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Abstract: Insects and microbial pathogens are ubiquitous and play significant roles in various
biological processes, while microbial pathogens are microscopic organisms that can cause diseases
in multiple hosts. Insects and microbial pathogens engage in diverse interactions, leveraging each
other’s presence. Metals are crucial in shaping these interactions between insects and microbial
pathogens. However, metals such as Fe, Cu, Zn, Co, Mo, and Ni are integral to various physiological
processes in insects, including immune function and resistance against pathogens. Insects have
evolved multiple mechanisms to take up, transport, and regulate metal concentrations to fight
against pathogenic microbes and act as a vector to transport microbial pathogens to plants and
cause various plant diseases. Hence, it is paramount to inhibit insect–microbe interaction to control
pathogen transfer from one plant to another or carry pathogens from other sources. This review
aims to succinate the role of metals in the interactions between insects and microbial pathogens. It
summarizes the significance of metals in the physiology, immune response, and competition for
metals between insects, microbial pathogens, and plants. The scope of this review covers these
imperative metals and their acquisition, storage, and regulation mechanisms in insect and microbial
pathogens. The paper will discuss various scientific studies and sources, including molecular and
biochemical studies and genetic and genomic analysis.
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1. Introduction

Insects and microbial pathogens carry out many essential biological functions because
they are present in varying amounts in nature [1]. Insects are a versatile group of organ-
isms occupying various ecological niches and are requisite for many reasons, including
pollination, decomposition, and pest control. However, some insects are pests that pose
significant economic and health risks to humans, animals, and plants.

Microbial pathogens, however, are microscopic organisms that can cause disease in
various hosts, including insects, humans, plants, and animals [2]. Insects and microbial
pathogens interact in a variety of ways. Some insect-specific microbial pathogens have
evolved to exploit their insect hosts’ unique physiological and behavioral properties [3].
Other pathogens have a broader host range and can infect multiple species of insects.
Insects, in turn, have evolved various mechanisms such as physical barriers, immune
responses, and behavioral adaptation to defend themselves against microbial pathogens [4].
The interactions between insects and microbial pathogens involve various physiological
and biochemical processes [5]. Metals are a critical factor that plays a crucial role in these
interactions. Moreover, the study investigated that metals are pertinent to many physiolog-
ical processes in insects, plants, and microbial pathogens, including digestion, respiration,
and immunity [6]. However, metals can also limit the growth and virulence of microbial
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pathogens and act as a defense mechanism for insects against infection [7]. Understanding
the role of metals in the interactions between insects and microbial pathogens can pro-
vide insights into the mechanisms of disease transmission and the development of new
strategies to control insect pests and microbial pathogens.

Extensive documentation highlights that metals are essential for various biological
processes and important for facilitating interactions among plants, animals, and their en-
vironment [8]. Metals involve physiological and biochemical processes, including energy
production, enzyme activation, and cellular signaling [9,10]. They also play an indispens-
able role as a cofactor in many proteins and enzymes, such as hemoglobin, myoglobin, and
cytochrome c, involved in respiration and other metabolic pathways [11]. However, various
studies have identified that metals play a crucial role in immunological reactions and act
as cofactors for enzymes accountable for producing reactive oxygen species (ROS) and
other antimicrobial compounds [12]. These metals have toxic effects on living organisms
when present in higher amounts. Metals toxicity can disrupt the structure and functions
of proteins and enzymes by binding to their functional groups nonspecifically [13]. Toxic
metals in higher concentrations produce higher ROS, which has been observed to produce
harmful effects on cells and tissues [14]. This review aims to draw together a range of
scientific studies and sources, including molecular and biochemical studies and genetic and
genomic analysis, on the role of metals mediating insect–microbial pathogen interactions,
as well as provide an overview to highlight the importance of metals in biological systems
and the potential applications of this knowledge for pest and disease control.

2. Role of Metals in Insects
2.1. Iron (Fe)

Iron (Fe) plays several vital roles in insects. It is an essential part of hemoglobin and
acts as a cofactor in several enzymes involved in various metabolic pathways, such as
respiration and energy production [15].

Fe is also crucial for insects’ proper development and growth, as it synthesizes proteins
and DNA [16]. The mechanism of Fe absorption in insects encompasses acidification of
the midgut, interaction with Fe-binding proteins like transferrin, direct uptake of heme,
and storage of excess Fe as ferritin [17]. Acidification of the midgut creates an acidic
environment that enhances Fe solubility, allowing for its absorption by gut epithelial
cells. Insects also utilize transferrin receptors on gut cells to facilitate the endocytosis of
Fe-transferrin complexes [18]. Blood-feeding insects can directly absorb heme from host
blood, which is transported across the gut epithelium for various physiological processes.
Excess Fe is stored in ferritin, acting as a Fe reservoir that can be utilized when Fe availability
is limited. These mechanisms ensure efficient Fe acquisition and utilization in insects
for essential physiological functions. It can also improve the insect immune system by
producing ROS to inhibit the growth of microbial pathogens [19].

Moreover, the study showed that a protein known as ferroportin helps transport
and regulate Fe in various types of cells, whether absorbed from the diet via intestinal
enterocytes, recycled by macrophages, or stored in hepatocytes. These proteins, such as
transferrin, cross the cell membrane to reach the plasma Fe carrier protein [20]. The precise
topology and mechanism of Fe transport through ferroportin are not well-understood,
and these are considered to be significant unresolved questions in Fe biology. Ferroportin
is abundant in specific cells known for Fe export, such as duodenal enterocytes, splenic
and hepatic macrophages, and to a lesser extent, hepatocytes [21]. It is also found in
the lung, renal tubules, and erythrocyte precursors in the bone marrow [22], although its
function in these locations is unclear. Ferroportin transports Fe into the bloodstream on the
basal side of enterocytes, and divalent metal transporters expressed on the luminal side of
enterocytes regulate Fe absorption in the gut. In the transferrin cycle, the divalent metal
transporter actively transfers Fe into enterocytes and is also expressed in macrophages
and endosomes [23]. The release of free Fe from the transferrin-receptor complex causes
a pH-mediated conformational shift in the endosomes, where it is then transported to
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the cytoplasm via a divalent metal transporter [24]. Serum transferrin, a member of the
transferrin superfamily of proteins, including ovotransferrin and lactoferrin, transports
Fe throughout the body. This export protein enables Fe efflux from macrophages and Fe
acquisition by enterocytes [25]. Heptaglobin binds hemoglobin to the Heme that is secured
by hemopexin. Circulating Hp can effectively manage moderate hemolysis, saturating at
1.5 g/L free Hb [26]. Hepatocytes and macrophages have receptors that uniquely recognize
the Hp/Hb complex, as shown in Figure 1.
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Figure 1. This figure illustrates the proteins recruited in the sequestration of Fe by host nutritional
immunity, as shown in (A). In contrast, (B) depicts the bacterial effectors in Fe retrieval.

