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Abstract: Hyperglycemia, as a hallmark of the metabolic malady diabetes mellitus, has been an
overwhelming healthcare burden owing to its high rates of comorbidity and mortality, as well as
prospective complications affecting different body organs. Available therapeutic agents, with α-
glucosidase inhibitors as one of their cornerstone arsenal, control stages of broad glycemia while
showing definitive characteristics related to their low clinical efficiency and off-target complications.
This has propelled the academia and industrial section into discovering novel and safer candidates.
Herein, we provided a thorough computational exploration of identifying candidates from the
marine-derived Aspergillus terreus isolates. Combined structural- and ligand-based approaches using
a chemical library of 275 metabolites were adopted for pinpointing promising α-glucosidase inhibitors,
as well as providing guiding insights for further lead optimization and development. Structure-
based virtual screening through escalating precision molecular docking protocol at the α-glucosidase
canonical pocket identified 11 promising top-docked hits, with several being superior to the market
drug reference, acarbose. Comprehensive ligand-based investigations of these hits’ pharmacokinetics
ADME profiles, physiochemical characterizations, and obedience to the gold standard Lipinski’s
rule of five, as well as toxicity and mutagenicity profiling, proceeded. Under explicit conditions,
a molecular dynamics simulation identified the top-stable metabolites: butyrolactone VI (SK-44),
aspulvinone E (SK-55), butyrolactone I 4′”’-sulfate (SK-72), and terrelumamide B (SK-173). They
depicted the highest free binding energies and steadiest thermodynamic behavior. Moreover, great
structural insights have been revealed, including the advent of an aromatic scaffold-based interaction
for ligand–target complex stability. The significance of introducing balanced hydrophobic/polar
moieties, like triazole and other bioisosteres of carboxylic acid, has been highlighted across docking,
ADME/Tox profiling, and molecular dynamics studies for maximizing binding interactions while
assuring safety and optimal pharmacokinetics for targeting the intestinal-localized α-glucosidase
enzyme. Overall, this study provided valuable starting points for developing new α-glucosidase
inhibitors based on nature-derived unique scaffolds, as well as guidance for prospective lead opti-
mization and development within future pre-clinical and clinical investigations.
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1. Introduction

Hyperglycemia can lead, over time, to serious detrimental damage to several body
organs as a result of being the common sequel to uncontrolled diabetes mellitus [1]. With
particular concern regarding blood vessels and nerves, elevated sugar blood levels could
cause atherosclerosis and neuropathy, in addition to other significant complications, such
as kidney damage, retinopathy, and dyslipidemia [2]. Within recent years, the metabolic
disorder of diabetes mellitus has been categorized as a worldwide healthcare burden owing
to its high rates of comorbidity and mortality. The global number of adults afflicted by
the disease is expected to increase from 537 million to 643 million individuals by the year
2030, leading to enormous disease-associated economic burdens [3]. Type-II of the disease
comprises 95% of the cases, being linked to insulin-secretion deficiencies, cellular-insulin
resistances, or a combination [4]. To date, the disease is without a cure, with only available
therapies, including insulin shots and oral hypoglycemic agents, being designated for
overcoming stages of broad glycemia [2]. Within the modern research of drug discovery,
targeting enzymes related to specific disorders for inhibition has been considered a relevant
approach [5].

One of the most important biotargets within the human intestine brush borders mu-
cosa is the α-glucosidase enzyme (EC 3.2.1.20), responsible for disaccharides digestion
(α−1,4-glycosidic bond hydrolysis) into respective monomeric units prior to gut absorp-
tion [6,7]. FDA-approved α-glucosidase inhibitors named acarbose, miglitol, and voglibose
have been therapeutically recommended for type-II diabetes mellitus for reducing intestinal
carbohydrate hydrolysis and allowing for the control of post-prandial hyperglycemia [8].
Acarbose is, by far, the medication being highly prescribed in cases when therapeutic goals
are being unmet or there are contraindications to other oral hypoglycemic agents [9–11].
Unfortunately, the long-term usage of these inhibitors is usually associated with mild-
to-moderate undesirable gastrointestinal complications, including flatulence, abdominal
discomfort, and diarrhea. The latter side effects are mostly related to the off-target inhibition
of α-amylase, rather than α-glucosidase causing increased sections of undigested starch and
glycogen within the large intestine [12]. Thus, developing potent selective α-glucosidase
inhibitors would be considered safe and more tolerable. Additionally, developing such
compounds would be also beneficial for managing obesity and other α-glucosidase-associated
diseases, including viral infections, malignancy, and α-glucosidase-related maladies [13–16].
On the pharmaceutical industry bases, the synthesis of FDA-approved drugs has been
introduced through multistep, cost-ineffective, complicated biosynthetic pathways, owing
to their sugar-based chemical structures [17,18]. Therefore, introducing novel scaffolds
with straightforward synthetic/semisynthetic pathways, as well as improved pharmacody-
namic/pharmacokinetic profiles, would be valuable for patient compliance and disease
management.

The pipeline discovery of new compounds has been long hampered by traditional
drug-discovery and -development processes being time inefficient, expensive, and la-
borious [19]. Recent advances within bioinformatics and cheminformatics, as well as
improved algorithms and software, have settled computational approaches as indispens-
able tools for increasing the efficacy of new drug discovery and development as they
rely on molecular modeling [20]. Mimicking target–target or ligand–target interactions,
predicting pharmacokinetics/toxicity parameters, and undertaking better experimental
planning through guiding/limiting in vivo/in vitro tests have all reduced both time and ex-
penses [19]. These benefits could increase the population’s access to medicine by reducing
the cost of goods [20]. Within such context, computational tools of virtual screening become
promising within the drug discovery and development process. The milestone of virtual
screening was the market introduction of several drugs, including the anticancer agent
gefitinib, being recognized through screening 1500 compounds using the ALLADIN plat-
form [21]. Other drugs that reached the market with the assistance of molecular modeling
include the anti-hypertensive agents captopril and aliskiren; several anti-HIV agents (indi-
navir, saquinavir, and ritonavir); a selective anti-influenza agent (zanamivir); dorzolamide,
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for managing glaucoma; hepatitis C viral protease inhibitor (boceprevir); and phase-III
clinical trial nolatrexed, for managing liver cancer [22,23]. Other than the tools-of-trade,
molecular modeling has made the most significant advent of drug resources for identifying
successful compounds targeting biotargets for disease management.

Nature has been considered an enteral source of novel and structurally diverse com-
pounds of both fascinating and, in most cases, complex chemical scaffolds. Driven by ex-
ploring uncharted arenas, there has been a rise in interest in the isolation of α-glucosidase in-
hibitors from particular bacteria. For instance, the new N-containing malto-oligosaccharide,
GIB-638, was isolated from a culture filtrate of Streptomyces fradiae PWH638; validamycin
A was isolated from Streptomyces hygroscopicus var. limoneus, a broth of Bacillus subtilis
B2 also possessed strong α-glucosidase activity, and aspergillusol A was isolated from the
marine-derived fungus Aspergillus aculeatus. Therefore, research is still required to explore
potential novel α-glucosidase inhibitors to guide future medication development [24]. As-
pergillus terreus was originally studied in 1918, with its ubiquitous soil saprophyte subject
to a global distribution. It was isolated from both marine and terrestrial sources. Lovas-
tatin, a statin medication that inhibits 3-hydroxy-3-methylglutarylcoenzyme and one of
the FDA-approved chemical entities for treating hyperlipidemia and managing coronary
heart diseases, has been identified as a secondary metabolite of A. terreus [25]. Notably, the
species A. terreus is also a primary producer of reductase, which is known for its ability to
decrease cholesterol and is used to treat atherosclerosis and heart disease [26]. Recently,
aspulvinone E and butyrolactone I, as well as their analogs, were extracted from an ethyl
acetate extract of A. terreus; we previously reported that they may have potential inhibitory
activity against α-glucosidase [27]. As part of our research program on the utilization of
bioresources, we are virtually screening α-glucosidase inhibitors derived from A. terreus to
assess the structure–activity relationship.

The promising anti-diabetic activity of the marine fungus A. terreus, as well as the
current advances within the computational tools used for highly sophisticated and reliable
screening approaches, has propelled us to investigate the fungus-isolated metabolites used
for novel drug discovery and guidance toward prospective lead optimization and develop-
ment. Using a chemical library of literature reporting on A. terreus-isolated metabolites,
we conducted a multi-stage structure-based virtual screening through escalating precision
molecular docking protocol at the α-glucosidase canonical pocket. Employing ligand-based
approaches for the 11 top-docked hits proceeded throughout the comprehensive investiga-
tion of the hits’ pharmacokinetics profiles, physiochemical characterization, and obedience
to the gold standard of Lipinski’s rule of five, in addition to both toxicity and mutagenicity
studies. Finally, the thermodynamic behaviors of these 11 hits, as compared to the reference
market drug, were evaluated through a 200 ns explicit molecular dynamic simulation
used for validating their complex stability and providing valuable insights guiding future
candidate development and optimization.

2. Materials and Methods
2.1. Structure Preparation

The atomic structure of the human intestinal maltase-glucoamylase α-glucosidase
enzyme (hiMGAM) was sourced from the RCSB Protein Data Bank (PDB) with an entry
ID of 2QMJ (https://www.rcsb.org/structure/2QMJ; (access on 24 November 2022)) [28].
The deposited structure comprises 870 total residues within an asymmetric monomeric-A1
chain, being solved in terms of an X-ray crystallographic technique applied at a high-
resolution index of 1.90 Å and bounded to the non-hydrolyzable target inhibitor, acarbose.
The downloaded protein was structurally prepared using the AutoDock Vina tool package
v1.2.0 (Scripps Research Institute, La Jolla, CA, USA) by adding the polar and non-polar
hydrogens missing from the X-ray crystallized PDB file, as well as assigning the Gasteiger
partial charges of the whole protein [29]. Co-crystallized water/solvent/ion molecules
were stripped out of the structure to permit the free docking of new ligands within the

https://www.rcsb.org/structure/2QMJ
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target’s active site. The prepared target was converted into a pdbqt.file extension to be
saved for later usage.

