saxatilis Pall.

Lamiaceae Lavandula canariensis Mill.
[105]Rutaceae Ruta chalepensis L.

Lauraceae Laurus nobilis L. [116]

Cercospora kikuchii Lamiaceae Lavandula dentata L. [104]

Cercospora sojina Lamiaceae Lavandula dentata L. [104]

Colletotrichum spp. Cupressaceae

Juniperus communis L.

[59]Juniperus oxycedrus L.

Juniperus communis L. var. saxatilis Pall.

Cylindrocarpon pauciseptatum Cupressaceae

Juniperus communis L.

[59]Juniperus oxycedrus L.

Juniperus communis L. var. saxatilis Pall.

Fusarium culmorum Salicaceae Populus tremula L. [120]

Fusarium oxysporum f. sp. lycopersici.
Lamiaceae Mentha piperita L.

[106]Lamiaceae Rosmarinus officinalis L.
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Table 2. Cont.

Fungus Tested Family Plant References

Fusarium oxysporum

Lamiaceae Lavandula canariensis Mill.
[105]

Rutaceae Ruta chalepensis L.

Lamiaceae
Mentha piperita L.

[106]
Rosmarinus officinalis L.

Fusarium spp. Cupressaceae
Juniperus communis L. var. saxatilis Pall.

[59]Juniperus oxycedrus L.

Juniperus communis L.

Geotrichum candidum var. citri-aurantii Cistaceae

Cistus albidus L.

[54]

Cistus creticus L.

Cistus crispus L.

Cistus ladanifer L.

Cistus laurifolius L.

Cistus monspeliensis L.

Cistus populifolius L.

Cistus salviifolius L.

Mycosphaerella graminicola Lamiaceae Thymus leucotrichus Halácsy [30]

Penicillium allii Lamiaceae Origanum vulgare L. [111]

Phoma exigua

Lamiaceae

Rosmarinus officinalis L.

[45]

Salvia officinalis L.

Satureja hortensis L.

Thymus leucotrichus Halácsy L.

Poaceae Elytrigia repens (L.) Nevski

Polygonaceae Polygonum aviculare L.

Persicaria bistorta (L.) Samp.

Ranunculaceae Nigella sativa L.

Urticaceae Urtica dioica L.

Pythium ultimum Lamiaceae
Rosmarinus officinalis L.

[106]
Mentha piperita L.

Rhizoctonia solani

Cupressaceae
Juniperus communis L.

[59]Juniperus oxycedrus L.

Juniperus communis L. var. saxatilis Pall.

Lamiaceae
Mentha piperita L.

[106]
Rosmarinus officinalis L.

Sclerotinia sclerotiorum Apiaceae Cuminum cyminum L. [76]

Septoria glycines Lamiaceae Lavandula dentata L. [104]
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Table 2. Cont.

Fungus Tested Family Plant References

Verticillium dahliae

Anacardiaceae Pistacia lentiscus L.

[71]

Apocynaceae Nerium oleander L.

Araliaceae Hedera helix L.

Asteraceae Dittrichia viscosa (L.) Greuter

Brassicaceae

Brassica rapa L.

Diplotaxis erucoides (L.) DC.

Diplotaxis virgata (Cav.) DC.

Hirschfeldia incana (L.) Lagr.-Foss.

Cistaceae

Cistus albidus L.

Cistus ladanifer L.

Cistus laurifolius L.

Cupressaceae Juniperus communis L.

Fagaceae Castanea sativa Mill.

Junglandaceae Juglans regia L.

Lamiaceae

Marrubium vulgare L.

Mentha x verticillata L.

Origanum vulgare L.

Rosmarinus officinalis L.

Salvia officinalis L.

Thymus leucotrichus Halácsy

Laurus nobilis L.

Oleaceae

Olea europaea cv. Lechín de Sevilla

Olea europea cv. Arbequina

Olea europea cv. Cornicabra

Olea europea cv. Empeltre

Olea europea cv. Frantoio

Olea europea cv. Picual

Papaveraceae Papaver rhoeas L.

Pinaceae Pinus pinea L.

Urticaceae Urtica sp.

Viburnaceae Sambucus nigra L.

Zymoseptoria tritici Cannabaceae Humulus lupulus L. [95]
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Table 2. Cont.

Fungus Tested Family Plant References

Alternaria alternata/Alternaria
solani/Alternaria

tenuissima/Colletotrichum
coccodes/Fusarium

oxysporum/Fusarium
sambucinum/Rhizoctonia

solani/Streptomyces scabiei

Apiaceae Carum carvi L.

[45]

Lamiaceae Thymus leucotrichus Halácsy L.

Asteraceae
Achillea millefolium L.

Taraxacum officinale (L.) Weber ex F.H.Wigg

Cannabaceae Humulus lupulus L.

Clusiaceae Hypericum perforatum L.

Eqoisetaceae Equisetum arvense L.

Lamiaceae

Salvia officinalis L.

Mentha piperita L.

Rosmarinus officinalis L.

Lavandula angustifolia Mill.

Satureja hortensis L.

Poaceae Elytrigia repens (L.) Nevski

Polygonaceae Polygonum aviculare L.
Persicaria bistorta (L.) Samp.

Ranunculaceae Nigella sativa L.

Urticaceae Urtica dioica L.

It is also worth mentioning that, in some cases, the observed activity significantly
varies for different targets and even the same targets between essential oils/extracts of
the same plant. For example, Pavela et al. [75] investigated the essential oils of Crithmum
maritimum L. of different geographical origins and observed a significant differentiation
in their insecticidal activity due to their phytochemical compositions. Furthermore, the
activity of the essential oils of different parts of the plant was also found to vary. In a recent
study, Zerkani et al. [69] observed significant differences in antimicrobial activity from the
essential oils derived from different parts of Pistacia atlantica.

In addition, the same active compound has been reported to possess varied biological
activity. Oil containing thymol as a major component was found by Ben Jabeur et al. [30] to
present antimicrobial properties. Essential oils with thymol have also been suggested as
potential plant-based insecticidal agents [28]. Essential oils with carvacrol and piperitenone
oxide as major compounds have also been suggested [28,113] and reported to possess
insecticidal activity. Up to now, a variety of assays have been used to evaluate the biological
activity, such as antimicrobial, insecticidal, herbicidal, etc., of plant extracts and essential
oils, which are discussed in detail in the following sections.