Fe is an essential nutrient for the survival and growth of microbial pathogens, as it
is required for several critical physiological processes [27]. However, Fe is not readily
available in the host environment, as it is tightly bound to host proteins such as transferrin
and lactoferrin to prevent microbial growth [28]. Therefore, microbial pathogens have
evolved multiple strategies to harvest Fe from the host. One such strategy is the production
of siderophores, small molecules that chelate Fe and facilitate its acquisition from cells [29].
Many bacterial pathogens produce siderophores; some can even intercept siderophores
from other microbes. Another strategy is the expression of high-affinity Fe transporters,
which actively enable the pathogen to take up Fe from host proteins. However, the Gram-
positive pathogen Staphylococcus aureus expresses the ScaABC transporter, specific for
transferrin-bound Fe [30]. Siderophores are increasingly recognized for their contribution
to virulence beyond simple Fe chelation. They also act as signals that elicit a strong
host defense, promoting mitophagy, hypoxic responses, and cytokine production [31,32].
Therefore, microbial pathogens must overcome these obstacles to acquire sufficient Fe for
survival and virulence. Scrutinizing the mechanisms of Fe acquisition in pathogens is
crucial for developing novel antimicrobial strategies [33]. However, targeting siderophores
or Fe transporters could limit the growth and virulence of pathogens. For pathogenic
bacteria, obtaining sufficient Fe during and after infection inside the host is one of the
main barriers. At the host–pathogen interface, an analytical structure describes the flow of
signaling and the struggle for shared resources between the host and pathogen, and host–
pathogen competition for this valuable transition metal take place, as shown in Figure 2.
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In addition, Fe-based therapies, such as Fe chelation therapy, have also been studied as
potential treatments for infectious diseases [34]. However, the efficacy of such therapies
has yet to be determined, as Fe is integral to host physiology and immune function.
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Figure 2. In phase 1, this figure shows that when in a tug-of-war with Fe, host cells produce Fe-
binding proteins such as lactoferrin to prevent pathogens from taking up Fe. However, while the
pathogens in phase 2 use high-affinity siderophores as a defense mechanism to extract Fe from
host proteins, the host cells produce siderophore-binding proteins such as lipocalin to neutralize
the siderophores and stop pathogen acquisition, as shown in phase 3. Pathogens can generate
siderophores to which lipocalin cannot bind to ensure pathogen survival, as shown in phase 4.

It has been widely recognized that microbial pathogens depend on acquiring and
utilizing Fe from their host for survival. However, the host immune system’s mechanisms
for retaining Fe limit this process [35]. Several Fe acquisition mechanisms have evolved in
microbial pathogens to overcome this limitation, including the production of siderophores,
Fe transporters, heme acquisition systems, and Fe-regulated surface proteins. Siderophores
are small Fe-chelating molecules secreted by pathogens that bind and transport Fe into the
cell [36]. Fe transporters and heme acquisition systems help pathogens acquire Fe from host
proteins, while Fe-regulated surface proteins capture Fe from host transferrin and lactofer-
rin. Fe-responsive regulators such as Fur tightly regulate Fe acquisition in pathogens, which
regulate the expression of genes involved in Fe acquisition and metabolism [37,38]. Fe
acquisition mechanisms such as siderophores and Fe transporters in bacterial infections are
crucial virulence factors that allow bacteria to overcome host Fe retention mechanisms and
establish conditions [39]. Fe acquisition mechanisms such as high-affinity Fe transporters
and Fe-responsive regulators are pertinent to fungal virulence and pathogenicity in fungal
infections. In parasitic infections, Fe is involved in several essential processes, such as
energy production, DNA synthesis, and oxidative metabolism, and is prominent for the
parasite’s survival and growth in the host [40]. The role of Fe in interactions between
insects and microbial pathogens is complex and diverse, with both essentiality and toxicity
playing integral parts.
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2.2. Interaction of Plants with Insects and Microbes via Fe

There is substantial proof that Fe is an essential nutrient for plants and many microbes
and necessary for their growth and development. The availability of Fe can influence plant–
insect and plant–microbe interactions [41], and Fe-rich soils can increase the abundance
and activity of certain beneficial microbial species, such as mycorrhizal fungi. These
rhizobacteria can help plants become more herbivore-tolerant and improve their defenses
against herbivores [42,43]. Moreover, these beneficial microbial species may also prevent
and reduce the populations of certain insect pests [44]. In addition, certain insect species
can give plants access to Fe-rich food sources of nutrition by bringing Fe-rich soil particles
to the root zone as shown in Table 1. However, Fe-deficient soils can negatively impact
plant-microbial interactions, and specific plant pathogens can exploit the lack of Fe to infect
and damage plants [45].

The plant Fe deficiency response is regulated at the transcriptional and post-translational
levels. Hormones like auxin, ethylene, nitric oxide, cytokinin, and gibberellic acid play
vital roles in this process [46]. In Arabidopsis, ethylene and gibberellic acid enhance Fe
uptake by increasing FRO2 and IRT1 expression. Ethylene and auxin promote nitric oxide
accumulation, stabilizing FIT and improving Fe uptake. Auxin also stimulates lateral root
formation for increased Fe absorption [47].

Conversely, cytokinin inhibits root growth and suppresses Fe deficiency response
genes: salicylic acid and jasmonic acid, two major defense hormones, influence plant Fe
acquisition [48]. Salicylic acid positively affects Fe uptake gene expression in Arabidopsis
through auxin and ethylene signaling [49]. On the other hand, jasmonic acid negatively
regulates Fe acquisition by downregulating Fe uptake genes independently of FIT [50].
Ethylene and auxin hormones are crucial in the plant immune signaling network. This
connection between Fe availability and immunity highlights their potential role in Fe
uptake responses in plant roots.

Table 1. Interaction of plants with insects and microbes through Fe.

Fe Role in Plants Role in Insects Role in Microbes

Absorption

Plants take up Fe through their
roots and transport it to different
plant parts for use in metabolic

processes [51].

Insects acquire Fe from their diet,
including plant material [52].

Microbes acquire Fe from their
environment for growth and

metabolism [53].

Defense
Fe produces defensive

compounds in plants, such as
phytochelatin and lignin [54].

Insects can use Fe-binding proteins to
sequester Fe from their diet and
prevent it from being used by

pathogens [55].

Some microbes can produce
Fe-chelating compounds called
siderophores, competing with
plants and insects for Fe [56].

Signaling

Fe is involved in signaling
pathways in plants, e.g., the

regulation of gene expression and
responses to stress [57].

Fe can act as a signaling molecule in
insects, affecting behavior and

development [58].

Fe availability can also affect
microbial gene expression and

behavior [59].

Regulation
Plants regulate Fe acquisition and

transport through a complex
system of genes and proteins [60].

Insects require a certain amount of Fe
for proper growth and development,

but excess Fe can be toxic [61].

Microbes have evolved
mechanisms to sense and respond

to Fe availability in their
environment [62].

2.3. Zinc (Zn) and Copper (Cu)

Like humans, insects rely on dietary intake of trace metals like Zn and Cu for proper
physiological functioning. These specified metals are responsible for multiform insect
processes, including DNA synthesis, oxidation reactions, cuticle biosynthesis, and acting as
essential cofactors for numerous enzymes [63]. Their presence is indispensable for insects’
everyday functioning and overall well-being at the molecular and biochemical levels. In in-
sect studies, two families of Zn transporters: ten dZip and seven dZnT proteins, analogous
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to human Zip (SLC39) and ZnT (SLC30) families [64]. These transporters play roles in Zn
influx and efflux, with specific expression in the midgut (dZip1) and Malpighian tubules
(dZnT35C), contributing to Zn absorption and excretion. Zn is distributed throughout
the gastrointestinal tract, with higher accumulation in the posterior midgut, crop, and
Malpighian tubules [65]. dZip1 and dZip2 import Zn from the lumen into the entero-
cyte, while dZnt1 and ZnT77C release imported Zn into circulation from the basolateral
membrane. The silencing of dZnt1, specifically in the gut, increases lethality under Zn-
deficient conditions, highlighting its crucial role in Zn absorption [66]. Zn repletion leads
to the suppression of dZip1 and dZip2 mRNA expression and the protein expression of
dZnt1 [67].

The expression of dZnt1 and dZnT35C, a potential ZnT2 homolog, is regulated by
dMTF1. FOI, an ortholog of dZip6 and dZip10, is essential for cell migration and gonad
morphogenesis by controlling DE-cadherin expression at the posttranscriptional level [66].
A Catsup mutant with a defective dZip7 exhibits high levels of catecholamines and shows
signs of semi-dominant lethality. The mutant also displays defects in membrane protein
trafficking and increased ER stress [68]. On the other hand, Zn is embarked on regulating
gene expression in insects, where it acts as a cofactor for several transcription factors that
control gene expression [69]. Zn is also involved in regulating insect development, which
plays a crucial role in insect cuticle formation and the regulation of molting.