The compound library was constructed using our preliminary survey and was used
for identifying A. terrus-isolated compounds, which finally comprised the 276 identified
structurally diverse chemical isolates. These compounds were extracted from 3571 jour-
nal articles spanning 286 journal titles. Identified metabolites were finally crosschecked
through open-access databases: the Collection of Open Natural Products (COCONUT;
https://coconut.naturalproducts.net/; (access on 25 November 2022)) and PubChem
(https://pubchem.ncbi.nlm.nih.gov/; (access on 28 November 2022)). All ligands were
built and converted into 3D-structural fashions via the ChemDraw/ChemBioOffice v19.1
package (PerkinElmer, Waltham, MA, USA), relying on the ligands’ respective isomeric
SMILES strings obtained from the PubChem chemical library. Compounds were then
energy minimized under a hybrid forcefield combining empirical and knowledge-based
functions at pH 7.4 using the AutoDock tool package, where the forcefield is well pa-
rameterized for the gas-phase small organic molecules of the medicinal chemistry during
strong performances [30]. The prepared and minimized ligands were finally converted into
pdbqt.files, using the OpenBabel tool v.2.3.1 (National Supercomputer Centre, Linköping,
Sweden) [31] for their subsequent molecular docking virtual screening at the hiMGAM
target protein.

2.2. Molecular Docking-Driven Virtual Screening

Virtual screening for the 265 natural isolates proceeded through a multi-stage molec-
ular docking simulation on the AutoDock Vina 1.2.0 platform, applying the Lamarckian
genetic algorithm and empirical/knowledge-based hybrid scoring function under flexible
ligand–rigid receptor docking protocol [32]. The initial filtering stage involved a rapid
structure-based virtual screening protocol with reasonable computational expenditure for
the whole 276 metabolites, with the exhaustiveness parameter at AutoDock vina being
set at a value of 8. Later, the filtered compounds were redocked under two sequentially
higher exhaustiveness values of 32 and 50 for obtaining the final best-docked compounds
of the best-predicted biological activity regarding the most consistent docking findings [33].
The computational workflow was conducted on a Dell® Precision 7920 (Dell Technologies,
Irvine, CA, USA) equipped with Intel® Xeon-Gold 5220R 4.0 GHz Turbo and Dual Nvidia®

Quadro-RTX 5000, 16GB professional graphics and VirtualLink (XX-20T).
Setting the binding site for docking was guided by the information obtained from

the co-crystallized ligand bounded to the hiMGAG target protein. A grid docking box
was created to accommodate all essential amino acids being viewed at the deposited com-
plex file, as well as those being reported as crucial for the anchoring of small molecule
ligands [28,34–36]. Using the grid generation tool within AutoDock, a grid box was
constructed at the center atom of the co-crystallized ligand, with an external size of
80 Å × 80 Å × 80 Å and 0.38 Å grid-point spacing along the XYZ-cartesian coordinates.
Catalytic residues, as well as polar and non-polar amino acids within proximal contact to
acarbose, were all considered during the grid box construction. The grid box included the
following pocket-lining residues: Arg202–Asn207, Asn209, Thr211, Tyr214, Arg298, Tyr299,
Asp327, Ile328, Ile364, Trp441, Asp443, Met444, Ser448, Arg526, Trp539, Gly541, Asp542,
Asp571, Phe575–Leu577, Arg598, His600, Gly602, Gln603, Phe605, Val405, Trp406, Ser448,
Phe450, Leu473, and Asp474.

The selection of the best docking pose for promising lead compounds was considered
based on furnishing high dock binding energies, mean deviation values (RMSDs) below
a 2.0 Å cut-off in relation to the co-crystalline ligand, and significant interactions with
reported crucial pocket residues. The visual inspection and protein–ligand interaction
analysis for the furnished docking poses were conducted via PyMol2.0.6 Graphical Visu-
alization Software (SchrödingerTM, New York City, NY, USA). Validation of the docking
protocol was conducted through the redocking approach of the co-crystallized ligand under

https://coconut.naturalproducts.net/
https://pubchem.ncbi.nlm.nih.gov/
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similar docking conditions (exhaustiveness value 50) being adopted for the top-docked
investigated metabolites [37–40].

2.3. Molecular Dynamics Simulations

Exploring the thermodynamic nature and stability of the hit–protein complexes pro-
ceeded through molecular dynamics simulations using the GROMACS-2019 software
package under the CHARMM-36m ForceField [41,42]. Parameterization and topology files
of the investigated hits were automatically generated via the CHARMM-General Force-
Field program Param-Chem project [43]. Models were individually solvated in cubic boxes
of TIP3P under periodic boundary conditions at 10 Å minimum marginal distances [44].
Residues underwent standard ionization under physiological pH (7.4) and entire systems
were neutralized via potassium chloride ions via the Monte-Carlo algorithm [45]. The
steepest descent minimization (5 ps) [46] and subsequent double equilibration stages
(NVT and NPT ensembles, 100 ps foreach stage) were performed under constant force
(1000 kJ/mol·nm2) [47], maintaining the original protein fold and heavy atom restraining.
Production proceeded for 200 ns under the NPT ensemble and the particle-mesh Ewald
computed the long-range electrostatic interactions and LINCS for modeling all covalent
bonds [48,49]. Van der Waals forces and Coulomb’s non-bonded interactions were truncated
at 10 Å under the Verlet cut-off scheme [50]. Root-mean-square deviation (RMSD) and RMS
fluctuation (RMSF) were monitored across the whole of the simulation trajectories. The
molecular mechanics_Poisson–Boltzmann surface area (MM_PBSA) calculation estimated
the ligand’s binding-free energy based on the following equation [51]:

∆Ebinding = Ecomplex−(Eligand + Etarget)

∆Emolecular entity = Ebonded + (Evan der Waals + Eelectrostatic)−TS + Epolar Poisson-Boltzmann equation + γSASA + b

where, EX is the total free energy of the target, ligand, or ligand–target complex; TS is an
entropic contribution to free energy; γ and b are, respectively, surface tension and fitting
constants; and SASA is solvent-accessible surface area. Representation of the ligand–protein
conformations was furnished using the PyMol2.0.6 software.

3. Results and Discussion
3.1. Molecular Docking Analysis

Reported α-glucosidase activities regarding several A. terrus-isolated metabolites
within our literature review [52–59] have prompted us to further investigate the potentiality
of identifying novel uncited hits with potential biological activity. Additionally, exploring
the molecular aspects of the compound’s affinity/binding with human α-glucosidase bio-
logical targets through a sophisticated in silico study was rationalized in order to guide
future lead optimization and development. The adopted hiMGAM biotarget comprises
a unique architecture of the N-terminal trefoil P-type domain being followed by sand-
wiched β-sheet and catalytic [α/β]8-barrel domains, where the latter bears two inserts,
namely, insert-I and insert-II, that arise after respective β3 and β4 sheets (Figure 1A). At
the C-terminal, distinct β-sandwiched proximal and distal regions were depicted as being
comparable to the closely related glycoside hydrolase-31 family [60–63]. The substrate-
binding site, which was adopted here as the canonical docking pocket, mostly involves
the residues of the [α/β]8-barrel catalytic domain, as well as those at the N-terminus loop
(Pro200–Leu217), and portions of catalytic inserts-I/II being proximal to the [α/β]8-barrel
opening.

The adopted molecular docking protocol was confirmed as highly valid since a low
redocking RMSD value (1.585 Å) was obtained for the redocked co-crystalline ligand,
acarbose, in relation to its reference orientation/conformation within the crystallized
complex. Depicting RMSD values of less than 2.0 Å signifies that both the adopted dock-
ing algorithms and parameters were efficient for predicting relevant binding poses, the
thing that would ensure their respective biological significance and, in turn, the docking
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energies [37]. Performing a flexible ligand–rigid receptor docking workflow within the pre-
sented study by AutoDock Vina, rather than flexible receptor mode, was highly reasoned.
Preliminary analysis regarding the impact of ligand binding on target conformation was
conducted where superposition correlation analysis between the protein’s holo and apo
states (PDB ID: 2QMJ and 2QLY, respectively) illustrated non-significant conformational
changes (RMSDHolo aligned Apo = 0.131 Å), either locally or globally. Universal protein’s sta-
bility on ligand anchoring was further confirmed through data from the reported literature
and B-factor analysis, as well as having a shallow solvent-exposed substrate-binding site
with possible accommodation of two carbohydrate units [28,60,61]. All of these conferred
the negligible impact of local ligand induced-fitting on hiMGAM’s ternary protein structure,
at least at its macromolecular crystalline states [64].

The redocked protocol managed to replicate the ligand’s crystallized binding orienta-
tion/conformation where the acarbose’s initial double rings (i.e., non-reducing acarvosine
glycan unit) were anchored at the substrate’s binding-site pocket (Figure 1B). This pseudo-
non-reducible disaccharide scaffold depicted a wide range of polar interactions, with
Asp203, Asp327, Arg526, Asp542, and His600 sidechains comprising the pocket’s lining
residues at −1 and +1 carbohydrate subsites (Figure 1C). Additional water-mediated hy-
drogen bonding towards Asp443 and Asp571 was also depicted for the acarvosine unit.
The acarbose’s initial unit, valienamine aglycone, adopted the 2H3-half-chair conformation
at the −1 subsite, allowing the direction of non-hydrolyzable inter-glycosidic nitrogen
atom towards the target’s Asp542 sidechain to be used for hydrogen bond pairing. Both
Asp443 and Asp542 are the catalytic residues of hiMGAM based on substrate-trapping
studies, mutagenesis studies, and sequence-based studies, with GH-31 targets serving as
the catalytic nucleophile and acid/base amino acids, respectively. Targeting both residues
would halt the hydrolase catalytic machinery of hiMGAM [62]. At the +1 subunit pocket,
acarbose was stabilized by its C2 and C3 hydroxyl groups mediating polar interactions
with Arg526, Asp542, and Asp203 at the N-terminal β-sheet region. Interestingly, loop
residues at the N-terminus β sheet were reported with invariable interactions with several
carbohydrate-based ligands at all resolved GH-31 crystalline structures [60–63,65]. Re-
garding the acarbose’s terminal maltose units (+2 and +3 carbohydrate subunits), limited
polar interactions with the lining residues were depicted. These terminal scaffolds were
generally stabilized via crystal lattice packing and hydrogen bonding for +3 maltose with
Thr205 and Asn207, as well as water-bridge polar contacts between +2 maltose and Tyr605
at the pocket’s rim. Further acarbose–protein stability was provided via non-polar contacts
with hydrophobic residues: Tyr299, Ile328, Ile364, Trp406, Trp441, Phe450, Trp539, Phe575,
Ala576, Leu577, and Tyr605.