4.1. Commonly Used Assays for Evaluating Antimicrobial Activity

Various methods are used to evaluate antimicrobial activity in vitro. Among them, the
most common are the agar dilution and disc diffusion methods. Agar dilution, otherwise
referred to as the poisoned food method, is the method of choice when estimating anti-
fungal activity [143]. The method is based on preparing solid media and adding a desired
concentration of the extract to it. A certain volume of the extract can be mixed before
the autoclaved medium is poured on Petri dishes or spread on their surface once it has
solidified [71,76,117]. Subsequently, a small agar plug (4–7 mm in diameter) from an active
fungal culture is inverted, with the mycelial surface facing down, and inoculated at the cen-
ter of the agar plate. The inhibition is estimated by measuring mycelial growth in optimal
conditions and comparing it with a control sample [71]. One or multiple concentrations of
the extract can be used during the assay. Different concentrations can be used to determine
the potency of the antifungal effect by measuring certain indices, such as half maximal
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effective concentration (EC50) [76], the minimum inhibitory concentration (MIC), or the
half inhibitory concentration (IC50) of the extract/essential oil [30,95]. Variations of the agar
dilution method have been successfully employed to test the antifungal capacity of various
extracts against plant pathogenic fungi, such as Verticillium dahliae in olives [71]; Zymosepto-
ria tritici in wheat [30,95]; Sclerotinia sclerotiorum [76], Fusarium oxysporum, Alternaria solani,
and Pythium ultimum in tomato [106,117]; and Botrytis cinerea [116], Penicillium allii [111],
Stemphylium vesicarium [99], and Geotrichum candidum var. citri-aurantii in decayed mandarin
fruit [54]. Semerdjieva and colleagues used agar dilution to test the antifungal potential
of essential oils against five fungal pathogens, including Fusarium sp. and Rhizoctonia
solani strains isolated from stored potato, Botrytis cinerea from infected stored tomato, Col-
letotrichum sp. from anthracnose of bananas, and Cylindrocarpon pauciseptatum obtained
from diseased grapevine [59]. Slight variations in the protocol involve inoculation of the
agar containing the extract with a small volume from a liquid culture of the fungus [30,95]
or with fungi-infected plant seeds [60] instead of an agar plug. Although the method is
mostly used for fungal pathogens, Fu et al. [144] employed the agar dilution method to test
the antibacterial potential of water extracts from aquatic weeds against 100 bacterial strains
that were inoculated on agar plates by streaking.

On the other hand, the disc diffusion method is mostly preferred when screening
extracts for antibacterial activity in vitro. However, it can be used for testing antifungal
activity as well [69]. This method is based on spreading an amount of bacterial or fun-
gal suspension (or an agar plug from an active fungal culture) on solid media, placing
small paper discs (5–6 mm in diameter) soaked with a microvolume of the extract (e.g.,
3–5 µL), incubating the plates in ideal growth conditions, and measuring the inhibition
zones [143]. Disc diffusion was used to assess both antifungal and antibacterial activity of
three subcritical carbon dioxide plant extracts from Carum carvi, Thymus vulgaris, and Nigella
sativa [45]. The extracts were successful at inhibiting eight fungal pathogens, including the
Fusarium, Alternaria, Colletotrichum, Rhizoctonia, and Phoma strains, as well as two bacterial
phytopathogens belonging to the genera Pectobacterium and Streptomyces [45]. The study
also employed another in vitro assay to test antimicrobial activity, the agar well diffusion
method, which shares many similarities to the disc diffusion method. In its most common
form, a volume (e.g., 50–250 µL) of the extract is applied in a central well (5–8 mm in
diameter) on the agar plate, which is previously inoculated with the pathogen. Twenty-two
water and water–glycol extracts were tested by this method for antimicrobial effect against
the 10 previously mentioned plant pathogens [45]. The disc diffusion method was used
to assess the antifungal capacity of essential oils from Lavandula dentata against strains
of Cercospora kikuchii, Cercospora sojina, and Septoria glycines [104]; of pyroligneous acids
identified in the bark of hybrid aspen trees against Fusarium culmorum [120]; and of extracts
from seven plant species collected from the island of Lampedusa, in Italy, against Penicillium
italicum, Aspergillus carbonarius, and Drechslera gigantea [78]. It was also used to test the
antibacterial effect of nano-suspensions of Chrysanthemum coronarium and Azadirachta indica
against Escherichia coli and Staphylococcus aureus strains [89] and of barnyard grass extracts
against a tomato bacterial pathogen, Pectobacterium carotovorum [117]. Other applications
of the method include screening against human pathogens. For instance, essential oils
extracted from the aerial parts of Origanum elongatum were tested against nine pathogenic
bacteria isolated from hospital patients [110], whereas essential oils from Pistacia atlantica
were assayed against 12 human pathogens, 9 bacterial strains and 3 fungal strains [69].

In vitro methods comprise the most common assays for antimicrobial screening since
they are simple in terms of design and execution and provide useful and comprehensive
results. On the other hand, in vivo and in situ assays are more challenging to set up and
are thus less frequently used but generally provide more reliable data. Such an in situ
antimicrobial assay was carried out by Steglińska and colleagues on potatoes [45]. In brief,
water and subcritical carbon dioxide extracts (SCDE) from four plant species exhibited
antifungal and antibacterial effects when they were applied on potatoes. The in situ assay
included immersion of potatoes in the plant extracts, application of 20 µL of bacterial or
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fungal suspension in three cuts (5 mm in diameter and 5 mm deep), and measuring the
infestation rate after 2 weeks of incubation [45]. A similar test was conducted by Karim
and colleagues, who created 2 mm-deep and 3 mm-wide wounds on mandarin fruit with
sterile needles [54]. The cuts were inoculated with 30 mL of Cistus aqueous extract and
20 mL of a Geotrichum candidum var. citri-aurantii suspension. The incidence and severity
of the fungal disease on the treated mandarin fruit was evaluated daily for 10 days [54].
Regarding antiviral activity, Hu et al. employed the half-leaf method to test the effect
of nine compounds from the seeds of Hyoscyamus niger against a phytopathogenic virus,
tobacco mosaic virus (TMV) [121]. The method is often used to test inactivation, protective,
and curative effects of extracts against the selected pathogen and is based on smearing
half of the surface of the leaf with the extract while leaving the other side with a control
treatment. Depending on the type of effect that is being tested, the viral suspension is either
mixed with the compounds and applied on the same side of the leaf or inoculated on the
whole surface of the leaf [145].

Table 3. Recent studies on insecticidal activity of Mediterranean plant extracts/essential oils.

Insects Tested Family Plant Parts Used for Extraction References

Acrobasis advenella Lamiaceae Satureja hortensis L. Aerial parts [113]

Acromyrmex
octospinosus Apocynaceae Nerium oleander L. Leaves [83]

Aedes aegypti L. Apiaceae Daucus carota L. Umbels [77]

Amblyseius swirskii Lamiaceae Satureja hortensis L. Aerial parts [72]

Myzus persicae

Asteraceae

Artemisia absinthium L. Aerial parts

[36]
Santolina chamaecyparissus L. Aerial parts

Tanacetum vulgare L. Aerial parts

Compositeae Achillea millefolium L. Aerial parts

Fabaceae Sophora alopecuroides L. Aerial parts [100]

Lamiaceae Origanum syriacum L.
subsp. syriacum Leaves [25]

Lamiaceae Satureja montana L. Leaves and flowers [114]

Experimental model of
aphids’ nervous system Lamiaceae

Lavandula angustifolia Mill. Aerial parts

[103]Satureja montana L. Aerial parts

Salvia officinalis L. Aerial parts

Aphis craccivora

Resedaceae Ochradenus baccatus Delile Leaves

[90]Asteraceae Pulicaria crispa (Forssk.) Oliv.
(Forssk.) Oliv. Leaves

Lamiaceae Salvia officinalis L. Leaves

Apis mellifera Asteraceae Artemisia absinthium L. Aerial parts [130]

Aphis citricola Fabaceae Sophora alopecuroides L. Aerial parts [100]

Macrosiphum rosirvorum Fabaceae Sophora alopecuroides L. Aerial parts [100]

Sitobion avenae
Cupressaceae

Juniperus communis L. n.a. *
[59]Brevicoryne brassicae Juniperus oxycedrus L. n.a.