The most prominent finding to emerge is that Cu is a crucial part of the innate immune
system of insects, where it acts as a cofactor for the enzyme phenoloxidase. Phenoloxidase
plays a significant role in the insect immune response by catalyzing the oxidation of
phenolic compounds to quinones, which are toxic to microorganisms [70,71]. The quinones
also contribute to the formation of melanin, which is pivotal for encapsulating pathogens
via insect defense cells.

Phenol + O2 + Cu2+ → Quinone + H2O + Cu+

Quinone + Quinone + Cu+ →Melanin + Cu2+

In this reaction, the copper becomes an ion (Cu2+), acting as a cofactor for the phe-
noloxidase enzyme and facilitating the transfer of electrons during the oxidation of phenols.
The reaction cannot proceed without the Cu ion, and melanization cannot occur, making
the insect vulnerable to foreign invaders.

Furthermore, Cu also regulates the insect’s antioxidant defense system, which protects
the insect’s cells from oxidative damage caused by the ROS produced during the immune
response [72]. However, it has been reported that dMTF-1 is a crucial regulator of essential
metal homeostasis, controlling gene expression in metal pathways [73]. DmATP7 is vital
for Cu uptake and efflux in insects, particularly during larval development. DmATP7 term
depends on functional dMTF-1, while its background expression is maintained in dMTF-1
knockout flies [74]. dMTF-1 also regulates the Cu importer protein Ctr1B in response to
Cu-specific stress, facilitating increased Cu uptake. Knockout flies lacking dMTF-1 exhibit
decreased survival and prolonged development due to impaired metal regulation [75].
dMTF-1 is also crucial for transcription factors; an insect tightly regulates these metals.
It controls the expression of ZnT and Zn exporter proteins involved in the uptake and
efflux of Zn while also regulating Cu-related genes. dMTF-1’s concentration gradient
between the cytosol and nucleus governs the regulation of Zn exporters [76]. Zn toxicity
induces dMTF-1 upregulation and translocation into the nucleus, where it binds to the MRE
upstream of ZnT, promoting ZnT transcription and Zn exporter production [77]. Although
the regulation of Zn importers via dMTF-1 in insects is not yet established, it is possible
that some Zn importers may also be influenced by dMTF-1. This regulatory mechanism
involving dMTF-1 ensures the maintenance of Zn and Cu homeostasis, essential for RNA
and DNA metabolism. On the other hand, Zn is required for the proper functioning of
several immune-related enzymes, including alkaline phosphatase and carbonic anhydrase.
These enzymes play an integral role in the insect’s immune response by regulating the
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insect’s tissue pH and modulating the immune cells’ activity [78]. Zn is also immersed in
regulating the expression of several immune-related genes in insects, including genes en-
coding antimicrobial peptides, which are essential in the insect’s defense against microbial
pathogens [79].

A number of studies have disclosed that Zn and Cu are crucial cofactors for various
enzymes involved in multiple biochemical reactions in insects. Zn is required to function
in enzymes integrated into DNA synthesis, RNA transcription, and protein synthesis, as
well as repair enzymes properly [80]. Zn ions (Zn2+) are coordinated to the amino acid
residues of DNA polymerases, such as DNA polymerase III. This coordination stabilizes the
enzyme’s binding to the DNA template and allows for the accurate replication of genetic
information [81,82]. Zn ions interact with the negatively charged phosphate backbone of the
DNA molecule and form coordination complexes that stabilize the enzyme-DNA complex.
This coordination also helps to properly position the deoxynucleoside triphosphate (dNTP)
substrates for incorporation into the growing DNA chain, resulting in the actual complexity
of the genetic information [83]. In addition to its role in DNA polymerase activity, Zn is
also involved in the movement of other enzymes involved in DNA synthesis and repair,
such as DNA ligases and topoisomerases. Zn ions cooperate in binding these enzymes to
DNA substrates, allowing for the efficient repair of DNA strand breaks and the accurate
replication of genetic information [84].

Moreover, the host immune system tightly regulates the availability of these metals in
the host environment, which can limit their accessibility to invading pathogens. In microbial
pathogens, Zn can also control the expression of virulence factors and the formation of
biofilms, which can enhance their ability to colonize and infect the host [85]. However, the
host immune system can absorb Zn through various mechanisms, such as the production
of metal-binding proteins, to limit its availability to invading pathogens [86]. Cu is an
essential cofactor for many enzymes involved in cellular processes, including respiration,
response to oxidative stress, and Fe acquisition, as well as control the virulence factor and
biofilm formation in pathogens. However, excess Cu can be toxic to cells by generating
ROS, which can damage DNA, proteins, and lipids [87], as shown in Figure 3. Hence,
microbial pathogens have evolved various mechanisms to deal with excess Cu, such as
producing Cu-binding proteins and activating detoxification systems. Overall, the roles of
Zn and Cu in microbial pathogens are complex and tightly regulated by the host immune
system [86].

2.4. Interaction of Plants with Insects and Microbes through Zn and Cu Metals

Plants interact with insects and microbes by competing with them to gain metals such
as Zn and Cu. Within the realm of enzyme activity, Zn is essential for the proper function
of DNA/RNA polymerase enzymes, ribosomes, and superoxide dismutase (SOD) [88]. It
exhibits specific significance in plants, present in carbonic anhydrase and stromal processing
peptides, thereby contributing to photosynthesis [89]. Furthermore, Zn contributes to
protein structure, with approximately 4% of Arabidopsis proteins containing Zn finger
domains, emphasizing its functional importance in plant physiology [90]. Cu is imperative
for active functioning critical enzymes such as cytochrome oxidases, ascorbate oxidase,
superoxide dismutase (SOD), and polyphenol oxidase [91,92]. In plants, Cu is also required
for the receptor signaling of the hormone ethylene, which plays a crucial role in plant
development and disease resistance [93]. These metals are needed to form chlorophyll,
which is pivotal for photosynthesis, and for auxin production. This hormone stimulates
cell division, elongation, tissue differentiation, and tropism (responses to environmental
stimuli) [94]. In addition, these metals can be used by insects and microbes as energy
sources and for the biotransformation of compounds, such as nitrogen and sulfur. In
addition, Zn and Cu can be used by plants to ward off herbivores, as they are toxic to
certain insects [95]. However, Zn toxicity occurs in agricultural soils treated with sewage
sludge, in urban and suburban soils enhanced via anthropogenic inputs of Zn, especially in
soils with low pH, and in soils affected by mining and smelting activities [96]. Mechanisms
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for creating either low or high Zn scenarios in plant and animal systems are essential for
Zn-based disease and pest control.
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Figure 3. A schematic diagram depicting Cu’s potential mechanism of action on microorganisms,
which can be proposed as follows: Cu impacts the cell wall of microbes, disrupting its constituents and
damaging the membrane. This membrane damage subsequently reduces the electrochemical potential,
compromising the integrity of the membrane. Furthermore, Cu specifically targets microorganisms’
DNA, interfering with the synthesis of proteins and inducing detrimental effects that eventually lead
to the demise of the microbial cell.

Eukaryotic cells have an impressive ability to regulate the levels of Zn within their
interiors. Despite Zn being commonly present in lower concentrations at the interiors
of the cell, it is present in higher ranges outside the eukaryotic cells [97]. A diverse
range of proteins, such as ZIP (ZRT- and IRT-like proteins), ZNT (Zn transporter), and
metallothioneins (MTs) that sequester Zn, are involved in regulating Zn equilibrium in
plants. ZNT proteins transport Zn within cells, averting cytotoxicity by sequestering it
within vacuoles, while ZIP proteins facilitate the absorption of Zn from the soil into plant
root cells [98]. MTs act as Zn chelators, storing excess Zn in a harmless form, protecting
against Zn deficiency. This cooperative system ensures Zn’s controlled distribution, storage,
and acquisition. ZIP transporters respond to low Zn levels by upregulation, whereas
ZNT transporters and MTs become active when Zn levels are high, guaranteeing proper
physiological development and plant function [14,99].