The structure-based virtual screening stage involved the multi-staged screening of
265 compounds (chemical library; Supporting Information Table S1) with uprising exhaus-
tiveness values and a 35% top-docking score selection criteria at each screening phase.
Exhaustiveness is an AutoDock Vina parameter controlling computational expenditures
during docking experiments by setting the numbers of independent runs starting from ran-
dom conformations of the docked ligands [32]. Smith et al. showed that an exhaustiveness
value of 8 is quite recommended for the initial screening stages providing moderate dock-
ing power (median RMSD from reference crystallographic structure) with cost-effective
computational expenses; however, the findings are likely to be distant from reality [33].
On the other hand, the authors showed higher docking powers (lower median RMSDs) as
the adopted exhaustiveness increased; yet, this was at the expense of the computational
resources. Little docking power improvements were depicted at exhaustiveness beyond
50, where median RMSDs were kept the same at exhaustiveness values of 75 and 100.
In these regards, we decided to perform three sequential docking protocols at respective
exhaustiveness values of 8, 32, or 50 while adopting 35% top-docking score selection criteria
at each stage for obtaining the final best-docked compounds of the best-predicted biological
activity at the most consistent docking findings. The selection percentage was suggested as
rational regarding the starting number of compounds for screening, as well as the reported
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sole success rate with AutoDock Vina [32,66,67]. Out of the initial 265 compounds in the
first phase, 94 resulted compounds were passed to the next screening stage. Usingexhaus-
tiveness values under 32 (medium precision) and another 35% selection filter, 33 top-docked
compounds were selected for the final screening phase (high precision). A final pool of
11 superior-docked unique compounds was identified as containing relevant hits with
maximum possibilities regarding their affinity towards the hiMGAM biotarget. None of
the identified compounds within the final bin showed less negative docking scores than
−8.00 Kcal/mol (Table 1). The highest and lowest docking scores (−11.79 Kcal/mol and
–8.75 Kcal/mol, respectively) were assigned for aspulvinone E (SK-55) and aspergillamide
A (SK-27), the respective vinylfuranone-based and tripeptide metabolites.
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Figure 1. Structure of hiMGAM (PDB ID: 2QMJ) bounded with acarbose co-crystalline and investi-
gated marine-based molecules. (A) Cartoon representation of hiMGAM crystallized with acarbose
(magenta spheres) illustrating structural regions within different colors: N-terminal P-type trefoil
region (deep salmon; Val7–Ser51), β-sheet sandwiched region (green; Tyr52–Thr269), catalytic [α/β]8-
barrel region (cyan; Pro270–Val651). Comprising insert-I (blue; Pro367–Thr416) and insert-II (red;
Val447–Lys492), C-terminal proximal region (orange; Ala652–Arg730), and the distal region (yellow;
Gly731–His870). (B) Overlayed binding modes of redocked (gray sticks) and crystallized acarbose
(magenta sticks) at the shallow substrate-binding pocket. (C) Binding mode of redocked acarbose;
residues located within a 4 Å radius of bound ligand are displayed as lines, numbered with their
sequence at the protein, and colored based on the respective domain location. Polar interactions
(hydrogen bonding) are shown as black dashed lines. (D) Overlayed binding modes of docked
compounds (gray lines) and crystallized acarbose (magenta sticks) at the shallow substrate-binding
pocket. Both the−1 and +1 carbohydrate subsites are displayed as arcs in, respective, blue and purple
colors.
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Table 1. Docking affinities and characteristics for ligand–target interactions at hiMGAM’s substrate
pocket across high-precision molecular docking protocol.

Compound Affinity Energy
(Kcal/mol)

H-bond Interactions
[Length (Å); Angle (◦); Binding

Residues]
Hydrophobic Interactions π-Driven Interactions

Acarbose
Co-crystalline

Ligand
ACA
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Compound 
Affinity 
Energy 

(Kcal/mol) 

H-bond Interactions 
[Length (Å); Angle (°); Binding 

Residues] 

Hydrophobic 
Interactions 

π-Driven 
Interactions 

Acarbose 
Co-crystalline 

Ligand 
ACA 

 

 

–11.388 

1.90; 158; Asp203 (sidechain CO−/6-
deoxyglucosyl 3′-OH) 

2.00; 159; Asp203 (sidechain CO−/6-
deoxyglucosyl 4′-OH) 

2.10; 163; Thr205 (sidechain OH/+3 
maltosyl 6′-OH) 

1.90; 171; Asp327 (sidechain 
CO−/valienamine 4′-OH) 

2.00; 165; Arg526 (sidechain =NHH/6-
deoxyglucosyl 3′-OH) 

2.00; 145; Arg526 (sidechain 
=NHH/valienamine 6′−OH) 
1.90; 143; Asp542 (sidechain 
CO−/glycosidic linker NH) 

1.70; 157; Asp542 (sidechain 
C=O/valienamine 6′−OH) 

2.30; 145; His600 (sidechain 
NH/valienamine 4′−OH) 

2.30; 137; His600 (sidechain 
NH/valienamine 5′−OH) 

 

Tyr299, Ile328, 
Ile364, Trp406, 

Trp441, Phe450, 
Trp539, Phe575, 
Ala576, Leu577, 

Tyr605 

— 

Lovastatin  
CID: 53232 

SK-25 
 

–9.071 

2.10; 157; Asp327 (sidechain O−/4-OH) 
3.10; 135; Asp327 (sidechain C=O/4-OH) 

2.00; 132; Arg526 (sidechain 
N+HH/lactone C=O) 

Tyr299, Ile328, 
Ile364, Trp406, 

Trp441, Met444, 
Phe450, Trp539, 

— 

–11.388

1.90; 158; Asp203 (sidechain
CO−/6-deoxyglucosyl 3′-OH)
2.00; 159; Asp203 (sidechain

CO−/6-deoxyglucosyl 4′-OH)
2.10; 163; Thr205 (sidechain

OH/+3 maltosyl 6′-OH)
1.90; 171; Asp327 (sidechain
CO−/valienamine 4′-OH)

2.00; 165; Arg526 (sidechain =
NHH/6-deoxyglucosyl 3′-OH)
2.00; 145; Arg526 (sidechain =
NHH/valienamine 6′−OH)
1.90; 143; Asp542 (sidechain
CO−/glycosidic linker NH)
1.70; 157; Asp542 (sidechain
C=O/valienamine 6′−OH)
2.30; 145; His600 (sidechain
NH/valienamine 4′−OH)

2.30; 137; His600 (sidechain
NH/valienamine 5′−OH)

Tyr299, Ile328, Ile364, Trp406,
Trp441, Phe450, Trp539,
Phe575, Ala576, Leu577,

Tyr605

—

Lovastatin
CID: 53232

SK-25
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Phe575, Ala576, 
Leu577, Tyr605 

Aspergillamide A 
CID: 6917355 

SK-27 
 

 
 

–8.747 

2.30; 132; Arg526 (sidechain 
N+HH/peptide C=O) 

2.10; 125; Asp542 (sidechain 
C=O/peptide NH) 

2.00; 167; His600 (sidechain NH/peptide 
C=O) 

Tyr299, Ile328, 
Ile364, Trp406, 

Trp441, Met444, 
Phe450, Trp539, 
Phe575, Ala576, 
Leu577, Tyr605 

Phe575 

Butyrolactone VI 
CID: 46930025 

SK-44 
 

 
 

–11.206 

2.50; 171; Asp203 (sidechain O−/phenolic 
OH) 

3.40; 129; Trp406 (sidechain NH/tail 
OH) 

2.00; 169; Asp443 (sidechain O−/tail OH) 
2.10; 160; Arg526 (sidechain 

N+HH/phenolic OH) 

Tyr299, Ile328, 
Ile364, Trp406, 

Trp441, Met444, 
Phe450, Trp539, 
Phe575, Ala576, 
Leu577, Tyr605 

Tyr299 
Trp406 

 

Aspulvinone E 
CID: 54675753 

SK-55 
 

 
 

–11.789 

2.10; 138; Asp327 (sidechain O−/phenolic 
OH) 

2.40; 160; Asp327 (sidechain 
C=O/phenolic OH) 

2.30; 167; Arg526 (sidechain 
N+HH/furan OH) 

3.50; 132; Asp542 (sidechain O−/furan 
OH) 

3.00; 139; His600 (sidechain 
NH/phenolic OH) 

Tyr299, Ile328, 
Ile364, Trp406, 

Trp441, Met444, 
Phe450, Trp539, 
Phe575, Ala576, 
Leu577, Tyr605 

Tyr299 
Trp406 
Phe450 
Phe575 

Aspulvinone F 
CID: 54728278 

SK-58 
 

 
 

–10.065 

2.10; 167; Asp327 (sidechain O−/2-
propan OH) 

3.10; 132; Asp327 (sidechain C=O/2-
propan OH) 

3.10; 139; Thr205 (sidechain OCH3/furan 
C=O) 

Tyr299, Ile328, 
Ile364, Trp406, 

Trp441, Met444, 
Phe450, Leu473, 
Trp539, Phe575, 
Ala576, Leu577, 

Tyr605 

Trp406 

Rubrolide S 
CID: 101885283 

SK-61 
–9.469 3.50; 124; Asp203 (sidechain 

O−/tautomeric furan C=O) 

Tyr299, Ile328, 
Ile364, Trp406, 

Trp441, Met444, 

Trp299 
Phe575 
Phe575 

–9.071

2.10; 157; Asp327 (sidechain
O−/4-OH)

3.10; 135; Asp327 (sidechain
C=O/4-OH)

2.00; 132; Arg526 (sidechain
N+HH/lactone C=O)

Tyr299, Ile328, Ile364, Trp406,
Trp441, Met444, Phe450,
Trp539, Phe575, Ala576,

Leu577, Tyr605

—

Aspergillamide A
CID: 6917355

SK-27

Metabolites 2023, 13, x FOR PEER REVIEW 9 of 31 
 

 

 
 

Phe575, Ala576, 
Leu577, Tyr605 

Aspergillamide A 
CID: 6917355 

SK-27 
 

 
 

–8.747 

2.30; 132; Arg526 (sidechain 
N+HH/peptide C=O) 