Brassicogethes aeneus Juniperus communis var.
satilis Pall. n.a.

Callosobruchus
maculatus

Anacardiaceae
Pistacia atlantica Desf. Fruits, leaves and gum

[70]
Pistacia khinjuk Stocks Fruits and leaves
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Table 3. Cont.

Insects Tested Family Plant Parts Used for Extraction References

Ceratitis capitata

Labiatae Origanum elongatum (Bonnet)
Emb. & Maire Aerial parts [110]

Anacardiaceae Pistacia atlantica Desf. n.a. [69]

Lamiaceae

Mentha suaveolens Ehrh. n.a.

[146]Salvia officinalis L. n.a.

Thymus atticus Čelak. n.a.

Chaitophorus populialbae Dennstaedtiaceae Pteridium aquilinum (L.) Kuhn Leaves [98]

Chrysoperla carnea

Lamiaceae Salvia officinalis L. Leaves

[90]Resedaceae Ochradenus baccatus Delile Leaves

Asteraceae Pulicaria crispa (Forssk.) Oliv. Leaves

Culex pipiens L. Apiaceae Daucus carota L. n.a. [77]

Culex quinquefasciatus

Apiaceae
Smyrnium olusatrum L. Umbels

[81]Helosciadium nodiflorum (L.)
W.D.J. Koch Aerial parts

Chenopodiaceae Chenopodium murale (L.) S.
Fuentes et al. Whole plant

[68]Amaranthaceae Achyranthes aspera L. Whole plant

Zygophyllaceae Tribulus terrestris L. Whole plant

Convolvulaceae Convolvulus arvensis L. Whole plant

Apiaceae Crithmum maritimum L. Aerial parts, leaves,
flowers, and seeds [75]

Lamiaceae Ziziphora clinopodioides Lam. Aerial parts [115]

Culex restuans Theobald Apiaceae Daucus carota L. Umbels [77]

Cydia pomonella L. Cannabaceae Humulus lupulus L. n.a. [67]

Dendrolimus pini L. Brassicaceae Sinapis alba L. n.a. [67]

Diaphorina citri Asteraceae Artemisia absinthium L. Leaves and flowers [147]

Epicauta atomaria Lamiaceae Lavandula dentata L. Leaves and green stems [104]

Harmonia axyridis Lamiaceae Origanum syriacum L.
subsp. syriacum Leaves [25]

Leptinotarsa decemlineata

Lamiaceae Phlomis tuberosa L. Stems, leaves, and flowers

[44]

Apiaceae Bifora radians M. Bieb. Leaves and stems

Apiaceae Heracleum platytaenium Boiss. Leaves and stems

Acanthaceae Acanthus dioscoridis L. Stems, leaves, and flowers

Cannabaceae Humulus lupulus L. Cone

Asteraceae Achillea millefolium L. Stems, leaves, and flowers

Lamiaceae Satureja montana L. Leaves and flowers [114]

Asteraceae Santolina chamaecyparissus L. Aerial parts

[91]Lamiaceae Hyssopus officinalis L. Aerial parts

Lamiaceae Lavandula intermedia Emeric
ex Loisel. Aerial parts
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Table 3. Cont.

Insects Tested Family Plant Parts Used for Extraction References

Macrosiphum euphorbiae
Apiaceae Foeniculum vulgare Mill. Mill. n.a.

[80]
Apiaceae Pimpinella anisum L. n.a.

Musca domestica Lamiaceae Origanum syriacum L.
subsp. syriacum Leaves [25]

Phthorimaea operculella

Plantaginaceae Plantago albicans L. n.a.

[85]Solanaceae Solanum villosum Mill. n.a.

Zygophyllaceae Zygophyllum eichwaldii C.A. Mey. n.a.

Rhopalosiphum maidis
Apiaceae Foeniculum vulgare Mill. n.a.

[79]
Myrtaceae Myrtus communis L. n.a.

Rhopalosiphum padi

Cupressaceae Juniperus communis L.

n.a. [59]Cupressaceae Juniperus oxycedrus L.

Cupressaceae Juniperus pygmaea M.-Bieb.

Lamiaceae Hyssopus officinalis L. Aerial parts

[91]Lamiaceae Lavandula intermedia Emeric
ex Loisel. Aerial parts

Asteraceae Santolina chamaecyparissus L. n.a.

Rhyzopertha dominica Asteraceae Glebionis coronaria (L.) Spach n.a. [89]

Sitophilus oryzae Lamiaceae Mentha longifolia (L.) Huds. n.a. [148]

Sitophilus zeamais Lamiaceae Lavandula dentata L. Leaves and green stems [104]

Spodoptera exigua Brassicaceae Sinapis alba L. n.a. [67]

Spodoptera frugiperda

Fabaceae Ulex europaeus L. Leaves and flowers

[93]
Punicaceae Punica granatum L. Fruit peel

Rutaceae Ruta graveolens L. Leaves

Boraginaceae Glandora prostrata (Loisel.)
D.C. Thomas Leaves and flowers

Labiatae Origanum majorana L. Leaves and stems

[108]Lamiaceae
Nepeta cataria L. Leaves and stems

Origanum vulgare L. Leaves and stems

Lythraceae Punica granatum L. Fruit peel

Spodoptera littoralis

Labiatae Origanum virens Hoffmanns.
& Link Aerial parts

[28]

Lamiaceae Lavandula angustifolia Mill. Aerial parts

Lamiaceae Satureja montana L. Aerial parts

Lamiaceae Thymus leucotrichus Halácsy Aerial parts

Lamiaceae Thymus atticus Čelak. Aerial parts

Lamiaceae Mentha piperita L. Aerial parts

Lamiaceae Satureja montana L. Aerial parts

Lamiaceae Mentha spicata L. Aerial parts

Lamiaceae Mentha suaveolens Ehrh. Aerial parts

Asteraceae Artemisia inculta Delile Aerial parts



Metabolites 2023, 13, 967 23 of 40

Table 3. Cont.