In contrast, ZNT proteins decrease intracellular Zn levels by promoting Zn release
from the cell or its uptake into intracellular vesicles. The sequestration of Zn is primarily
controlled by Zn-dependent mechanisms that regulate the transcription, translation, and
intracellular trafficking of these transporters [100]. Indeed, many studies show that the
expression levels of Zn transporters in plant tumors have been found to correlate with
the severity of malignancy, indicating that disruptions in intracellular Zn homeostasis can
contribute to cancer progression. In various types of cancer, specific Zn importers are
upregulated, potentially enabling tumor cells to evade programmed cell death (apoptosis)
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and activate survival mechanisms through autophagy [101,102]. ZIPs and ZNTs are among
the critical Zn transporters involved in these processes, as shown in Figure 4. In addition,
microbes can use these metals to make antibiotics that plants can use to protect against
infection [103].
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Zn and Cu can be found in soil and taken up by plants, and are also present in the
bodies of insects and microbes [104]. Zn also helps protect plants from diseases caused
by fungi, bacteria, and viruses by producing phytohormones, such as salicylic acid, and
activating the plant’s defense mechanisms [105]. Zn can also induce the expression of
defense-related genes, such as those involved in synthesizing phytoalexins, which are
antimicrobial compounds that may help plants ward off disease [106]. In addition, Zn can
stimulate the production of secondary metabolites, such as flavonoids, with antimicrobial
properties [107,108]. Zn also helps maintain the structural integrity of plant tissues, which
can prevent pathogen invasion.

Cu is significant for enzymes to function properly and to protect plants from environ-
mental factors such as cold, heat, and drought [109]. One of the main functions of Cu in
plants is as a cofactor for enzymes implicated in various metabolic pathways, including
photosynthesis, respiration, and lignin synthesis. It serves as a component of the primary
electron donor in the photosystem 1 of plants [110]. Due to its ability to readily gain and
lose electrons, Cu acts as a cofactor for oxidase, mono, and di-oxygenase enzymes such as
amine oxidases, ammonia monooxidase, ceruloplasmin, and lysyl oxidase. Additionally,
Cu is involved in the function of enzymes responsible for eliminating superoxide radicals,
including superoxide dismutase and ascorbate oxidase [111]. It can also improve plants’ re-
sistance to these stresses by increasing antioxidant activity and reducing oxidative damage.
Additionally, Cu is pertinent in maintaining membrane integrity and stability, which can
help prevent water loss during drought and cold stress [112].

Insects and microbes are vital to plants’ health, as they help to provide plants with
essential nutrients and water [113]. Microbes also help break down soil nutrients, making
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them available to plants. Insects can also provide prominent nutrients to the plant, such
as nitrogen, phosphorus, and potassium, and other beneficial compounds such as Ca,
Mg, and S, as well as the vitamins and hormones necessary for the proper functioning
of enzymes and other metabolic processes in plants [114,115]. In addition to providing
essential nutrients, insects can transfer other beneficial compounds to plants. However,
some insects can transmit plant-growth-promoting hormones such as gibberellins and
auxins to stimulate plant growth and development [116]. Insects can also transfer vitamins
and antioxidants such as vitamins C and E, which may help protect plants from oxidative
damage [117].

There is substantial proof that Zn and Cu can benefit insects and microbes. Zn is
essential for the growth and development of insects and can also help protect them from
disease (Table 2). Other metals like Cu are also imperative for the functioning of enzymes in
insects and help protect them from environmental stressors [118]. Zn and Cu are paramount
for the health of plant-growth-promoting rhizobacteria as they help break down organic
matter and make nutrients available to plants. It activates defense mechanisms, induces
expression of defense genes, increases the activity of enzymes involved in ROS production,
stimulates the production of secondary metabolites, and helps maintain the structural
integrity of plant tissues [119]. Therefore, to probe the mechanisms by which metals
increases plant disease resistance can help us to develop sustainable crop protection and
production strategies in the face of changing environmental conditions.

Table 2. Condensing the role of metals in the defensive mechanisms of insects.

Insects Metals Defensive Mechanisms References

Ironclad beetle Fe Hardens exoskeleton for protection against predators. [120]

Bombardier Beetle Cu Copper enzymes facilitate the expulsion of toxic sprays. [121]

Leafhopper Zn Protection of exoskeleton for defense against predators. [122]

Silverfish Ag Antimicrobial defense, silver scales provide camouflage and protection. [123]

Sweat Bees Hg It uses mercury to deter parasites and pathogens. [124]

Fireflies Co Cobalt ions play a role in the production of bioluminescence. [125]

Nickel-Eating Moth Ni Nickel detoxification enables feeding on nickel-rich plants. [126]

Selenium-Superior Fly Se Selenium detoxification offers resistance to toxic plants. [127]

2.5. Metals Other Than Fe, Cu, and Zn

Metals other than Fe, Cu, and Zn, like manganese (Mn), nickel (Ni), cobalt (Co), and
molybdenum (Mo), are also essential trace elements that play prominent roles in the growth
and development of plants, insects, and microbes [128]. Metal ions, mainly through the
Haber–Weiss reaction, are pivotal for oxidative modifications of free amino acids and
proteins [129]. Commonly oxidized amino acid residues include histidine, arginine, lysine,
proline, methionine, and cysteine. These site-specific modifications occur at metal binding
sites within proteins [130]. One significant consequence of oxygen-free radical-induced
protein damage is their susceptibility to protease degradation [131].

Additionally, protein oxidation can release its binding metals, such as Fe2+ from
[4Fe-4S] clusters found in certain dehydratases like aconitases [132]. On the other hand,
metal (e.g. Mn, Ni, Co, etc.) binding to the cell nucleus leads to genotoxic damage,
including DNA base modifications, DNA–protein cross-linkages, DNA strand breaks,
rearrangements, and depurination [133]. Reactive oxygen species generated via metal-
mediated production induce pro-mutagenic adducts, such as 8-oxoG (8-oxo guanine),
which can cause C to T transversion mutations without DNA repair [134]. Metal-induced
carcinogenicity and acute toxicity involve oxidative damage, DNA methylation aberration,
and chromatin condensation [135].
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Manganese (Mn) is involved in synthesizing chitin, a component of the insect’s ex-
oskeleton. In addition, it also plays a significant role in the development of reproductive
organs and is necessary for the appropriate maturation of eggs in certain insect species [136].
Ni is implicated in the metabolism of carbohydrates, amino acids, and lipids and is neces-
sary for synthesizing enzymes that are pivotal for insect growth and development [137]. Co
is essential for the metabolism of carbohydrates, amino acids, and lipids and is involved in
the synthesis of hemoglobin, which is vital for insect oxygen transport [138]. However, Mo
is an essential nutrient utilized as a prosthetic group in oxidoreductases. Its molybdoen-
zymes, identified in Drosophila, play crucial roles in metabolism, including the breakdown
of acetaldehyde and purines [139].