2.10; 125; Asp542 (sidechain 
C=O/peptide NH) 

2.00; 167; His600 (sidechain NH/peptide 
C=O) 

Tyr299, Ile328, 
Ile364, Trp406, 

Trp441, Met444, 
Phe450, Trp539, 
Phe575, Ala576, 
Leu577, Tyr605 

Phe575 

Butyrolactone VI 
CID: 46930025 

SK-44 
 

 
 

–11.206 

2.50; 171; Asp203 (sidechain O−/phenolic 
OH) 

3.40; 129; Trp406 (sidechain NH/tail 
OH) 

2.00; 169; Asp443 (sidechain O−/tail OH) 
2.10; 160; Arg526 (sidechain 

N+HH/phenolic OH) 

Tyr299, Ile328, 
Ile364, Trp406, 

Trp441, Met444, 
Phe450, Trp539, 
Phe575, Ala576, 
Leu577, Tyr605 

Tyr299 
Trp406 

 

Aspulvinone E 
CID: 54675753 

SK-55 
 

 
 

–11.789 

2.10; 138; Asp327 (sidechain O−/phenolic 
OH) 

2.40; 160; Asp327 (sidechain 
C=O/phenolic OH) 

2.30; 167; Arg526 (sidechain 
N+HH/furan OH) 

3.50; 132; Asp542 (sidechain O−/furan 
OH) 

3.00; 139; His600 (sidechain 
NH/phenolic OH) 

Tyr299, Ile328, 
Ile364, Trp406, 

Trp441, Met444, 
Phe450, Trp539, 
Phe575, Ala576, 
Leu577, Tyr605 

Tyr299 
Trp406 
Phe450 
Phe575 

Aspulvinone F 
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Trp406 

Rubrolide S 
CID: 101885283 

SK-61 
–9.469 3.50; 124; Asp203 (sidechain 

O−/tautomeric furan C=O) 

Tyr299, Ile328, 
Ile364, Trp406, 

Trp441, Met444, 

Trp299 
Phe575 
Phe575 

–8.747

2.30; 132; Arg526 (sidechain
N+HH/peptide C=O)

2.10; 125; Asp542 (sidechain
C=O/peptide NH)

2.00; 167; His600 (sidechain
NH/peptide C=O)

Tyr299, Ile328, Ile364, Trp406,
Trp441, Met444, Phe450,
Trp539, Phe575, Ala576,

Leu577, Tyr605

Phe575

Butyrolactone VI
CID: 46930025

SK-44
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Trp441, Met444, 
Phe450, Leu473, 
Trp539, Phe575, 
Ala576, Leu577, 

Tyr605 

Trp406 

Rubrolide S 
CID: 101885283 

SK-61 
–9.469 3.50; 124; Asp203 (sidechain 

O−/tautomeric furan C=O) 

Tyr299, Ile328, 
Ile364, Trp406, 

Trp441, Met444, 

Trp299 
Phe575 
Phe575 

–11.206

2.50; 171; Asp203 (sidechain
O−/phenolic OH)

3.40; 129; Trp406 (sidechain
NH/tail OH)

2.00; 169; Asp443 (sidechain
O−/tail OH)

2.10; 160; Arg526 (sidechain
N+HH/phenolic OH)

Tyr299, Ile328, Ile364, Trp406,
Trp441, Met444, Phe450,
Trp539, Phe575, Ala576,

Leu577, Tyr605

Tyr299
Trp406

Aspulvinone E
CID: 54675753

SK-55
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Leu577, Tyr605 

Aspergillamide A 
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2.10; 167; Asp327 (sidechain O−/2-
propan OH) 

3.10; 132; Asp327 (sidechain C=O/2-
propan OH) 

3.10; 139; Thr205 (sidechain OCH3/furan 
C=O) 

Tyr299, Ile328, 
Ile364, Trp406, 

Trp441, Met444, 
Phe450, Leu473, 
Trp539, Phe575, 
Ala576, Leu577, 

Tyr605 

Trp406 

Rubrolide S 
CID: 101885283 

SK-61 
–9.469 3.50; 124; Asp203 (sidechain 

O−/tautomeric furan C=O) 

Tyr299, Ile328, 
Ile364, Trp406, 

Trp441, Met444, 

Trp299 
Phe575 
Phe575 

–11.789

2.10; 138; Asp327 (sidechain
O−/phenolic OH)

2.40; 160; Asp327 (sidechain
C=O/phenolic OH)

2.30; 167; Arg526 (sidechain
N+HH/furan OH)

3.50; 132; Asp542 (sidechain
O−/furan OH)

3.00; 139; His600 (sidechain
NH/phenolic OH)

Tyr299, Ile328, Ile364, Trp406,
Trp441, Met444, Phe450,
Trp539, Phe575, Ala576,

Leu577, Tyr605

Tyr299
Trp406
Phe450
Phe575

Aspulvinone F
CID: 54728278

SK-58
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Phe575, Ala576, 
Leu577, Tyr605 

Aspergillamide A 
CID: 6917355 
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2.30; 132; Arg526 (sidechain 
N+HH/peptide C=O) 
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C=O/peptide NH) 
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2.10; 138; Asp327 (sidechain O−/phenolic 
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CID: 54728278 

SK-58 
 

 
 

–10.065 

2.10; 167; Asp327 (sidechain O−/2-
propan OH) 

3.10; 132; Asp327 (sidechain C=O/2-
propan OH) 

3.10; 139; Thr205 (sidechain OCH3/furan 
C=O) 

Tyr299, Ile328, 
Ile364, Trp406, 

Trp441, Met444, 
Phe450, Leu473, 
Trp539, Phe575, 
Ala576, Leu577, 

Tyr605 

Trp406 

Rubrolide S 
CID: 101885283 

SK-61 
–9.469 3.50; 124; Asp203 (sidechain 

O−/tautomeric furan C=O) 

Tyr299, Ile328, 
Ile364, Trp406, 

Trp441, Met444, 

Trp299 
Phe575 
Phe575 

–10.065

2.10; 167; Asp327 (sidechain
O−/2-propan OH)

3.10; 132; Asp327 (sidechain
C=O/2-propan OH)

3.10; 139; Thr205 (sidechain
OCH3/furan C=O)

Tyr299, Ile328, Ile364, Trp406,
Trp441, Met444, Phe450,
Leu473, Trp539, Phe575,
Ala576, Leu577, Tyr605

Trp406
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H-bond Interactions
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Hydrophobic Interactions π-Driven Interactions
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2.10; 145; Asp327 (sidechain O−/phenolic 
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Phe450, Trp539, 
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Leu577, Tyr605 

Butyrolactone I 
4’’’’-Sulfate 

CID: 91935887 
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–11.039 

2.00; 173; Thr205 (sidechain 
OCH3/phenolic OH) 

3.40; 168; Trp406 (sidechain NH/S-O−) 
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OH) 
2.00; 126; Asp542 (sidechain O−/S-OH) 

2.50; 170; Asp542 (sidechain C=O/S-OH) 
3.30; 168; His600 (sidechain NH/S=O) 

Tyr299, Ile328, 
Ile364, Trp406, 

Trp441, Met444, 
Phe450, Trp539, 
Phe575, Ala576, 
Leu577, Tyr605 

Trp406 

(+)−Asperteretone F 
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–9.847 

2.60; 157; Asp327 (sidechain O−/phenolic 
OH) 

2.60; 171; Arg526 (sidechain 
N+HH/phenolic OH) 

3.20; 146; His600 (sidechain NH/furan 
C=O) 

Tyr299, Ile328, 
Ile364, Trp406, 

Trp441, Met444, 
Phe450, Trp539, 
Phe575, Ala576, 
Leu577, Tyr605 

Tyr299 
Phe575 

12,15,25,28-
tetrahydroxyergosta-

4,6,8(14),22-tetraen-3-one 
SK-132 

 

 
 

–10.184 

2.10; 159; Asp203 (sidechain O−/C15 
βOH) 

2.90; 124; Asp203 (sidechain C=O/C15 
βOH) 

2.40; 122; Asp327 (sidechain C=O/C25 
OH) 

1.90; 159; Asp443 (sidechain O−/C26 
OH) 

Tyr214, Tyr299, 
Ile328, Ile364, 

Trp406, Trp441, 
Met444, Phe450, 
Val451, Trp539, 
Phe575, Ala576, 
Leu577, Tyr605 

— 

Terrelumamide B 
CID: 139586668 

SK-173 
 

 
 

–11.565 

2.70; 141; Asp203 (sidechain O−/CH2OH) 
2.30; 121; Asp203 (sidechain 

C=O/CH2OH) 
2.20; 158; Thr205 (sidechain 

OH/benzamide C=O) 
3.10; 126; Asp327 (sidechain 

COO−/tautomeric 2-C=O/Enol) 
1.90; 128; Arg526 (sidechain 

N+HH/tautomeric 4-C=O/Enol) 

Pro206, Tyr214, 
Tyr299, Ile328, 
Ile364, Trp406, 

Trp441, Met444, 
Phe450, Trp539, 
Phe575, Ala576, 
Leu577, Tyr605 

Tyr299 
Trp406 
Phe575 

–9.469

3.50; 124; Asp203 (sidechain
O−/tautomeric furan C=O)
2.10; 145; Asp327 (sidechain

O−/phenolic OH)

Tyr299, Ile328, Ile364, Trp406,
Trp441, Met444, Phe450,
Trp539, Phe575, Ala576,

Leu577, Tyr605

Trp299
Phe575
Phe575

Butyrolactone I
4′ ′ ′ ′-Sulfate

CID: 91935887
SK-72
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Moving towards the binding modes of the 11 hits, all ligands depicted favored an-
choring at the hiMGAM’s substrate pocket (Figure 1D). The polar hydrogen bond warhead
within the docked compounds predicted deep insertion within the –1 carbohydrate sub-
pocket; meanwhile, the rest of the molecules were directed outwards, reaching towards
the +2 and/or +3 subpockets. These depicted binding poses resemble a bunch of flowers
emerging from a glass vase. Interestingly, the docked compounds depicted significant over-
lay over the characteristic conformation/orientation profile of the co-crystallized ligand.
Terminal scaffolds of short-structure ligands, including lovastatin (SK-25), aspergillamide
A (SK-27), butyrolactone VI (SK-44), aspulvinone E (SK-55), rubrolide S (SK-61), butyro-
lactone I 4′ ′ ′ ′-sulfate (SK-72), (+)-asperteretone F (SK-119), and terrelumamide B (SK-173),
managed to only extend towards at the +2 carbohydrate subpocket showing relevant
superimpose with the first maltose ring of the acarbose molecule. On the other hand,
compounds with more extended structures, such as aspulvinone F (SK-58), 12,15,25,28-
tetrahydroxyergosta-4,6,8(14),22-tetraen-3-one (SK-132), and cytochalasin Z11 (SK-182),
depicted favored stretching of their terminal moieties towards the terminal acarbose’s
maltose ring at the +3 carbohydrate subpocket. Owing to the solvent-exposed nature of the
terminal subpockets, lateral substitutions on the compounds’ core skeletons were freely
oriented in a way that allowed minimal potential steric hindrances toward the target’s
surface. The latter could be translated into favored ligand binding with potential high-
affinity/binding energy profiles. It was firstly suggested that an extended ligand would be
assigned for higher docking scores owing to their large binding surface of contacts, mostly
guided via hydrophobic forces. However, several small-sized compounds (SK-44, SK-55,
and SK-72) managed to secure their place as highly favored docked compounds. The latter
differential docking scores highlight the significant role of polar contacts with pocket-lining
residues on the overall docking scores.