Insects Tested Family Plant Parts Used for Extraction References

Lamiaceae Origanum syriacum L. subsp.
syriacum Aerial parts [25]

Lamiaceae Satureja montana L. Aerial parts

Lamiaceae Hyssopus officinalis L. Aerial parts

[91]Lamiaceae Lavandula intermedia Emeric
ex Loisel. Aerial parts

Asteraceae Santolina chamaecyparissus L. Aerial parts

Tetranychus cinnabarinus Asteraceae Artemisia capillaris Thunb. n.a. [149]

Tetranychus turkestani
Lamiaceae Mentha longifolia (L.) Huds. L. n.a.

[150]
Lamiaceae Rosmarinus officinalis L. n.a.

Tetranychus urticae

Lamiaceae Satureja hortensis L. Aerial parts
[72]

Apiaceae Anethum graveolens L. Aerial parts

Boraginaceae Onosma visianii Clementi Roots [94]

Caryophyllaceae Saponaria officinalis L. n.a. [96]

Thrips tabaci Lamiaceae Satureja montana L. Leaves and stems [112]

Trialeurodes
vaporariorum Asteraceae Artemisia absinthium L. Aerial parts [130]

Tribolium castaneum

Cupressaceae Juniperus phoenicea L. Leaves

[58]
Cupressus sempervirens L. Leaves

Asphodelaceae Asphodelus microcarpus Salzm. &
Viv. Leaves

Lamiaceae Mentha rotundifolia (L.) Huds Leaves

Lamiaceae Lavandula dentata L. Leaves and green stems [104]

Asteraceae Glebionis coronaria (L.) Spach Leaves and flowers [89]

Lamiaceae Mentha spicata L. Plant samples [107]

Tribolium confusum

Lamiaceae Lavandula angustifolia Mill. n.a.

[97]

Lamiaceae Mentha piperita L. n.a.

Lamiaceae Satureja montana L. n.a.

Pinaceae Picea abies (L.) H. Karst. n.a.

Rosaceae Prunus dulcis (Mill.) D.A. Webb n.a.

Trichoplusia ni Lamiaceae Thymus leucotrichus Halácsy n.a. [26]

Trogoderma granarium

Rutaceae Ruta chalepensis L. Aerial parts
[118]

Verbenaceae Lantana camara L. Aerial parts

Apocynaceae Calotropis procera (Aiton)
W.T. Aiton Leaves [82]

Tuta absoluta

Asteraceae Tanacetum vulgare L. Flowers, leaves, and buds [92]

Lamiaceae Mentha suaveolens Ehrh. n.a. [146]

Lamiaceae Salvia officinalis L. n.a.
[110]

Lamiaceae Thymus atticus Čelak. n.a.

Anacardiaceae Pistacia atlantica Desf. Leaves, fruit, and barks [69]

Asteraceae Tanacetum vulgare L. Flowers, leaves, and buds [92]

* n.a.: not available.
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4.2. Bioassays for Determining Pesticidal or Repellent Activity

Plant extracts can be submitted to a variety of assays to evaluate their insecticidal,
acaricidal, nematocidal, or repellent potential, as well as their effect on oviposition. Stan-
dardized techniques include topical application, residual or surface contact, immersion in
the extract or in a solution containing the extract, feeding bioassays, and fumigation [80,151].
Usually, the selected assay takes into consideration the unique biology of each pest or its
developmental stage, since the egg and larval stages have different morphological and
biological characteristics than the adult stage.

Among the previously mentioned techniques, topical application can be used for
bioassays in most developmental stages. The technique is based on applying microvolumes
of the extract directly on the body of the insect with a micropipette or a microsyringe [151].
It was used successfully for larvae of the lepidopteran Spodoptera littoralis. Different con-
centrations of Origanum syriacum subsp. syriacum extract were mixed with 1 µL of acetone,
and each solution was applied on the dorsal region of 80 larvae per dose [25]. Insecticidal
bioassays using topical application of extracts with a microsyringe were similarly per-
formed on the dorsal region of Spodoptera frugiperda larvae [108]. Topical application tests
can also be performed on adult individuals. However, in this case, since adults of certain
insects display high motility or flying ability, as a first step before the topical application
of the extract, the insects are anaesthetized with CO2 or on ice [25,88,152]. For instance,
female Musca domestica flies were first anaesthetized and then treated with different doses
of Origanum syriacum subsp. syriacum extracts by applying a microvolume of the extract
on the pronotum of the flies and measuring the effect after 24 h [25]. Topical application
methods have been used to assay multiple insect species, such as Pectinophora gossypiella,
Thaumatotibia leucotreta, Helicoverpa armigera, Myzus persicae, Aphis craccivora, Aphis citri-
cola, Aedes aegypti, Diaphorina citri, Tribolium castaneum, Trichoplusia ni, and Brassicogethes
aeneus. [26,58,73,88,100,147,152]. In the case of Trichoplusia ni larvae, an injection assay was
also performed, with one microliter of test solution injected into the ventral hemocoel [26].

On the other hand, during residual contact techniques, individuals or groups of target
organisms are exposed to residues of the bioactive compounds. The compounds are usually
added uniformly on natural (e.g., leaves, fruit, inflorescences) or artificial (e.g., filter discs)
surfaces, and the specimens are placed on them [151]. Such a residual contact assay was
applied by Alkan and Gökçe [44] on egg masses of the Colorado potato beetle Leptinotarsa
decemlineata. The eggs that were oviposited on potato leaflets were sprayed with 20 µL
of six plant extracts to examine their ovicidal effect. The leaflets were then placed in
petri dishes and egg mortality was recorded for 7 days [44]. Residual spraying was also
used to apply plant essential oils on adult aphids (Myzus persicae) [36]. Other surface
contact techniques that did not employ spraying were used to determine the acaricidal
efficacy of different concentrations of an extract from Onosma visianii roots [94]. The mite
that was subjected to the treatment belonged to the species Tetranychus urticae. A pipette
was used to apply 20 µL of the various dilutions on one side of bean leaf discs (sized
2 cm2), which were then placed on agar-containing plates. Various developmental stages
of the mites were assayed. Adult females, nymphs, or eggs were transferred to the discs
and incubated at fixed temperature and light conditions for 24 h or for up to five days
after the treatment. Thus, this assay, with minor modifications for each case, was used to
assess adult mortality, the number of oviposited eggs for live females, and the hatchability
of eggs [94]. A similar study was carried out for Saponaria officinalis-synthesized silver
nanocrystals against Tetranychus urticae [96]. Surface toxicity was also used to assess the
larvicidal activity of Tagetes minuta essential oils to Lucilia cuprina flies. The applied protocol
was based on transferring third-instar larvae of the fly in glass vials with filter papers
impregnated with different dilutions of the essential oils [153]. Various residual or surface
contact bioassays, with certain modifications in their protocols, were used to test the
bioactivity of a variety of plant extracts and essential oils against eggs, larvae, and adult
specimens of insects and mites [70,72,74,82,87,89,90,92,98,102,113,130,147,148,150,154–159].
For instance, Erdogan and Mustafa dipped tomato leaf discs into the test solutions instead
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of pipetting a volume onto their surface and then placed Tuta absoluta larvae on them [92].
Surface contact bioassays can be performed not only on a laboratory scale but also on a
larger scale. For instance, extracts from leaves of Agave americana were used against the
hemipteran Brevicoryne brassicae in field experiments performed at a cabbage farm. The
application of the extracts was carried out by spraying parts of the leaves and the center of
the adult plant [156].