Furthermore, these metals also play a pivotal role in the physiology and pathogen-
esis of the microbial pathogens, in which delicate mechanisms have evolved to acquire
and regulate their levels from the host environment [140]. Mn is vital for the growth
and survival of bacterial pathogens and contributes to biological processes like oxidative
stress management and DNA protection [141]. Mn is also enlisted in expressing viru-
lence factors such as adhesins and capsules in bacterial pathogens [142]. Moreover, it
can affect the stability and folding of proteins involved in the virulence factor synthesis,
such as capsule polysaccharides [143]. Subsequently, Ni is considered the most critical
cofactor for several enzymes involved in energy metabolism and nitrogen fixation and is
required for the growth and survival of many bacterial pathogens. Bacterial pathogens
have undergone evolutionary adaptations in their acquisition mechanisms, enabling them
to effectively regulate nickel (Ni) levels from the host environment [144]. Ni is also a critical
component of some virulence factors such as urease in bacterial pathogens [145]. Co is a
component of vitamin B12, which is pivotal for the growth and survival of many bacterial
pathogens [146,147], while it can also regulate virulence factors, such as siderophores, in
the bacterial pathogens [86]. Moreover, the bacterial virulence factors such as adhesins and
capsules also require an optimum concentration of Mo for their expression [148], and Mo is
also an essential cofactor for the function of various enzymes involved in redox reactions,
including nitrate reductase, formate dehydrogenase, and aldehyde oxidase [149].

2 Mo(VI) + 3 NADH + 9 H+ + 2 NO3
− → 2 Mo(IV) + 3 NAD+ + 6 H2O + 2 NO2

−

Mo(VI) + NADH + H+ + HCOOH→Mo(IV) + NAD+ + H2O + CO2

Mo(VI) + H2O + RCHO→Mo(IV) + 2 H+ + RCOOH

In redox reactions, Mo acts as a catalytic virtuoso, facilitating the transfer of electrons
and protons between the substrates, esteemed cofactors (such as NADH), and the ultimate
products. The presence of Mo is crucial for the proper functioning of these enzymes and
their involvement in redox processes.

3. Role of Metals in Microbial Physiology and Virulence

Trace metals are crucial for developing physiology and virulence in microbial pathogens,
as they rely on these metals to facilitate essential biological processes and augment their
pathogenic potential. For example, Zn is required for the fungal pathogen Candida albicans
to express virulence factors such as adhesins and invasins. Moreover, its acquisition
mechanisms have also evolved in C. albicans, allowing the fungus to acquire Zn from the
host environment through manipulating proteins like Zn transporters and Zn-regulated
transcription factors [150]. Cu is paramount for several biological processes in microbial
pathogens, such as oxidative stress resistance, energy metabolism, and DNA synthesis, for
example, the bacterial pathogen Pseudomonas aeruginosa requires Cu for siderophores and
exotoxin expressions [151]. P. aeruginosa can also acquire Cu by producing Cu transporters
and Cu-regulated transcription factors [152].

Furthermore, in Streptococcus pneumoniae, Mn has been identified as necessary to grow
and produce a cytolytic toxin known as pneumolysin, which facilitates pneumococcal
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infections [153,154]. Besides pneumolysin production, Mn has a significant aspect in gene
regulation in responsible for stress resistance and DNA protection in this microbe. While
in S. aureus, both adhesins expression and biofilm formation, which carries out energy
metabolism and oxidative stress resistance, are required to develop an infection in the
host [155], where Mn is needed for gene regulation [156]. Developing these virulence
factors, such as adhesins, capsules, and other surface-associated proteins, generally helps
in the bacterial invasion, colonization, and evasion from the host immune responses [154].

Subsequently, copious bacterial pathogens like Helicobacter pylori and Klebsiella pneumonia
required Ni for their growth and physiological development. For example, in these bacteria,
Ni acts as a cofactor in urease enzymes to stabilize its structure, helps in bacterial resistance
in an acidic environment such as the stomach, and helps in bacterial colonization in the host,
protecting them from host immune responses [157]. Urease activity is crucial for H. pylori
colonization in the stomach as it neutralizes gastric acids and allows the bacteria to survive
in hostile environments [158], as shown in Table 3. Ni is also immersed in regulating genes
involved in energy metabolism and DNA repair in H. pylori [159].

Recent research studies have shown Co’s decisive role in the physiology and virulence
of several bacterial pathogens. For example, in P. aeruginosa, Co is required to express
virulence factors, including pyoverdine, a siderophore that facilitates the uptake of Fe by
the bacterium. Pyoverdine is also integrated into biofilm formation, a key mechanism for
P. aeruginosa’s survival and pathogenesis [160,161]. Co is also incorporated in regulating
genes involved in energy metabolism and resistance to oxidative stress in P. aeruginosa [162].
In addition, Co is essential for the activity of Co-dependent enzymes, such as nitrile hy-
dratase, involved in the metabolism of nitriles and cobalamin (vitamin B12)-dependent
enzymes critical for various cellular processes, including DNA synthesis and methionine
metabolism [163]. Co also plays an imperative role in antibiotic resistance mechanisms
in several pathogenic bacteria such as S. aureus, Escherichia coli, and K. pneumoniae. Met-
alloenzymes such as β-lactamases and aminoglycoside-modifying enzymes need Co for
their proper function. These enzymes can degrade the toxic nature of antimicrobial agents,
which inhibit their growth [164]. The importance of metals in bacterial pathogens’ virulence
and antibiotic resistance underscores the potential of metal-related therapies to combat
bacterial infections.

Table 3. Summarizing specific microbes, virulent factors, and metals associated with their roles.

Microbes Virulence Factor Role of Trace Metals References

Candida albicans Phospholipase enzymes Ca: Activates and stabilizes phospholipase enzymes,
also secretes candida lysin. [165]

Pseudomonas aeruginosa Pyocyanin Fe: Crucial for pyocyanin synthesis, a
virulent pigment. [166,167]

Streptococcus pneumoniae Pneumolysin Zn: Activates pneumolysin, causing host cell damage. [168]

Helicobacter pylori Urease Ni: Essential for urease activity, aiding survival in an
acidic stomach. [169]

Escherichia coli Shiga toxin Fe, Zn, Cu, and Mg: Essential for toxin production
and stability. [170,171]

Staphylococcus aureus Coagulase Ca: Activates coagulase and aids in blood clotting. [172]

Vibrio cholerae Cholera toxin Zn: Stabilizes cholera toxin structure for
practical function. [173]

4. Interactions between Metals and Insects/Microbial Pathogens

Trace metals as micronutrients are required by all living organisms for their survival
and physicochemical processes. As discussed above, microorganisms, plants, and animals
compete to obtain these micronutrients to fulfill their needs. Likewise, insects and microbial
pathogens also interact with other to acquire trace metals in the required concentrations.
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Therefore, these metals play an essential role in the association between living things. The
need for these micronutrients and their physiological functions in microorganisms have
been discussed in Section 3. A recent study cites that insects have evolved several mecha-
nisms to acquire, transport, and regulate metal levels to combat microbial infections [174].
For instance, Fe is critical for the immune response of insects against microbial infections.
Insects can sequester Fe from hemolymph (insect blood) and store it in tissues to limit
the availability of Fe to invading pathogens [175]. Insects can also produce antibacterial
peptides that require Fe for their activity, underlying the importance of Fe for the immune
response [80]. In addition, Fe can also affect the composition of insect-associated microbial
communities. They also have been shown to harbor various microorganisms, including
bacteria, fungi, and viruses, which can have both beneficial and harmful effects on their
hosts [176]. However, the unavailability of Fe can affect the growth and survival of these
microorganisms and potentially alter their interactions with the insect host.

Another trace metal, such as Cu, is also essential for the immune response of insects
against microbial infections [177]. Insects can produce Cu-binding proteins and transporters
to remove Cu from the environment and limit its availability to invading pathogens. Cu
regulates several immune genes in insects, including those encoding antimicrobial peptides,
homeostasis, and proteins in response to oxidative stress that can occur during the immune
response and other physiological processes [178]. In addition, Cu has been shown to
upregulate the expression of genes encoding antimicrobial peptides (AMPs), which are
critical effectors of the insect’s innate immune system. AMPs are small cationic peptides
that can kill various microbial pathogens by disrupting their cell membranes [179].