Comprehensive residue-wise ligand/target interaction analysis showed wide-range
polar interactions for the top-docked compounds (Table 1 and Figure 2). Both SK-55 and
SK-173 depicted the most extended hydrogen bonding, with pocket residues including
Asp327 and His600 of the –1 carbohydrate subpocket, as well as Arg526 and catalytic
Asp542 within the +1 subsite. Additional stability was granted for these two compounds
through extended hydrophobic π-mediated interactions towards Tyr299, Trp406, Phe450,
and/or Phe575 at close distances ≤ 5.00 Å. Both polar and non-polar interactions would
determine the high predicted docking-binding energies of both compounds (–11.789 and
–11.565 Kcal/mol) being even superior to that obtained for the acarbose co-crystallized
ligand (–11.388 Kcal/mol). Other ligands, such as SK-25, SK-58, SK-61, SK-119, SK-132,
and SK-182, managed to achieve deep anchoring at −1 carbohydrate subsite, furnishing
polar contacts with catalytic Asp327 ± His600. The latter observation was suggested for
the almost-linear conformation of these ligands’ polar heads, where steric clashes with
surrounding pocket residues were limited, allowing the heads’ deep insertions. On the
other hand, other ligands exhibited bulkier substitutions, which could not enable proper
orientation for these ligands’ polar heads to achieve relevant contacts with catalytic residues
at –1 subsite. In return, only the more-linear ligands achieved relevant polar contacts with
+1, +2, and even +3 carbohydrate subpockets. This was obvious with SK-44 and SK-72
predicting polar contacts with Asp203, Thr205, and/or Trp406 sidechains. On the contrary,
the tripeptide ligand SK-27 failed to achieve such a polar contact pattern and, thus, was
assigned with fair docking-binding energy (–8.747 Kcal/mol).
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Figure 2. Predicted binding modes of docked Asperigellus terreus-isolated compounds at the 
hMGAM binding site: (A) lovastatin (SK-25), (B) aspergillamide A (SK-27), (C) butyrolactone VI (SK-
44), (D) aspulvinone E (SK-55), (E) aspulvinone F (SK-58), (F) rubrolide S (SK-61), (G) butyrolactone 
I 4’’’’-sulfate (SK-72), (H) (+)-asperteretone F (SK-119), (I) 12,15,25,28-tetrahydroxyergosta-
4,6,8(14),22-tetraen-3-one (SK-132), (J) terrelumamide B (SK-173), (K) cytochalasin Z11 (SK-182). 
Residues located within a 4 Å radius of the bound ligand are displayed as lines, numbered with 
their sequence at the protein, and colored based on the respective domain location. Polar interac-
tions (hydrogen bonding) are shown as black dashed lines. (L) Representing predicted inhibition 
constant (Ki) with ligand’s efficiency (LE) of the top-docked identified hits. Heat maps shift darker 
towards the higher affinity ligands (lower µM concentrations) and most likely predicted hits (higher 
LE values). 

Accumulated evidence from GH-31 family homologs and lysosomal α-glucosidase 
crystalline structures showed that paucity is mainly associated with the –1 and +1 subsites; 
whereas, productive substrate-binding sites had quite a moderate impact on +3 subsite 
residues on ligand’s inhibition profiles [60–63,65]. However, we suggested that binding to 
these +3 carbohydrate subsite residues could, to some extent, compensate for the ligand’s 
retraction-docking mode from the −1 subsite since relatively high docking scores are still 
achieved with these ligands. Another good binding scenario was seen with lengthy highly 
extended structured compounds, such as SK-58, SK-132, SK-72, and SK-173, where they 
managed to stretch across the –1 subsite and up to the +3 subsite, achieving polar contacts 
with several subsite residues. Other than the polar contacts, the hydrophobic contacts 
with investigated ligands were almost consistent, including non-polar interactions with 
Tyr299, Ile328, Ile364, Trp406, Trp441, Met444, Phe450, Leu473, Trp539, Phe575, Ala576, 
Leu577, and/or Tyr605. Nevertheless, the π-mediated hydrophobic interactions were dif-
ferential among the docked ligands, where aromaticity within the ligand’s architecture 
was crucial for such binding. Incorporating aromatic/heterocyclic scaffolds was beneficial 
for depicting several π–π or π–H contacts that boosted ligand-stabilized binding being 
observed with several compounds. On the opposite side, lacking aromaticity, as with 
lovastatin and an ergosterol-based metabolite, was translated to moderate docking-bind-
ing energies. Briefing all docking findings has led to suggesting a prospective strategy for 
structural optimization and structure pharmacophore for better hiMGAM binding, where 

Figure 2. Predicted binding modes of docked Asperigellus terreus-isolated compounds at the hMGAM
binding site: (A) lovastatin (SK-25), (B) aspergillamide A (SK-27), (C) butyrolactone VI (SK-44),
(D) aspulvinone E (SK-55), (E) aspulvinone F (SK-58), (F) rubrolide S (SK-61), (G) butyrolactone I
4′ ′ ′ ′-sulfate (SK-72), (H) (+)-asperteretone F (SK-119), (I) 12,15,25,28-tetrahydroxyergosta-4,6,8(14),22-
tetraen-3-one (SK-132), (J) terrelumamide B (SK-173), (K) cytochalasin Z11 (SK-182). Residues located
within a 4 Å radius of the bound ligand are displayed as lines, numbered with their sequence at the
protein, and colored based on the respective domain location. Polar interactions (hydrogen bonding)
are shown as black dashed lines. (L) Representing predicted inhibition constant (Ki) with ligand’s
efficiency (LE) of the top-docked identified hits. Heat maps shift darker towards the higher affinity
ligands (lower µM concentrations) and most likely predicted hits (higher LE values).
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Accumulated evidence from GH-31 family homologs and lysosomal α-glucosidase
crystalline structures showed that paucity is mainly associated with the –1 and +1 subsites;
whereas, productive substrate-binding sites had quite a moderate impact on +3 subsite
residues on ligand’s inhibition profiles [60–63,65]. However, we suggested that binding to
these +3 carbohydrate subsite residues could, to some extent, compensate for the ligand’s
retraction-docking mode from the −1 subsite since relatively high docking scores are still
achieved with these ligands. Another good binding scenario was seen with lengthy highly
extended structured compounds, such as SK-58, SK-132, SK-72, and SK-173, where they
managed to stretch across the –1 subsite and up to the +3 subsite, achieving polar contacts
with several subsite residues. Other than the polar contacts, the hydrophobic contacts with
investigated ligands were almost consistent, including non-polar interactions with Tyr299,
Ile328, Ile364, Trp406, Trp441, Met444, Phe450, Leu473, Trp539, Phe575, Ala576, Leu577,
and/or Tyr605. Nevertheless, the π-mediated hydrophobic interactions were differential
among the docked ligands, where aromaticity within the ligand’s architecture was crucial
for such binding. Incorporating aromatic/heterocyclic scaffolds was beneficial for depicting
several π–π or π–H contacts that boosted ligand-stabilized binding being observed with
several compounds. On the opposite side, lacking aromaticity, as with lovastatin and an
ergosterol-based metabolite, was translated to moderate docking-binding energies. Briefing
all docking findings has led to suggesting a prospective strategy for structural optimization
and structure pharmacophore for better hiMGAM binding, where optimal ligands are
those with extended architecture and linear polar heads, allowing deep insertion near the
catalytic residues. Aromaticity in ligands would add extra stability trade and a competitive
advantage over the natural substrates, other than being beneficial in balancing the ligand’s
hydrophilic/hydrophobic profile for improved pharmacokinetics/safety profiles [68].

Further bioactivity and lead potentiality assessments proceeded through estimat-
ing metricscomprising pharmacodynamic indices with/without molecular descriptors
(Figure 2L). The predicted ligand–target inhibition constant (Ki) was estimated, relying
on the obtained Autodock Vina binding energies (Ki = 10binding energy÷1.366), and lower Ki
values down to micromolar ranges were considered relevant for hit/lead consideration [69].
Identified compounds were predicted with low/sub-micromolar activities, with Ki values
ranging between 0.002 and 0.395 µM concentrations [70]. Other derivable metrics regard-
ing ligand efficiency (LE) were estimated within the equation (LE = −binding energy ÷
number of heavy atoms), where qualified hits were reported beyond a threshold cut-off at
0.30 [71,72]. All of the natural-isolated metabolites identified from the virtual screening
approach depicted values that surpassed the cut-off value, the thing that confers their
suitability for being relevant hits that are worth further investigation.