Repellency, rather than acute toxicity or pest mortality, may also be assessed with
modified surface contact methods. Typical repellency assays use filter papers that are
treated with the extract on one half and the respective solvent on the other half and are
subsequently placed in Petri dishes with the test samples [107]. Such repellency bioassays
were carried out for larvae of the khapra beetle, Trogoderma granarium [82], and adults of
Tribolium castaneum [107]. Ilyas and colleagues, on the other hand, treated guava fruits by
immersing them in plant extract solutions. The treated fruits were subsequently offered
to adult Bactrocera zonata flies that were kept in cages, and the number of individuals
that settled on the fruits were recorded for 5 h per day for two days [154]. Mangang and
colleagues also used a more sophisticated system, termed an “insect management unit,” to
study the repellent properties of packaging material [107]. Pourya et al. also used an arena
to perform repellency bioassays on adult Callosobruchus maculatus beetles [70]. The arena
consisted of three plastic chambers that were connected by small tubes. The beetles were
placed in the central chamber, the control cowpeas treated only with solvents were placed
in the first test chamber, and the cowpeas that were treated with different concentrations of
Pistacia essential oils were placed in the second test chamber [70].

Immersion techniques are especially suitable for developmental stages that take place
within an aquatic environment, such as eggs or larvae of certain species. Therefore, immer-
sion assays were performed on larvae of Culex quinquefasciatus mosquitoes [68,75,81,115].
The larvae were placed in 250 mL of solution containing 249 mL of distilled water and 1 mL
of essential oils or a mixture (six different dosages were tested for each compound), and
their mortality was recorded after 24 h of exposure to the treatment [81]. Similar approaches
were used in other studies featuring larvae of other mosquito species, such as Culex pipi-
ens, Culex restuans, Aedes aegypti, Aedes albopictus, and Anopheles gambiae [77,82,88,160,161].
Musso and colleagues used immersion techniques to study the larvae of the nematode
Panagrolaimus rigidus [109]. Briefly, they placed 100 µL of suspension containing approxi-
mately 100 larvae in each well of a 96-well microplate. Then, they added 100 µL of essential
oil solutions isolated from Nepeta plant species and incubated the microplates at 20 ◦C.
Nematocidal activity was estimated by counting mobile and immobile roundworms using
an optical microscope [109]. Immersion bioassays can be also performed to test the activity
of extracts on insect eggs [162]. Eggs of the lepidopteran Conopomorpha sinensis were sub-
merged in two different concentrations of various plant extracts for 10 s, and their hatching
rate was measured for two days [162]. The use of solid formulations against the potato tuber
moth Phthorimaea operculella can be considered a modified case of immersion methods [85].
The process was based on crude extracts that were mixed with talcum powder (magnesium
silicate) as an inert carrier substrate. Moths were completely covered with the powdered
extract, which was firmly attached to their cuticle. Mortality and other biological parame-
ters of the moths were recorded after the application of the powder [85]. Immersion-based
assays were carried out to study nematocidal activity against other species of nematodes,
such as Meloidogyne incognita [122] and Meloidogyne javanica [91,114], as well as acaricidal
activity against Tetranychus cinnabarinus mites using the slip-dip method [149].
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Feeding bioassays were performed against adult aphids of the species Myzus persicae.
In this case, different concentrations of Origanum syriacum subsp. syriacum extracts were
applied on cabbage, and 4 groups of 50 individuals were left to feed on it. Mortality was
recorded 48 h after the application of the treatment [25]. Similar feeding assays were
conducted for the leaf-cutting ants Acromyrmex octospinosus using extracts from Mammea
americana seeds and Nerium oleander and Nicotiana tabacum leaves [83]. The insecticidal activ-
ity of Brassica alba mustard oil against the lepidopteran species Cydia pomonella, Dendrolimus
pini, and Spodoptera exigua [67], as well as of Eucalyptus essential oils on Sitophilus oryzae and
Sitophilus granarius [163], was also assessed by feeding bioassays. Feeding inhibition caused
by Satureja montana essential oils was measured for Spodoptera littoralis larvae and Myzus
persicae and Leptinotarsa decemlineata adults. The antifeedant activity was calculated by
measuring the consumption of treated leaf discs and comparing it with the controls [114].
Different concentrations of extracts can be mixed and tested not only with a natural host but
also with artificial larval diets. Such was the case of Spodoptera frugiperda (fall armyworm)
larvae that were submitted to various concentrations of extracts from the aerial parts of
Senna crotalarioides plants [164]. Similar feeding inhibition assays were conducted with
other extracts isolated from various plant species, such as Hyssopus officinalis, Lavandula
intermedia, and Santolina chamaecyparissus [91]; 14 plant species belonging to the families
Asteraceae and Lamiaceae [28]; and with trans-anethole compounds from various Apiaceae
species [157].

Fumigant bioassays can be conducted for volatile organic compounds. For instance,
volatile essential oils isolated from bitter fennel (Foeniculum vulgare) and green anise
(Pimpinella anisum) were tested for insecticidal activity against Macrosiphum euphorbiae
aphids, which infest tomatoes [80]. The tested essential oils were applied on filter papers,
and the experiment was conducted on a small scale (only on tomato leaflets) and on a large
scale both with whole plants and at the greenhouse level [80]. A different setup was used
to test the insecticidal activity of lemongrass and rosemary essential oils against onion
thrips, Thrips tabaci. Small Allium schoenoprasum seedlings with approximately 20 leaves
were inserted separately into 50 mL test tubes. One milliliter glass tubes containing the
essential oils were placed in each test tube along with 10 adult thrips for three days, and the
mortality rate was calculated [112]. Other cases of fumigant bioassays with plant extracts
and volatile essential oils have also been documented [70,74,150,163].

It is crucial for novel biopesticides to show high specificity and activity only against
their intended target pests. For that reason, similar bioassays can be executed to assess
the safety of the compounds against non-target organisms, such as the ladybug Harmo-
nia axyridis, Eisenia fetida earthworms, the green lacewing Chrysoperla carnea, honeybees,
or Trichogramma pretiosum hymenoptera [25,90,108,130]. Non-target organisms may also
include predatory mites, such as the species Amblyseius swirskii, which is widely used as
a natural enemy for biological control of small pest species, including mites, thrips, and
whiteflies [72]. Similarly, Pino-Otín and colleagues assessed the ecotoxicological impact of a
biopesticide from Artemisia absinthium on the soil microbial communities of the earthworm
Eisenia fetida and the plant Allium cepa. The changes in microbial communities were assessed
with metagenomic amplicon sequencing of 16S rRNA, and toxicity tests on the onion plant
were conducted on young bulbs. For the nematocidal assay, they estimated mortality by
placing 10 adult earthworms on 500 gr of soil in 1 L plastic containers treated with different
concentrations of the aqueous extract [165].
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Table 4. Recent studies on herbicidal activity of Mediterranean plant extracts/essential oils.