Interestingly, one of the well-known trace minerals, Zn, is also required for the growth,
development, and immune function of insects and microbial pathogens. Zn may have
positive and negative effects on these organisms, depending on the concentration and
method of application. Insects can produce Zn-binding proteins and transporters to regulate
Zn levels and limit their availability to invading pathogens [180]. Glavinic et al. showed
that supplementing honeybees with Zn can increase their resistance to specific pathogens
such as Nosema ceranae [181]. However, high Zn concentrations can also be toxic to insects,
diversely affecting their growth and survival. Zn can also positively affect the growth
and virulence of certain bacteria, such as P. aeruginosa and S. pneumonia [182]. However,
it can inhibit the growth of certain bacteria, such as Salmonella typhimurium and E. coli.
Microbial pathogens have also evolved mechanisms to acquire and regulate metal levels to
induce insect infection. For example, some bacterial pathogens can produce siderophores
to remove Fe from the insect host. In contrast, some fungal pathogens can produce Zn-
binding proteins and transporters to regulate Zn levels for their growth and survival [183].
Overall, the interactions between metals and insects/microbial pathogens are complex and
diverse, and further research is needed to fully understand the underlying mechanisms
and implications for host–pathogen interactions.

5. Mechanisms of Competition between Insects and Microbial Pathogens for
Essential Metals

The competition for metals such as Fe, Cu, and Zn is critical to interacting with insects
and microbial pathogens [174,184]. Both insects and pathogens require these metals for
their growth and survival, and they have evolved multiple mechanisms to acquire and
regulate metal levels. One of the primary mechanisms of competition for metals is the
production of metal-binding proteins and transporters [185]. Insects can produce metal-
binding proteins and transporters to regulate metal levels and limit their availability to
invading pathogens. For example, insects can produce metallothionein proteins that bind
to metals such as Zn and Cd, restricting their availability to invading pathogens [186].

Similarly, insects can produce ferritin proteins that sequester Fe, limiting their availabil-
ity to invading pathogens. Microbial pathogens can also produce metal-binding proteins
and transporters to remove metals from the insect host, as some bacterial pathogens can
produce siderophores that bind to Fe and transport it into the bacterial cell [187]. Analo-
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gously, some fungal pathogens can produce Zn-binding proteins and transporters to grab
Zn from the insect host [188].

Insects and microbial pathogens both compete for metals by regulating genes for
metal uptake and metabolism. For example, insects may upregulate metal acquisition and
metabolism genes in response to metal limitation, while microbial pathogens may also
upregulate metal uptake and metabolism genes in response to metal availability [86,189].
Collectively, these micronutrients and elements have complex interactions with insects
and microbial pathogens. While they are integral for proper insect development and
immune function, they may also have antimicrobial properties that can help protect insects
from pathogens.

6. Metals That Limit Microbial Growth and Virulence

Metals can limit microbial growth and virulence by affecting several biological pro-
cesses, such as the reaction to oxidative stress, energy metabolism, and DNA synthesis [190].
Here are some exemplifications: Fe confinement can limit the growth and virulence of
many bacterial pathogens. For example, in the bacterial pathogen P. aeruginosa, Fe limi-
tation can reduce the expression of virulence factors such as siderophores and exotoxins
and limit the growth of the bacterium. Fe limitation can also activate the expression of
genes involved in the oxidative stress response, which can further restrict the growth and
purulence of the bacterium [191,192]. The confinement of Cu can exert growth-limiting
and virulence-reducing effects on various microbial pathogens. For example, in the fungal
pathogen C. albicans, the unavailability of Cu can reduce the expression of virulence factors
such as adhesins and invasins and limit fungal growth [150]. The limitation of Cu can
induce the activation of gene expression related to the oxidative stress response, thereby
restricting fungal development and diminishing virulence [193].

The proliferation and pathogenicity of diverse microbial pathogens can be compro-
mised without an optimum concentration of Zn. In the case of the bacterial pathogen
E. coli, Zn limitation can reduce the expression of virulence factors such as adhesins and
fimbriae and activate the expression of genes involved in response to oxidative stress, which
limits the sprout of the bacterium [194,195]. The absence of Mn has been demonstrated
to significantly affect microbial physiological properties, emphasizing the importance of
Mn in microbial systems. Mn in a low concentration can lead to the downregulation of
genes encoding virulence factors, while increased Mn availability can lead to their upregu-
lation [196]. In addition, another trace metal, such as Mo, can affect bacterial physiology
in several ways. For example, the concentration of Mo beyond the optimum requirement
can lead to changes in bacterial metabolism, including a shift toward anaerobic respiration
and altered expression of genes involved in energy metabolism [197]. There is ample
room for further progress in determining how metals limit microbial growth and virulence,
which is necessary for developing new strategies to combat microbial infections. Targeting
metal acquisition and metabolism pathways in microbial pathogens may be a promising
approach for developing novel antimicrobial therapies. Metal supplementation can also be
a beneficial adjunctive therapy to enhance the host’s immune response against microbial
infections [86,198].

7. Microorganisms Require Trace Metals for Their Pathogenicity Enhancements

Various pathogenic microorganisms need different trace elements for their physiologi-
cal functions to improve their pathogenicity mechanisms; for example, Fe is required by
some microbes that help in enhancing the expression of virulent genes. In Yersinia pestis,
Fe boosts the face of type III secretory system (T3SS) and type IV secretory system (T4SS).
Similarly, Fe promotes these systems in Legionella pneumophila, enabling the bacterium
to transport toxins into the host cells [199]. T3SS is a complex molecular machinery that
spans the bacterial cell envelope, allowing the bacterium to transport effector proteins
into host cells. These effector proteins can trigger host cell signaling pathways, disrupting
cellular processes and ultimately promoting the survival and growth of the pathogen in the
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host [200]. In addition, Fe can stimulate the expression of sundry other virulence factors
in different microbial pathogens. Likewise, Fe can promote the production of adhesins
and toxins in pathogens such as S. aureus and E. coli. This association between Fe and the
pathogens allows them to enhance their virulence and better exploit host systems [201].

In contrast, Cu is considered to be a natural antimicrobial agent that has been deployed
to control microbial growth for centuries. Microbial pathogens have evolved multiple
resistant mechanisms to counteract the toxic effects of Cu and utilize it for their survival
and vigilance [202]. Some microbial pathogens leverage the regulation of Cu transport
and efflux systems to negotiate with Cu. Microorganisms can also rely on Cu as a core
nutrient, prompting the development of specific transport mechanisms to absorb Cu from
their ambiances. Additionally, particular pathogens possess efflux pumps capable of
expelling excess Cu, thereby fostering against potential toxicity [203]. In addition, some
pathogens produce antioxidant enzymes, such as superoxide dismutase and catalase, that
can neutralize the ROS generated by Cu. ROS can damage cellular components, including
DNA, proteins, and lipids, and lead to cell death. Therefore, these pathogens can counteract
ROS activity by utilizing these enzymes to neutralize ROS and protect the cell [204]. It can
also enhance the response to oxidative stress in several microbial pathogens, including
P. aeruginosa and Salmonella enterica [205].