3.2. Pharmacokinetics Profiling and Biological-Activity Prediction

The compound’s pharmacokinetic characteristics and safety profiles have been con-
sidered the main barriers against the success of candidate drugs throughout the phase-II
clinical trials. In these regards, the potentiality of the 11 obtained hits to serve as relevant
leads and prospective clinical candidates were evaluated by determining their respective
ADME/Tox profiles and drug-likeness indices using QikProp V3.5 (Schrödinger, NY, USA)
and TEST V4.2.1 (Toxicity Estimation Software Tool; Environmental Protection Agency,
Pennsylvania, DC, USA) [73]. Several physical and pharmaceutical-relevant descriptors
were offered by QikProp (Table 2) [74–78] while the compound’s toxicity/safety profiles
were further evaluated through the AMES/mutagenicity test and the rat’s oral lethal dose 50
(LD50) calculations provided by TEST software. Almost all identified hits were considered
promising clinical candidates with fewer potential attritions throughout prospective clinical
trials that obeyed the famous Lipinski’s rule of five (RO’5) as the gold standard for clinical
candidate success [79–82]. Moving towards the ADME predicted values, the reference lig-
and experienced a high polar index (PlogS –2.13) and minimal lipophilicity characteristics
(PlogP –5.51), the thing that was translated into poor gut membrane permeations (PPCaco
0.05 nm/sec; 0% oral bioavailability). The findings of this pseudo-polysaccharide drug



Metabolites 2023, 13, 942 13 of 26

were inconsistent with the acarbose’s reported experimental values [83]. Depicting such
indices is highly rationalized since the drug should concentrate within the gut cellular
compartment rather than being absorbed into the blood circulation for a mediating systemic
effect. Achieving high drug concentrations at the gut cellular/brush border compartment
is considered beneficial for exerting focused inhibition activity on the α-glucosidase en-
zymes and encountering glucose absorption. Comparable polar/hydrophobic profiles were
depicted via the identified hits, SK-72 and SK-173, where negative-valued hydrophobic
indices were associated with poor oral bioavailability values (39% and 40%, respectively),
as well as gut-membrane permeation. Increased lipophilic characters with values (PlogP
from 1.00 to 2.50), as seen with SK-44, SK-55, SK-132, and SK-182, were translated into
improved oral bioavailability (~ 80%) and gut–membrane permeation. The most lipophilic
hits, SK-25, SK-27, SK-58, and SK-119, were assigned with the highest oral-absorption
profiles.

Table 2. In silico pharmacokinetic and safety (ADME/TOX) a characteristics for screening hits and
co-crystallized ligands.

Comp.

“RO’5”
HBD;

HBA; θ;
M.Wt.

PlogP
−2.0 to 6.5

PlogS
mol/dm3

−6.5 to 0.5

PPCaco
nm/sec

<25 Poor
>500 Great

%HOA
<25%
Poor
>80%
Great

PPMDCK
nm/sec

<25 Poor
>500 Great

PlogBB −3.0
to 1.2

PlogKHSA
−1.5 to 1.5

PlogHERG
Significant

Block > –5.0

Oral
Rat

LD50 mg/Kg

AMES
Mutagenesis

(Predicted
Index)

SK-25 1; 5; 7;
404.55 4.34

−4.57
(Moderate
solubility)

717.35 95% 345.47 −1.03 0.71 –4.78 556.97 Negative
(0.07)

SK-27 3; 7; 10;
474.61 3.33

–4.91
(Moderate
solubility)

1146.17 100% 792.72 –0.79 0.04 –2.47 779.48 Negative
(0.18)

SK-44 5; 9; 8;
401.17 2.43 –3.70

(Soluble) 356.17 82% 804.20 –0.81 0.65 –4.32 203.09 Negative
(0.48

SK-55 3; 5; 2;
296.28 2.60 –3.61

(Soluble) 363.07 83% 921.33 –0.77 0.54 –4.98 110.64 Negative
(0.32)

SK-58 3; 7; 3;
464.51 4.81

–5.28
(Moderate
solubility)

893.74 89% 633.46 −0.88 0.79 –6.70 334.28 Negative
(0.32)

SK-61 1; 4; 2;
348.40 4.72

–4.82
(Moderate
solubility)

623.18 91% 296.72 –0.89 0.78 –5.98 320.74 Negative
(0.25)

SK-72 2; 10; 9;
504.51 –0.29

–5.00
(Moderate
solubility)

5.51 39% 2.28 –2.75 –0.40 –3.52 1520.26 Negative
(0.22)

SK-119 2; 6; 6;
394.42 4.23

–4.79
(Moderate
solubility)

229.29 83% 100.69 –1.48 0.02 –5.16 486.10 Negative
(0.04)

SK-132 4; 5; 5;
456.62 2.27 –3.31

(Soluble) 123.45 84% 51.57 –1.91 0.50 –4.62 1900.59 Negative
(0.07)

SK-173 4; 13; 7;
442.39 –0.82

–1.99
(High

solubility)
16.21 40% 5.75 –3.08 –0.46 –6.09 2008.27 Negative

(0.35)

SK-182 4; 6; 7;
427.54 1.74 –3.29

(Soluble) 73.14 73% 62.69 –1.98 –0.14 –4.15 1033.63 Negative
(0.26)

Acarbose 14; 19; 9;
645.61 –5.51

–2.13
(Extreme
solubility)

0.05 0% 0.01 –5.57 –2.54 –5.62 24,405.50
23,989.66 *

Negative
(0.03)

a RO’5; hydrogen-bond donors (HBDs) below or equal to 5, hydrogen bond acceptors (HBAs) below or equal to
10; rotatable bonds (θ) below 5, M.Wt below 500 g/mol, logPo/w < 5. PlogPo/w partition coefficient at system
octanol/water; PlogS aqueous solubility; PPCaco permeation across Caco2-cells modeling the gut–blood barrier;
PlogBB blood–brain partition coefficient modeling blood–brain barrier”; PPMDCK permeation across Madin–
Darby’s dog kidney cells modeling the blood–brain barrier; PlogKHSA human serum albumin conjugation; %
HOA human oral absorption in percentages; PlogHERG half-maximal inhibition concentration for the human
ether-a-go-go-related gene (HERG)_Kv11.1-channel blockage. Recommended and/or accepted values via QikProp
software. * Deposited experimental data within TEST software.

Notably, values of PPMDCK modeling blood–brain barrier permeation were also
modest for the highly polar/poor hydrophobic hits (SK-72, SK-132, SK-173, SK182), the
things that conferred minimal impact on the CNS compartment. Predicted reduced CNS
side effects were also observed through the estimated PlogBB permeations (high negative
values up to –3.00). Further safety analysis was highlighted for SK-25, SK-27, SK-44, SK-55,
Sk-72, SK-132, and SK-182 through low association with the plasma protein (PlogKHSA) and
blocking the cardiac HERG_Kv11.1 channels (PlogHERG) predicting values as preference.
On the contrary, other hits predicted potential cardiotoxic activity (PlogHERG > –5.0);
yet, this was not considered alarming for SK-173 where poor oral bioavailability profiles
were assigned. The same latter oral bioavailability/PlogHERG pattern was observed
with the reference ligand, the thing that ensured the safety of both SK-173 and acarbose
in relation to reported experiments. Combined safety profiles for the above-described
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ligand were further highlighted through the estimated AMES/mutagenicity test and use
of the oral lethal dose 50 (LD50) on rats, where the latter represents the compound’s
concentration (mg/kg) required for 50% rat death following per-oral administration or the
positive induction of colony growth with any Salmonella typhimurium strain [84]. The highly
polar/poor hydrophobic hits were assigned with the highest dose concentrations required
for killing half of the rats (1033.63 to 2008.27 mg/kg). Negative mutagenicity was depicted
for all of the investigated hits. Based on the above predicted kinetic findings, increasing
the compound’s polarity, as well as lowering hydrophobic characteristics, would be an
advent for gut brush border concentration and minimal toxicity profiles. Ligand hits, such
as SK-72, SK-173, and SK-182, were the best fitting regarding the profile. For the structural
optimization of other identified hits, balanced pharmacodynamics (docking findings) and
pharmacokinetics (ADME/Tox results) would need to be achieved via introducing ionizable
scaffolds furnishing increased polarity while possessing relevant aromatic characteristics
that are the advent for significant target affinity. Suggested scaffolds include tetrazole ring
and other relevant cyclic carboxylate-related bioisosteres.

3.3. Molecular Dynamics Simulation Analysis

The thermodynamic behavior of hiMGAM complexes with identified hits was investi-
gated in relation to the co-crystallized acarbose throughout explicit molecular dynamics
simulations. Both hits with promising pharmacokinetic profiles and those of flagged pa-
rameters were enrolled within the molecular dynamics study. This would provide valuable
insights relating to functional group-associated complex stability, the thing that would
guide future structural modification and lead optimization. This would provide molecular
insights in terms of target/ligand interactions under near-physiological conditions as well
as validate the predicted ligand’s affinity, in a way, and being more sophisticated than
flexible docking protocols [41,85,86]. In reference to corresponding initial structures, the
root-mean standard deviation (RMSD) trajectories were monitored for each simulated
protein and bounded ligand molecule; this allowed for investigating respective conforma-
tional/orientational alterations, as well as ensuring corresponding binding stability [87].
Generally, altered conformational profiles and compromised stabilities are correlated with
high protein RMSD values; whereas, ligands with excellent pocket accommodation corre-
spond to steady/small-valued ligand RMSD tones [88]. Typical thermodynamic behaviors
were depicted for the simulated proteins since carbon-alpha RMSDs showed elevation
across the initial times, owing to system relaxation, followed by leveled-off trajectories
around respective averages for more than half of the simulation runs. Interestingly, mon-
itored RMSDs for all ligand-bounded hiMGAM proteins were at relatively lower aver-
age values and less fluctuating trajectories as compared to the apo/unliganded protein
(3.50 ± 0.13 Å versus 3.69 ± 0.35 Å) (Figure 3A). The latter apo versus holo dynamic behav-
ior conferred the compactness and increase of stability for the complexed target proteins
upon ligand binding. It is worth mentioning that all holo hiMGAM proteins managed to
converge around a mean RMSD of 3.09 ± 0.12 Å for more than half of the simulation runs
(~130 ns). The latter is adequate with relevant protein stability and sufficient convergence,
as well as molecular dynamic validity, with no need for further time extensions.