Weeds Tested Family Plant Parts Used for Extraction References

Abutilon theophrasti Medik.

Compositeae Solidago virgaurea L. Leaves and flowers

[29]
Lamiaceae

Melissa officinalis L. Leaves

Salvia officinalis L. Leaves and flowers

Thymus leucotrichus Halácsy Arial parts

Amaranthus powellii
S. Watson Brassicaceae Sinapis alba L. Seeds [66]

Amaranthus retroflexus L. Asteraceae Cynara cardunculus L. Leaves [86]

Amaranthus spinosus L. Poaceae Echinochloa crus-galli (L.) P. Beauv. Leaves [117]

Anagallis arvensis L. Asteraceae Cynara cardunculus L. Leaves [86]

Brassica rapa L. Salicaceae Populus tremula L. Bark mass, including both
inner and outer layers [120]

Capsicum annuum L. Lamiaceae Calamintha menthifolia Host n.a. * [102]

Cyperus iria L. Poaceae Echinochloa crus-galli (L.) P. Beauv. Leaves [117]

Echinochloa crus-galli (L.)
P. Beauv.

Apiaceae Carum carvi L. Seeds
[46]

Apiaceae Mentha piperita L. n.a.

Lolium perenne L.

Asteraceae Santolina chamaecyparissus L. Aerial parts

[91]
Lamiaceae

Hyssopus officinalis L. Aerial parts

Lavandula intermedia Emeric ex Loisel. Aerial parts

Melilotus officinalis L. Cupressaceae Juniperus excelsa M. Bieb. Leaves [61]

Cupressaceae Juniperus sabina Leaves [61]

Myosotis arvensis (L.) Hill Cupressaceae
Juniperus excelsa M. Bieb. Leaves

[61]
Juniperus sabina L. Leaves

Orobanche cumana Wallr. Fabaceae Retama raetam (Forssk.) Webb Aerial parts [99]

Portulaca oleracea L. Asteraceae Cynara cardunculus L. Leaves [86]

Setaria viridis (L.) P. Beauv. Brassicaceae Sinapis alba L. Seeds [66]

Solanum nigrum L. Lamiaceae Clinopodium menthifolium (Host) [102]

Stellaria media (L.) Vill. Asteraceae Cynara cardunculus L. Leaves [86]

Trigonella besseriana Ser. Cupressaceae
Juniperus excelsa M. Bieb. Leaves

[61]
Juniperus sabina L. Leaves

Plants Tested for
Phytotoxicity Family Plant Parts Used for Extraction References

Solanum lycopersicum L.
(Mirella and Cetia seeds)

Lamiaceae Prasium majus L.

n.a. [78]

Papaveraceae Glaucium flavum Crantz

Apiaceae Daucus lopadusanus Tineo

Asclepiadaceae Periploca angustifolia Labill.

Asteraceae Echinops spinosissimus Turra

Chenopodiaceae Atriplex halimus L.

Clusiaceae Hypericum aegypticum L.

Asteraceae Artemisia absinthium L. Aerial parts [130]

Arabidopsis thaliana (L.)
Heynh. Juncaceae Juncus compressus Jacq. n.a. [101]

* n.a.: not available.

4.3. Bioassays for Determining Herbicidal Activity

Based on the average pesticide consumption of the EU-27 Member States during the pe-
riod of 2010–2019, herbicides represent more than 30% of all pesticides used in the EU [166],
whereas worldwide, herbicides account for 50% of all pesticides used, of which >75% are
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used in developed countries [13]. The reduction in herbicide use premises the adoption
of suitable, alternative weed management strategies. However, farmers tend to focus on
the short-term economic benefits, whereas the agroecological benefits of herbicide reduc-
tion are long-term oriented. In contrast to the use of synthetic herbicides, bioherbicides
are an ecologically sustainable alternative that is a priority in the EU. These eco-friendly
herbicides can be subdivided into microbial bioherbicides and bio-derived (biochemical)
bioherbicides. Microbial bioherbicides are made of bacteria, fungi, or viruses, either in
their active form (liquid formulation) or in their dormant form (dry formulation). Natural
molecules extracted, in most cases, from plants are the active ingredients of bio-derived
bioherbicides. However, botanical products can be heterogeneous as a concenquence of the
bioactive component mixture’s presence either from the same or from purposefully mixed
botanical sources. Physical analytical methods, such as chromatography, are inadequate for
this purpose, as they are often not sensitive enough to the chemical complexities found in
crude botanical extracts. Most often, a desired biological response is owed to a mixture of
bioactive plant components, and the relative proportions of single bioactive compounds
may vary from batch to batch, whereas the bioactivity remains within tolerable limits. Thus,
physical or chemical analysis of a single component in such mixtures is not completely
satisfactory [167]. The isolation of plant allelopathic substances and the evaluation of
their phytotoxic effects can lead to the discovery of new natural herbicides. For the above
reasons, a decisive factor in the discovery of bioherbicides is the evaluation of the herbicidal
activity of plant extracts by bioassays.

The herbicidal activity of plant extract evaluation can be estimated either at the
laboratory scale using in vitro assays or in the field via pre- and postemergence assays.
An in vitro assay evaluates the seed germination in Petri dishes. The inhibitory effects
of the extract on weed seeds are determined by counting the germinated seeds (percent
of germination), the root length of germinated seeds, the sprout length, etc. Firstly, it
is crucial that the seed surface be sterilized to avoid possible inhibition of germination
caused by fungal or bacterial toxins. The seeds are placed on a filter paper soaked by
the extract [78] or covered by a soaked filter paper [61]. One concentration or multiple
concentrations of the extract can be used during the assay [29]. The dishes are sealed with
parafilm to avoid evaporation of the extract and incubated in certain temperature and
photoperiod conditions. Variations of the method have been successfully employed to test
extracts from various Mediterranean species against weeds such as Melilotus officinalis L.,
Myosotis arvensis (L.) Hill and Trigonella besseriana Ser. [61], and Amaranthus retroflexus L.
and Portulaca oleracea L., Stellaria media (L.) Vill., and Anagallis arvensis [86]. The method
can also be applied to germinating seedlings [120]. On the other hand, evaluation of the
herbicidal activity can also be estimated in the field in pre- and postemergence assays.
Morra et al. [66] evaluated the activity of Sinapis alba extract to the seeds of Amaranthus
powellii and Setaria viridis. In preemergence assays, the solution of the extract is applied to
the surface of the pot, whereas in postemergence assays, the extract either is sprayed or
watered [117]. In preemergence assays, the emerged live seedlings, the plant height, and
the dry weight are recorded, whereas in postemergence assays, the live plants per pot, the
plant height, and the dry weight are determined [66].