Moreover, Zn can liaise with microbial pathogens by promoting the expression of
virulent genes and enhancing their ability to evade host immune cells, e.g., the bacterial
pathogen S. pneumoniae fosters the face of the pneumolysin toxin in the presence of Zn,
which is the main toxin in establishing pneumococcal infections [154,206]. Alternatively,
Zn has been reported to promote the expression of other pathogenic determinants, such
as adhesion molecules and invasive factors, in various microbial pathogens, including
C. albicans [207] and S. aureus [208]. It can also evade the host’s immune response to favor
microbial infections. Mo can act as a cofactor for various enzymes, including nitrogenases,
nitrate reductases, and sulfite oxidases involved in nitrogen fixation, nitrogen assimilation,
and sulfur metabolism [209]. The pathogenic bacterium P. aeruginosa is a highly pathogenic
and persistent microbe that utilizes Mo for its physiological functions. Mo is essential for ex-
pressing multiple pathogenic elements, including the siderophore, ferricrocin, pyoverdine,
the enzyme catalase–peroxidase, and protease LasB, as evidenced by numerous investi-
gations [210]. Another study examined the role of Mo in the pathogenicity of the fungus
Aspergillus fumigatus [211]. These mechanisms through which trace metals and microbial
pathogens work together are complex and diverse, and understanding these interactions is
critical for developing effective strategies to control and prevent microbial infections.

8. Pathogens Use Metals to Evade the Host’s Immune Response

Pathogens exhibit creative strategies to escape the host immune response, often em-
ploying metals to change their physiology. Most bacterial pathogens depend on Fe for
their growth and survival [212]. These cunning invaders utilize intricate Fe capture mecha-
nisms to extract it from the host, thereby restricting its availability to immune cells, thus
undermining the host’s defenses [39,213]. Several pathogens can also produce Fe-binding
proteins, such as transferrin-binding and lactoferrin-binding proteins, to sequester Fe from
the host [214]. It can limit the availability of Fe to host immune cells and impair their
function. As reported by various scientific analyses, Cu is involved in the oxidative stress
response of host immune cells, such as neutrophils and macrophages. Pathogens can
employ Cu efflux pumps to diminish Cu levels within host immune cells, impairing their
oxidative capacity [86,215]. Some pathogens can also produce Cu-binding proteins such as
CopA and CopB in P. aeruginosa to sequester Cu from the host and restrict its availability to
host immune cells [216,217].

Multivalent metals like Zn are entangled in multiple immune responses, including
the regulation of cytokine production and the activation of immune cells. Pathogens
can utilize Zn efflux pumps to decrease Zn levels in host immune cells and impair their
function [218]. Specific pathogens, like E. coli, can generate Zn-binding proteins (e.g., ZnuA
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and ZinT). These proteins help the pathogens to seize and limit the availability of Zn from
the host, consequently impeding the function of immune cells [219]. Specific bacterial
pathogens, like H. pylori, responsible for gastric ulcers and cancer, employ Ni to evade their
host’s immune response. Researchers found that the pathogen can take Ni from the host
environment and use it to produce enzymes called ureases that can break down urea and
release ammonia [220]. This ammonia can neutralize the stomach’s acidic environment
and create a more favorable environment for the colonization of the pathogen. In addition,
ureases produced by H. pylori can interact with the host’s immune cells and impair their
function, allowing the pathogen to escape the host’s immune responses [221]. In addition,
another bacterial pathogen, S. aureus, also utilizes Ni to resist the host immune response.
S. aureus can take Ni from the host environment and use it to produce a surface protein
called IsdA, which reduces microbial cellular hydrophobicity and decreases bacterial
cellular hydrophobicity, posing them to resist the antibacterial human skin fatty acids and
peptides [222]. Investigating the utilization of these miscellaneous metals via pathogens
sheds light on how they evade the host’s immune response. This knowledge is crucial
for devising novel approaches to combat microbial infections. In summary, this review
underscores the significance of metals as vital facilitators in insect–microbe interactions,
paving the way for exciting prospects in future research endeavors within this domain.

9. Implications and Applications
9.1. Development of Novel Insecticides and Antimicrobial Therapies

In scientific innovation, metals are vital in developing new insecticides and antimi-
crobial treatments. Researchers utilize metals like Cu and Zn to create robust solutions
against pests and diseases [223]. Cu disrupts fungal invaders, protecting precious crops
from their insatiable appetite [224]. Furthermore, Zn exposes its elemental ability, engaging
in a microbial duel, vanquishing the bacteria, fungi, and viruses that threaten our delicate
balance [225]. Novel insecticides and antimicrobial therapies are crucial for agriculture
and public health. However, resistance to traditional chemicals is a growing concern [226].
Developing novel insecticides and antimicrobial treatments targeting specific biological
pathways or mechanisms can help address these challenges. However, the safety and effi-
cacy of these novel compounds must be thoroughly evaluated to ensure they do not pose
unintended risks to the environment or human health [227]. However, this development
will improve the innovation of novel insecticides and antimicrobial therapies.

9.2. Promoting Agricultural Sustainability

Several insect pests and microbial pathogens are major crop threats, resulting in
significant economic losses [228]. Understanding the role of metals in the interaction
between insect and microbial pathogens can lead to the development of sustainable and
environmentally friendly pest and disease control strategies that target metal uptake
and metabolic pathways in these organisms [229]. However, excessive use of metals in
agricultural systems can negatively impact insect and microbial populations. Contradicting
reports about high concentrations of Cu and Zn can lead to the selection of metal-resistant
bacteria and disruption of microbial communities that play essential roles in nutrient cycling
and soil health. Insects can also develop resistance to metals, reducing the effectiveness of
metal-based pesticides and making plants vulnerable to insect damage [230]. Therefore,
promoting agricultural sustainability requires balancing the benefits and risks of using
metals in agriculture. It can be achieved by developing alternative pest management
strategies, such as biological control and integrated pest management, that minimize the
use of metals and promote the natural regulation of insect and microbial populations [231].
Figure 5 illustrates the intricate interactions between soil, plant, and microbes and how
fumigants or drought stress can kill beneficial bacteria in the soil. Furthermore, exploring
interactions between metals, insects, and microbial pathogens can provide insights into the
mechanisms of insect immunity and microbial pathogenesis, leading to the development of
novel and sustainable crop protection strategies.
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9.3. Potential Applications for Pest and Pathogen Control

The role of metals in insect and microbial pathogen interactions has received signif-
icant attention due to their potential applications in pest and pathogen control. Metal
ions, such as Cu, Zn, and Fe, play an essential role in insect physiology, including growth,
development, and reproduction [232]. In addition, some metals exhibit antimicrobial prop-
erties that can help control insect microbial pathogens. One pest management method is
biological control, which involves using natural enemies to control pests. Several biological
control agents, such as entomopathogenic fungi and bacteria, have been effective against
pests and pathogens [233]. Metals play a crucial role in these biological control agents’
survival, virulence, and interplay with pests and pathogens.

Metal homeostasis and redox signaling mechanisms are pivotal in the responses of
insects and microbial pathogens to environmental stressors, including exposure to toxic
metals [232]. Many models about nanoparticles, biomimicry, and bioremediation are
emerging research areas that hold promise for developing new approaches to pest and
pathogen control [234]. These approaches rely on metals’ unique properties and interactions
with biological systems to develop effective control measures.

10. Critical Observation and Further Research

Metals play a crucial role in microbial–insect interactions, but their precise mecha-
nisms and specific functions are largely unknown. Further research is needed to better
understand the interactions between metals, insects, and microbial pathogens to develop
strategies to combat insect-borne diseases. In addition, research is required to explore the
full potential of metals in pest and disease control and their effectiveness and safety in
these applications. Insects are an essential food source for humans and animals but are
responsible for spreading various diseases. Interactions between insects and microbial
pathogens can be complex, involving multiple species and multiple routes of transmission.
Therefore, research is also needed to better understand the mechanisms of information and
the potential impact of these interactions on human and animal health. Insects are often the
primary hosts of microbial pathogens, making them more susceptible to the transmission
of pathogens. Effective control of insect-borne diseases requires an integrated approach
that includes insect control, vector surveillance, and strategies to reduce human–animal
contact. Climate change will likely significantly impact insect populations and the spread
of microbial diseases. Therefore, future research is needed to understand the impact of
climate change and other environmental factors on the interactions between insects and
microbial pathogens.
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11. Conclusions

In summary, metals are crucial in insects and microbial pathogens. In insects, metals
such as Cu, Fe, Zn, Mn, Ni, Co, and Mo are essential for vital biological processes such as
respiration, immune response, and enzymatic reactions. In microbial pathogens, metals
such as Fe and Mn are critical in enhancing their virulence factors, as they are involved
in oxidative stress defense, metabolism, and gene regulation. However, the availability
and regulation of metals in insects and microbial pathogens can significantly affect their
health and survival. Therefore, exploring the role of metals in these organisms can provide
valuable insights into their biology and potential targets for developing new treatments and
control strategies. Research into the role of metals in insect and microbial pathogens can
have significant implications for developing new approaches to combat these organisms.