Moving towards the sole ligand’s RMSDs, significant conferment/stability for the
simulated ligands within the bound target binding site has been depicted (Figure 3B). Across
the simulation runs, limited fluctuations and almost-steady trajectories were assigned for SK-44,
SK-55, SK-72, and SK-173 (4.96 ± 0.47 Å, 3.98 ± 0.46 Å, 4.56 ± 0.39 Å, and 4.17 ± 0.81 Å)
as compared to other simulated hits. Lower RMSD tones were assigned for SK-55 and
SK-173, which conferred optimum ligand-pocket confinement and minimal conforma-
tional/orientation alterations for the simulated ligands. Concerning the other simulated
hits, higher ligands’ RMSD tones and significant fluctuations were depicted across a few
time frame ranges (~ 6.64 ± 1.10 Å). This could confer relevant orientation shifts at high
RMSD trajectories, as well as compromised stability for the simulated ligand–target com-
plexes. However, all of these less-stable models almost showed a steady-off RMSD around
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a comparable average value (6.16 ± 0.41 Å), beyond the 100 ns times and until the end of
the simulation runs. Notably, the depicted RMSDs for all simulated hits never exceeded
three-fold the values of their respective bound hiMGAM target proteins after reaching
the respective simulation plateau (beyond 100 ns). This would confirm significant ligand
existence within the target pocket and relevant complex stability, as well as successful
protein convergence [89,90]. Regarding the co-crystallized ligand, acarbose’s RMSD trajec-
tories were of the lowest average value (2.83 ± 0.96 Å); yet, they had higher fluctuations
compared to top-stable hits (SK-44, SK-55, SK-72, and SK-173). The latter thermodynamic
behavior would highlight the beneficial role of aromatic scaffolds incorporated within the
top-stable hits. Providing significant hydrophobic π-mediated contacts could fortify the
ligand’s stability over just Van der Waals forces of interactions via glycosidic hydrocar-
bons. However, these scaffolds should be at relevant positions on the ligand’s skeleton
for achieving proper orientations and close-range contacts, as would be suggested for the
top-stable hits. The ligand-pocket accommodation was further confirmed by monitoring
the time evolution of ligand–target complex conformations and the ligand’s orientation
over the overlaid timeframes at the beginning and end of the simulation runs (Figure 3C–N).
Limited conformation/orientation changes were illustrated for the top-stable simulated
hits (SK-44, SK-55, SK-72, and SK-173), as well as the co-crystallized acarbose at the end of
the dynamic run; whereas, relevant alterations were noticed for the rest, particularly SK-27
and SK-119. This was consistent with the sole ligand’s RMSD tones.
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Figure 3. Thermodynamic stability of top-affinity A. terrus-isolated hits in the complex of the hiMGAM
target. (A) Alpha-carbon RMSDs for target protein; (B) sole ligand’s RMSDs, in terms of simulation
timeframes (ns). (C–N) Overlaid ligand-hiMGAM snapshots at initial and final timeframes; (C) SK-25,
(D) SK-27, (E) SK-44, (F) SK-55, (G) SK-58, (H) SK-61, (I) SK-72, (J) SK-119, (K) SK-132, (L) SK-173,
(M) SK-182, and (N) acarbose. Ligands (sticks) and bounded hiMGAM proteins (cartoons) are colored
green and red, with respect to 0 ns and 200 ns extracted frames.

Monitoring the RMS fluctuations (RMSFs) of the bound- (holo) and apo-target pro-
teins in relation to their alpha-carbon references provided further stability analysis. The
approach provided a dissection of the proteins flexibility/immobility characteristics, down
to their constituting amino acids [91]. RMSFs would permit us to grasp the residue-wise
dynamic behaviors at the protein’s binding pocket/vicinal loops, in addition to pinpoint-
ing the key amino acids for the ligand’s anchoring [92,93]. Difference root-mean-square
fluctuation (∆RMSF) was adopted as a better estimation of the protein’s local flexibility,
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which comprises the RMSF difference for each hiMGAM holo protein in relation to the apo
state (∆RMSF = apoRMSF—holoRMSF). Adopting a ∆RMSF cut-off value of 0.30 Å was
relevant for estimating the significant alterations within the protein’s structural movements,
meaning that residues depicting ∆RMSF beyond 0.30 Å illustrated limited mobility [94].
Typical dynamic behavior was depicted since there were higher immobility profiles for the
far amino terminal residues as compared to core ones, as well as for the carboxy-terminal
residues as compared to N-terminus (Figure 4). This was in good agreement with the molec-
ular dynamics nature of the isolated hiMGAM proteins isolated by Zhang et al. [95], in
addition to the B-factor analyses and conformational stability findings reported for several
crystallized hiMGAM structures [60–63,65]. These findings could ensure the validity of the
conducted molecular dynamics simulations, as well as the adopted protocol.
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Figure 4. Analysis of hiMGAM ∆RMSF trajectories across the entirety of the molecular dynamics
runs. Residue-wise flexibility contributions of the holo-target proteins are represented in relation
to the apo/unliganded state. ∆RMSF trajectories are represented as per the amino acid sequence
number (residues N-terminus Val7-to-His870 C-terminus).

As a general observation, trends of more positive or less negative ∆RMSFs were de-
picted for the residue-bound top-stable hits (SK-44, SK-55, SK-72, and SK-173) as compared
to other simulated hits or even the reference acarbose. This was most obvious across the
residue range Thr204-to-Gly208, showing ∆RMSFs reaching down to –1.57 Å, –2.18 Å, and
–2.61 Å for SK-25, SK-132 and acarbose, respectively. Other high-flexibility regions include
Gly533-to-Phe535, Ser376-to-Pro378, and Phe119-to-Ala123/Asp340-to-Lys345, being solely
depicted for SK-58, SK-25, and acarbose, respectively, inferring the negligible contribution
of such residues for ligand–protein stability. Several mobility regions being assigned to the
simulated acarbose model would further highlight the impact of acarbose’s fluctuations
on the stability of the protein’s tertiary structure, the thing that could be correlated to an
increased number of acarbose’s incorporated rotatable bonds as compared to all simulated
hits. It is worth noting that, most protein regions are within the positive ∆RMSF range, the



Metabolites 2023, 13, 942 18 of 26

thing that confirmed the gained stability of the hiMGAM proteins following the binding
of hit compounds. These insights were in agreement with the above-furnished RMSD
trajectory analysis.

The comparable preferential stability patterns above were illustrated down to the
dissected residue-wise fluctuations within each hiMGAM key binding domain and the
secondary structure/functional motifs (Table 3). The residues of the substrate’s binding site,
including Arg298, Tyr299, Asp327, Ile328, Phe575, Ala576, Leu577, His600, Gln603, and/or
Phe605, predicted recognized immobility profiles (∆RMSF up to 0.67 Å), the thing that
highlights their crucial role in ligand anchoring at the –1 sugar subsite. Wider residue-wise
stability ranges were assigned for SK-44, SK-44, SK-72, and SK-173 as compared to other
ligands. Regarding domain preferentiality, residue-wise rigidity/stability was in favor of
the catalytic GH-31 domain residues, as well as both inserted loops. Limited residues of
the N-terminal β-domain were suggested for a relevant role in stabilizing the simulated
ligands at the hiMGAM substrate-binding site. Based on the hydrophobic/hydrophilic
nature of the depicted immobilized residues, trends of polar residues were dominant for
stabilizing the acarbose–protein model as both polar and hydrophobic amino acids were
shown to be important for hit stability. This further highlights the beneficial role of the
incorporated aromatic scaffold for the hit’s pharmacodynamic preferentiality and affinity
towards the target.

Table 3. Difference RMSF a for bounded hiMGAM proteins across the 200 ns molecular dynamics
simulations.

Canonical
Domains

Comprising
Substrate
Pocket b

Residues SK-25 SK-27 SK-44 SK-55 SK-58 SK-61 SK-72 SK-119 SK-132 SK-173 SK-182 Acarbose

Arg202 0.01 0.15 0.03 0.12 –0.11 0.00 –0.38 0.09 –0.06 –0.09 0.07 –0.34
Asp203 −0.15 0.25 0.20 0.22 –0.03 –0.86 –0.38 0.14 –0.52 0.20 0.21 –0.40
Thr204 −0.06 0.19 0.17 0.19 –0.07 –0.76 –0.60 0.09 –1.18 0.07 –0.01 –0.76
Thr205 –0.02 0.12 0.01 0.22 0.10 –0.38 –0.68 0.11 –2.18 0.64 0.13 –1.42
Pro206 –1.57 0.02 –0.34 0.27 0.23 –0.29 –0.65 0.17 –2.10 0.89 0.03 –2.47
Asn207 –0.98 0.30 –0.39 0.41 0.50 –0.08 –0.78 0.35 –1.16 0.08 0.13 –2.61
Asn209 –0.14 0.29 0.15 0.66 0.61 0.44 –0.15 0.32 0.25 0.53 0.27 –0.58
Thr211 0.02 0.25 0.12 0.43 0.20 0.17 –0.20 0.00 0.36 0.24 –0.10 0.15

N-terminus
β-sheet domain

Tyr214 0.07 0.21 0.16 0.19 0.07 0.17 0.06 0.14 0.09 0.14 0.18 0.09
Arg298 0.31 0.52 0.52 0.57 0.66 0.59 0.47 0.56 0.59 0.46 0.27 0.30
Tyr299 0.52 0.45 0.49 0.55 0.59 0.58 0.44 0.43 0.56 0.33 –0.02 0.01
Asp327 0.38 0.13 0.38 0.46 0.48 0.26 0.34 0.35 0.34 0.33 0.28 0.40
Ile328 0.26 0.09 0.29 0.43 0.39 0.20 0.10 0.31 0.26 0.49 0.20 –0.24
Ile364 0.08 0.03 0.09 0.17 0.15 0.07 0.06 0.06 0.08 0.07 0.03 –0.02
Trp441 0.04 0.02 0.05 0.05 0.01 0.04 –0.01 –0.04 –0.03 0.03 0.03 –0.07
Asp443 0.08 0.11 0.10 0.06 0.08 0.12 0.02 0.12 0.00 0.15 0.10 –0.25
Met444 0.06 0.12 0.09 0.14 0.10 0.10 –0.20 0.11 0.07 0.16 0.14 –0.19
Ser448 –0.24 0.08 0.09 0.05 0.08 0.01 –0.13 0.14 0.05 0.07 0.13 –0.18
Arg526 0.31 0.07 –0.11 0.07 –0.05 –0.10 –0.15 –0.11 –0.05 –0.04 0.04 0.31
Trp539 0.15 –0.05 0.02 0.11 0.09 0.09 –0.13 0.04 0.10 0.08 0.27 0.10
Gly541 0.09 –0.21 –0.02 –0.22 0.05 0.10 –0.24 0.09 0.06 0.16 –0.12 –1.04
Asp542 0.42 0.03 0.19 0.09 0.06 0.15 0.10 0.02 0.02 0.10 0.08 0.43
Asp571 0.08 0.13 0.16 0.20 0.16 0.17 0.19 0.11 0.13 0.17 0.18 0.01
Phe575 0.32 0.15 0.48 0.16 0.36 0.42 0.56 0.29 0.30 0.54 0.31 0.14
Ala576 0.46 0.47 0.50 0.33 0.55 0.50 0.62 0.48 0.42 0.47 0.35 0.11
Leu577 0.44 0.61 0.53 0.42 0.55 0.61 0.67 0.55 0.42 0.55 0.45 0.16
Arg598 0.01 0.03 0.03 –0.04 0.10 0.04 0.02 0.06 0.00 0.04 0.06 –0.04
His600 0.33 0.12 0.45 0.51 0.21 0.23 0.12 0.13 0.13 0.21 0.19 0.33
Gly602 0.45 0.40 0.40 0.43 0.37 0.22 0.36 0.03 –0.09 0.46 0.27 –0.10
Gln603 0.56 0.54 0.38 0.64 0.19 0.55 0.48 0.27 –0.55 0.30 0.33 –0.27