4.4. Current and Future Research Trends in Biological Assays

Currently, classic in vitro microbiological methods, such as the agar dilution and disc
diffusion methods, constitute the most common assays used for testing the antimicrobial
activity of plant extracts [143]. These methods are generally preferred due to their low-cost
design and simple execution, as well as their easily detectable and interpretable results.
They provide apt evidence of bioactivity on a laboratory scale before testing promising
extracts or metabolites on a larger scale in experimental plots in the field. These methods
have been widely used for decades and will continue to be the preferred methods for
initial bioactivity screening of compounds. However, there are certain shortcomings
in their use, mostly related to their inefficiency with evaluating important parameters
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of the interaction between extracts and treated plants, as well as other biotic or abiotic
elements of the environment. Typical in vitro antimicrobial assays usually fail to evaluate
the toxic effects of biopesticides on non-target organisms and their residual persistence or
degradation rate and instead simply report on the observed effect [71,76,78,89,106,116,117].
More sophisticated in situ assays can overcome these deficiencies and provide information
on these critical parameters. For these reasons, they are constantly gaining ground with
such bioassays. However, these assays are more complex to set and execute since they
require significantly more resources and time for experimentation. They are also much more
difficult to standardize compared to in vitro assays and are prone to serious experimental
setbacks [45,54].

Similar issues arise for in vitro insecticidal and herbicidal assays. In these cases, there
are also specific methods that are preferred by most researchers due to their simplicity
(i.e., topical application or residual contact for insecticidal tests). In situ assays are slowly
becoming more popular but may face additional limitations compared to antimicrobial
assays—for instance, due to the mobility of flying insects [66,80,117]. The lack of stan-
dardized methods is often critical, especially in insecticidal or repellency assays where
a variety of arenas is being used, with different general setups, dimensions, materials,
etc. [44,70,72,107]. The adaptation of more standardized in situ techniques, such as ol-
factometers for repellency tests, will facilitate the reproducibility of the results of such
bioassays. It will also improve the design of similar tests and the evaluation procedure for
other extracts or compounds.

Table 5. Recent studies on bacterial, antiviral, and nematicidal activity of Mediterranean plant
extracts/essential oils.

Control Target Tested Family Plant Parts Used for
Extraction References

Ba
ct

er
ia Clavibacter

michiganensis

Asteraceae

Achillea ptarmica L. Aerial parts

[84]

Achillea millefolium L. Aerial parts

Arctium lappa L. Aerial parts

Bidens tripartite L. Aerial parts

Carduus acanthoides L. Aerial parts

Carduus nutans subsp.
leiophyllus (Petrović) Stoj.

& Stef.
Aerial parts

Centaurea cyanus L. Aerial parts

Centaurea jacea L. Aerial parts

Centaurea scabiosa L. Aerial parts

Cirsium arvense (L.) Scop. Aerial parts

Echinops ritro L. Aerial parts

Gnaphalium uliginosum L. Aerial parts

Pentanema britannica (L.) D. Gut.
Larr., Santos-Vicente, Anderb.,

E.Rico & M.M.Mart.Ort.
Aerial parts

Sonchus arvensis L. Aerial parts

Tripleurospermum inodorum (L.)
Sch. Bip. Aerial parts

Compositae
Leontodon hispidus L. Aerial parts

Silybum marianum (L.) Gaertn. Aerial parts
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Table 5. Cont.

Control Target Tested Family Plant Parts Used for
Extraction References

Ba
ct

er
ia

Pectobacterium
carotovorum

Apiaceae Carum carvi L. Seeds

[45]

Asteraceae Achillea millefolium L. Stems, leaves, and
flowers

Asteraceae Taraxacum officinale F.H. Wigg.
subsp. officinale Leaves and stems

Cannabaceae Humulus lupulus L. Inflorescences

Clusiaceae Hypericum perforatum L. Root

Eqoisetaceae Equisetum arvense L. Leaves and stems

Lamiaceae

Lavandula angustifolia Mill. Flower buds

Mentha piperita L. Leaves, stems

Rosmarinus officinalis L. Leaves, stems

Salvia officinalis L. Stems

Satureja hortensis L. Leaves and stems

Thymus leucotrichus Halácsy Seeds

Poaceae Echinochloa crus-galli (L.)
P. Beauv. Leaves [117]

Poaceae Elymus repens (L.) Leaves and stems

[45]

Polygonaceae Polygonum aviculare L. Leaves and stems

Polygonaceae Polygonum bistorta L. Samp. Leaves and stems

Ranunculaceae Nigella sativa L. Seeds

Urticaceae Urtica dioica L. Stems

V
ir

us Tobacco Mosaic Virus Solanaceae Hyoscyamus niger L. Seeds [121]

C
lit

el
la

ta

Eisenia fetida
Asteraceae Artemisia absinthium L.

(var. Candial) n.a. * [165]

Lamiaceae Origanum syriacum L.
subsp. syriacum Leaves [25]

Panagrolaimus rigidus
Lamiaceae Nepeta curviflora Webb

& Berthel.
Flowering tops,

seeds, and leaves
[109]

Lamiaceae Nepeta nuda L. ssp. pubescens Flowering tops,
seeds, and leaves

N
em

at
od

es Meloidogyne incognita Urticaceae Urtica dioica L. Whole plant [122]

Meloidogyne javanica Lamiaceae Satureja montana L. Leaves and flowers [114]

* n.a.: not available.

5. Toxicity and Safety Concerns

In general, biopesticides have nontoxic ways of action and are more selective in
their targets than synthetic chemical pesticides [13]. However, some compounds in high
doses may provoke toxic effects in nontarget organisms. Several suggestions, guidelines,
regulations, and directives about biopesticides and their registration process have been
published by agencies worldwide. For example, Regulation (EC) No. 1107/2009 requires
analysis of impurities from plant protection products by toxicological and environmental
testing [168]. Moreover, the FAO (2017), with its guidelines for the registration of microbial,
botanical, and semiochemical pest control agents for plant protection and public health uses,
requires (if previous assessments are not available or sufficient) acute and/or longer-term
studies [3]. The US EPA (2012) indicates that the dose limit for most pesticides is 25 µg of
active ingredient per Apis mellifera L. honeybee [169].
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In Table 6, indicative recent studies that conducted toxicity assessments of plant
extracts/essential oils are compiled. Recently, Di Lecce et al. [78] studied the potential toxic
effects of extracts from seven plant species. The authors observed the toxicity of some
extracts towards hepatocarcinoma Huh7 and the cytotoxicity towards ileocecal colorectal
adenocarcinoma HCT-8 cell lines. In addition, phytotoxicity assays were conducted, and
it was revealed that some extracts inhibited tomato rootlet elongation and seed cress
germination. In 2017, Umpiérrez et al., investigating extracts from Artemisia absinthium L.
and Eupatorium buniifolium and their effects on different seeds and insects, noticed that both
extracts affected tomato seeds’ relative germination, germination rates, and the length that
roots reach when exposed to high doses [130]. When an acute toxicity test was conducted
on honeybees, the LD50 values were higher than those that the US EPA (2012) indicates,
meaning that both extracts were considered safe [169]. Furthermore, exposure of 3% (v/v)
of Eupatorium buniifolium extract to the Cetia variety led to acute toxic effects on whiteflies.
On the other hand, 4.5% (v/v) led to necrotic effects on the vegetative parts of the plant.
Cell cultures, Caenorhabditis elegans, and hen’s eggs were exposed to rosemary, Citrus and
Eucalyptus oils by Lanzerstorfer et al. [170]. A dose-dependent decrease in cell viability with
an IC50 ranging between 0.08 and 0.17% (v/v) was observed. The mean LC50 value for all
oils of Caenorhabditis elegans was 0.42% (v/v). Moreover, the oils led to mucous membrane
irritation signs.