GH-31 catalytic
domain

Phe605 0.40 0.50 0.44 0.45 0.39 0.44 0.43 0.23 –0.37 0.55 0.27 –0.27
Val405 0.08 –0.02 0.05 0.26 0.09 –0.09 0.42 –0.01 0.22 0.30 0.20 –0.07Insert-I catalytic

loop Trp406 0.32 0.06 0.14 0.39 0.11 –0.68 1.08 –0.31 0.49 0.44 0.57 –0.10
Ser448 –0.24 0.08 0.39 0.35 0.08 0.01 0.33 0.14 0.05 0.07 0.13 –0.18
Phe450 –0.11 0.01 0.37 0.31 0.00 0.08 0.25 0.14 0.16 0.10 0.20 –0.11
Leu473 0.21 0.27 0.18 0.34 0.44 0.47 0.37 0.50 0.12 0.49 0.28 –0.68

Insert-II
catalytic loop

Asp474 0.57 0.54 0.37 0.62 0.59 0.70 0.41 0.80 0.20 0.51 0.65 –0.68
a Estimated difference RMS fluctuations (∆RMSFs) were determined for each hit-bound hiMGAM protein in
relation to the apo/unliganded protein form. Residues showing significant immobility with a ∆RMSF ≥0.30 Å
cut-off are being shown in bold red text. b Domain sections are color coded as per their locations within the target
structure.
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The free binding energy for hit–protein complexes was estimated using the trajectory-
oriented molecular mechanics_Poisson–Boltzmann surface area (MM_PBSA) approach in
order to understand the binding nature, estimate affinity magnitudes, and pinpoint the
individual energy contribution of key pocket residues [96]. Typically, MM_PBSA is reported
with comparable accuracy to free-energy perturbations; however, this is achieved with
much lower computational expenders [51]. A single trajectory approach and SASA-only
model were adopted for free binding energy calculations, where higher negative binding
energy explains the preferential ligand’s affinity. Notably, the total binding energy of the
simulated SK-55 and SK-173 came to be higher than the acarbose reference hiMGAM inhibitor
exhibiting superior binding affinities (–103.46 ± 14.56 kJ/mol and –116.05 ± 21.13 kJ/mol
versus –99.60 ± 22.81 kJ/mol), as illustrated within Figure 5A. Relatively lower negative
free binding energies were deduced for SK-44 and SK-72 (–94.12 ± 25.83 kJ/mol and
–95.88± 21.74 kJ/mol, respectively) as much lower values were assigned for other simulated
hits (from –53.03 ± 16.66 kJ/mol and up to –86.69 ± 31.43 kJ/mol). The latter preferential
affinity patterns were in good translation for the previously described RMSD and RMSF
analysis, as well as preliminary docking results.

Dissecting the obtained binding-free energy and its contributing energy terms showed
a dominant energy contribution of the electrostatic interactions for acarbose reference.
The superior electrostatic potential is beyond five-fold that of the hydrophobic Van der
Waals contribution forces. This could be the reason for the wide range of polar oxygen-
related functionalities incorporated within acarbose structure in relation to its hydrocarbon
skeleton. Findings regarding electrostatic preferentiality were also reported by Mahmud
et al. through their investigation of natural phenolics as potential alpha-glucosidase
inhibitors [97]. Similar findings were seen through the molecular dynamic simulation of
apigenin-7-O-glucoside with an alpha-glucosidase target [98]. On the other hand, the top-
stable hits (SK-44, SK-55, and SK-72) showed almost-balanced electrostatic/hydrophobic
contributions since the energy terms were nearly comparable. This was suggested to
be related to their comparable hydrogen bonding group-to-aromatic ratios. This was
consistent with reported phthalimide-benzenesulfonamides, where these hybrids showed
great affinity towards alpha-glucosidase targets owing to their balanced hydrophobic/polar
profiles [99]. Notably, the ionizable top-stable hit, SK-173, showed preferential electrostatic
interaction compared to the hydrophobic Van der Waals forces, the thing that could be
related to its ionizable sulphonic acid group. On the contrary, the rest of the simulated
hits depicted superior Van der Waals forces over electrostatic interactions owing to their
dominant non-polar functionalities.

Regarding the penalty energy contributions, polar solvation energies reached their
highest values with acarbose at 211.60 ± 29.71 kJ/mol, followed by several hits, including
SK-132 and SK-58 (204.01 ± 7.32 kJ/mol and 210.23 ± 3.99 kJ/mol, respectively). Positive
solvation energy contribution is generally detrimental to ligand–protein binding since
binding is a solvent-displacement process [100]. Increased polar solvation energy for
acarbose could be the reason for oxygen functionalities. Despite being important for
furnishing polar contact with -1 and +1 sugar subsites, they can act as double blades
increasing solvation entropy since the target pocket is shallow and solvent-exposed [7,36].
On the other hand, increased ligand hydrophobicity for SK-132 and SK-58, particularly
through aromatic scaffolds, could rationalize a significant solvation penalty. Reported
evidence regarding the hydration network and accumulation of highly ordered water
molecules at the ligand’s hydrophobic surfaces were reported as significant for hampering
ligand–target binding and increasing solvation entropy [100,101]. It is worth mentioning
that the top-stable ligands showed relevant solvation penalty, with values ranging from
125.43 ± 22.07 kJ/mol for SK-55 and around 165.00 kJ/mol for SK-44, SK-72 and SK-173.
Despite illustrating such relevant penalties, depicting high contributions of hydrophobic
and electrostatic potentiality allowed reasonable overcompensation of solvation entropy
and final high total free binding energy profiles. Such findings further highlight the
structural postulation presented at docking and the ADME/Tox investigation, where
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providing balanced hydrophobic/polar structural features, as with the ionizable tetrazole
ring with aromatic/lipophilic features, would be able to minimize solvation penalty and
maximize binding affinities.

For gaining more insights concerning ligand–residue interactions, the binding-free
energy decomposition was applied to identify the key residues involved in the obtained
total binding-free energies [51]. Residues of the active binding site showed favored con-
tributions (high negative values) within the ligand–protein binding energies of almost all
ligands (Figure 5B). Pocket residues, such as Asp203, Arg298, Tyr299, Glu300, Asp327,
Asp329, catalytic Glu404, Asp443, Glu446, Arg526 catalytic Asp542, Asp571, and/or His600,
were depicted as important for complex stability showing high negative binding contri-
butions (≥ −3.00 kJ/mol). Several of these polar residues were of higher negative values
in systems of the top-docked hits, as well as the acarbose reference ligand. The depicted
ligand–residue pattern was in good agreement with reported molecular dynamics studies
for both nature-isolated and synthesized compounds [36,97–99,102]. On the other hand,
the energy contributions of several hydrophobic pocket residues, such as Trp299, Ile328,
Ile364, Val405, Trp406, Trp441, Val447, Trp539, and Phe575, were only significant for the
aromatic/hydrophobic hits (up to −10.27 kJ/mol for Trp406). Notably, fewer residues,
such as Arg202, Met444, Arg526, and Arg598, showed significant positive energy con-
tributions, inferring the repulsion forces and unfavored impact on the ligand’s stability.
It is worth mentioning that these energy residue-wise findings were consistent with the
above-described ∆RMSF hydrophobic/polar contact preferentiality.
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4. Conclusions

The outcomes of our study highlight the promising molecular interactions and affini-
ties of the marine-derived A. terreus isolates towards the human α-glucosidase target,
withholding potentiality as compared to acarbose, the market drug reference. Combined
molecular docking and dynamics simulations ensured the effective binding of the eleven
top-affinity hits, with predominant stabilities being assigned for butyrolactone VI (SK-44),
aspulvinone E (SK-55), butyrolactone I 4′ ′ ′ ′-sulfate (SK-72), and terrelumamide B (SK-173).
The top-promising molecules harbor a relevant polar hydrogen bond warhead, which
was relevant for deep insertion within the –1 carbohydrate subpocket and mediating in-
teractions with the catalytic residues. Additionally, having hydrophobic extended tail
groups has been advantageous for those outwards reaching towards the +2 and/or +3
subpockets, permitting extra stability. Relevant drug-likeness profiles and low toxicity
potentiality have been presented for most investigated hits through ligand-based in silico
pharmacokinetic ADME/Tox studies. Insights of increasing the compound’s polarity and
lowering the hydrophobic characteristics highlight a better gut brush border concentration
and minimal toxicity profiles for ligand hits SK-72, terrelumamide B (SK-173), and SK-182.
Thermodynamic stability highlighted the importance of the high energy contributions of
hydrophobic and electrostatic potentials for permitting the reasonable overcompensation
of solvation entropy, as well as furnishing final high total free binding energy profiles. In
consistency with docking and ADME/Tox studies, structural modifications for balanced
hydrophobic/polar structural features, as with an ionizable tetrazole ring or other car-
boxylate bioisosteres, would be able to minimize the solvation penalty and maximize
binding affinities. Prospective work concerning enhanced sampling simulation, in vitro
experimental studies, and animal model testing is required for optimizing and developing
clinical candidates based on the entitled A. terreus-derived promising hits.
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