Table 6. Recent studies on toxicity assessments of plant extracts/essential oils.

Extract Method/Organism References

Prasium majus L., Glaucium flavum
Crantz, Daucus lopadusanus Tineo,

Periploca angustifolia Labill, Echinops
spinosissimus Turra, Hypericum

aegypticum L.

Solanum lycopersicum L.
[78]

Prasium majus L., Glaucium flavum
Crantz, Daucus lopadusanus Tineo,

Periploca angustifolia Labill, Echinops
spinosissimus Turra, Hypericum

aegypticum L.

MTT-based colorimetric
assay/hepatocarcinoma Huh7 cell

lines/ideocecal colorectal
adenocarcinoma HCT-8 cell lines

Artemisia absinthium L.

Solanum lycopersicum L. (Mirella and
Cetia seeds)

[130]

EPA OCSPP 850.3020 and complete
exposure test/Apis mellifera L.

Eupatorium buniifolium Hook. & Arn.

Solanum lycopersicum L. (Mirella and
Cetia seeds)

EPA OCSPP 850.3020 and complete
exposure test/Apis mellifera L.

Greenhouse assay/Solanum
lycopersicum L. (Cetia seeds)

and whitflies

Rosemary oil, citrus oil, eucalyptus oil

Resazurin-based in vitro toxicology
assay/HeLa cell lines/Caco-2 cell

lines/STF1 cell lines
[170]

Caenorhabditis elegans

Hen’s eggs (Lohmann classic
brown chicken)

Based on the available literature data and the legislation on biopesticides, the impor-
tance of the evaluation of potential hazards that plant extracts and essential oils might
pose to nontarget plants, insects, etc., is highlighted. Although in most cases the toxic
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effects are dose dependent, occasionally even at low concentrations they can cause adverse
effects. Especially for plant extracts, the potential toxic effects of the solvent used as a
carrier should also be considered.

6. Conclusions and Future Perspectives

Botanical pesticides have long been touted as attractive alternatives to synthetic chem-
ical pesticides for pest management, as they reputedly pose little threat to the environment
and to human health. They are assumed to be harmless for farmers, easily biodegrad-
able, and less toxic to non-target organisms. The growing number of studies that have
recently investigated Mediterranean plants and that are reviewed in this study (Tables 1–5)
demonstrate their effectiveness and suitability as sustainable and environmentally friendly
biopesticides. Their various and novel modes of action are attributed to the specific phyto-
chemical compositions (Table 1), which are affected by several factors, such as plant species
or cultivar, geographical origin, environmental conditions, and agricultural practices. In
addition, the choice of extraction method was found to be of primary importance for the
quantity and quality of phytochemicals (Table 1). Based on the literature data presented in
Table 1, the most used methods are the conventional extraction methods of hydrodistilla-
tion, Soxhlet extraction or hot continuous extraction, and maceration, which possess some
limitations. To overcome the limitations of conventional extraction methods, new green
methods can also be suggested (Figure 1), considering the potential impact on the envi-
ronment. These methods could be adopted and developed by focusing on less hazardous
solvents, the reduction of energy consumption, and safety, in terms of circular economy.

It is very important for biopesticides and related products to be evaluated in a more bi-
ological, ecological, and economic context. Up to now, most bioassays have been conducted
at the laboratory scale, as can be seen in Table 6. However, the few data of experiments in
the field area significantly limit the commercialization of biopesticide products. Further
investigation is required to reassure the effectiveness of biopesticides in real conditions,
developing suitable formulations that protect the compounds and release them slowly to
the environment.

Consequently, several challenges need to be addressed before commercialization
of biopesticides. A significant challenge for biopesticide development is the increase in
their effectiveness. One reason for restricted use of biopesticides by farmers is the high
degradation rate owing to their volatility, which leads to multiple treatments and increased
production cost. To ensure their effectiveness and stability, the formulation of biopesticides
must be improved, with minimum influence of external environmental factors such as
temperature. Nanotechnology is a promising science with huge potential to provide
novel approaches and solutions in the biopesticide sector and enhance the stability and
efficiency of biopesticide nano-formulations. This means that it is necessary to intensify
biopesticide development and that researchers must focus on the production, formulation,
and application of them.

In addition, a key factor to determining the suitability of biopesticides is regulatory
approval. In general, there is a strict framework for authorization that delays the promotion
of products. As biopesticides are a low-risk and eco-friendly product, they must not be
evaluated in the same way as chemical pesticides. Thus, the approval of an application for a
biopesticide by the authorities should be a simple, rapid, less expensive procedure, different
from that of chemical pesticides, to facilitate the registration of biopesticide products.

Considering the increase in population and simultaneously the increasing demand
for food, the use of biopesticides is an ecological solution to crop protection. Nevertheless,
measures should be taken in order for the cultivation of the raw material (plants) to produce
biopesticides to not affect global nutritional sufficiency and to not put pressure on food
production. Moreover, agricultural waste as a source of active compounds could be a
promising, circular, and cheap raw material for biopesticides. In general, farmers and
society should benefit from the use of biopesticides. Regarding farmers, the effectiveness
and reliability of biopesticides compared to synthetic chemical pesticides are the most
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important criteria for their acceptability. Emphasis should be placed on the benefits of
biopesticide use. This could be supported by publicly funded programs, as well as pesticide
firms, in order to inform farmers about the availability, use, and advantages of adopting
biopesticides. This is in line with the Farm to Fork Strategy, which aims to ensure food safety
in an environmentally sustainable manner and simultaneously maximize environmental,
health, and social benefits.
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21. Bekut, M.; Brkić, S.; Kladar, N.; Dragović, G.; Gavarić, N.; Božin, B. Potential of selected Lamiaceae plants in anti (retro) viral
therapy. Pharmacol. Res. 2018, 133, 301–314. [CrossRef] [PubMed]
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