However, since metals are critical to the survival and virulence of microbial pathogens,
targeting their metal acquisition and regulatory mechanisms could potentially lead to the
development of novel antimicrobial agents. In addition, understanding how insects take
up and regulate metals could lead to the development of new insecticides that interfere
with their vital biological processes. The reason for studying the interactions between
metals, insects, and microbial pathogens can shed light on how these organisms respond
to environmental stressors such as changes in metal availability. This knowledge can be
used to develop new strategies to control insect pests and microbial pathogens under
different environmental conditions. Overall, understanding the role of metals in insect and
microbial pathogens can lead to developing new, more effective strategies to control these
organisms, which could have significant implications for agriculture, public health, and
environmental management.

Author Contributions: M.L. concepted and designed the review topic; S.K. wrote the manucript; S.K.
and M.L revised the manuscript; S.K. designed the display items. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported by the Class B Breeding Program of Special Projects for Leading
Science and Technology of the Chinese Academy of Sciences (XDPB16), the Fundamental Research
Funds for the Central Universities, Beijing Municipal Natural Science Foundation (7202129), the
National Natural Science Foundation of China (31571042), the Key Basic Research Project of Applied
Basic Research Program of Hebei Province (18966315D), and One Hundred Outstanding Creative
Talents Support Program of Hebei (BR2-218).

Acknowledgments: We would like to acknowledge the scientific writing support from Hafza Wajeeha
Ejaz, and this work also got financial support from CAS Center for Excellence in Biotic Interactions of
Chinese Academy Sciences.

Conflicts of Interest: The authors declare they have no conflict of interest with the contents of this article.

References
1. Zhang, L.; Su, Q.F.; Wang, L.S.; Lv, M.W.; Hou, Y.X.; Li, S.S. Linalool: A ubiquitous floral volatile mediating the communication

between plants and insects. J. Syst. Evol. 2022, 61, 538–549. [CrossRef]
2. Leitão, J.H. Microbial Virulence Factors. IJMS 2020, 21, 5320. [CrossRef] [PubMed]
3. Biere, A.; Bennett, A.E. Three-way interactions between plants, microbes and insects. Functional 2013, 27, 567–573. [CrossRef]
4. Zhang, Q.; Chen, X.; Xu, C.; Zhao, H.; Zhang, X.; Zeng, G.; Qian, Y.; Liu, R.; Guo, N.; Mi, W. Horizontal gene transfer allowed the

emergence of broad host range entomopathogens. Proc. Natl. Acad. Sci. USA 2019, 116, 7982–7989. [CrossRef]
5. Guo, Z.; Guo, L.; Bai, Y.; Kang, S.; Sun, D.; Qin, J.; Ye, F.; Wang, S.; Wu, Q.; Xie, W. Retrotransposon-mediated evolutionary rewiring

of a pathogen response orchestrates a resistance phenotype in an insect host. Proc. Natl. Acad. Sci. USA 2023, 120, e2300439120.
[CrossRef]

6. Anand, U.; Pal, T.; Yadav, N.; Singh, V.K.; Tripathi, V.; Choudhary, K.K.; Shukla, A.K.; Sunita, K.; Kumar, A.; Bontempi, E. Current
Scenario and Future Prospects of Endophytic Microbes: Promising Candidates for Abiotic and Biotic Stress Management for
Agricultural and Environmental Sustainability. Microb. Ecol. 2023, 1–32. [CrossRef]

7. Perveen, N.; Muhammad, K.; Muzaffar, S.B.; Zaheer, T.; Munawar, N.; Gajic, B.; Sparagano, O.A.; Kishore, U.; Willingham, A.L.
Host-pathogen interaction in arthropod vectors: Lessons from viral infections. Front. Immunol. 2023, 14, 1061899. [CrossRef]

8. Gebre, S.H. Bio-inspired Synthesis of Metal and Metal Oxide Nanoparticles: The Key Role of Phytochemicals. J. Clust. Sci. 2023,
34, 665–704. [CrossRef]

https://doi.org/10.1111/jse.12930
https://doi.org/10.3390/ijms21155320
https://www.ncbi.nlm.nih.gov/pubmed/32727013
https://doi.org/10.1111/1365-2435.12100
https://doi.org/10.1073/pnas.1816430116
https://doi.org/10.1073/pnas.2300439120
https://doi.org/10.1007/s00248-023-02190-1
https://doi.org/10.3389/fimmu.2023.1061899
https://doi.org/10.1007/s10876-022-02276-9


Metabolites 2023, 13, 839 19 of 26

9. Page, M.G.P. The Role of Iron and Siderophores in Infection, and the Development of Siderophore Antibiotics. Clin. Infect. Dis.
2019, 69 (Suppl. 7), S529–S537. [CrossRef]

10. Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced
cancer. Chem. Biol. Interact. 2006, 160, 1–40. [CrossRef]

11. Zhang, Y.-Y.; Li, X.-S.; Ren, K.-D.; Peng, J.; Luo, X.-J. Restoration of metal homeostasis: A potential strategy against neurodegener-
ative diseases. Ageing Res. Rev. 2023, 87, 101931. [CrossRef] [PubMed]

12. Dharmaraja, A.T. Role of Reactive Oxygen Species (ROS) in Therapeutics and Drug Resistance in Cancer and Bacteria. J. Med.
Chem. 2017, 60, 3221–3240. [CrossRef]

13. Schrand, A.M.; Rahman, M.F.; Hussain, S.M.; Schlager, J.J.; Smith, D.A.; Syed, A.F. Metal-based nanoparticles and their toxicity
assessment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010, 2, 544–568. [CrossRef] [PubMed]

14. Lin, Y.F.; Aarts, M.G. The molecular mechanism of zinc and cadmium stress response in plants. Cell. Mol. Life Sci. CMLS 2012, 69,
3187–3206. [CrossRef] [PubMed]

15. Thallaj, N. Review of a Few Selected Examples of Intermolecular Dioxygenases Involving Molecular Oxygen and Non-Heme Iron
Proteins. Int. J. Adv. Parmacutical Sci. Res. (IJAPSR) 2023, 3, 1–18. [CrossRef]

16. Rout, G.R.; Sahoo, S. ROLE OF Iron in Plant Growth and Metabolism. Rev. Agric. Sci. 2015, 3, 1–24. [CrossRef]
17. Stijlemans, B.; Beschin, A.; Magez, S.; Van Ginderachter, J.A.; De Baetselier, P. Iron homeostasis and Trypanosoma brucei associated

immunopathogenicity development: A battle/quest for iron. BioMed Res. Int. 2015, 2015, 1–15. [CrossRef]
18. Aziz, D.A.A.; Penyelidikan, P.P. The Development and Optimization of Processes for The expression of Sialylated Recombinant Human

Therapeutic Glycoprotein in Insect Cell-Baculovirus System; University Teknologi Malaysia: Johor, Malaysia, 2001.
19. Macaluso, G.; Grippi, F.; Di Bella, S.; Blanda, V.; Gucciardi, F.; Torina, A.; Guercio, A.; Cannella, V. A Review on the Immunological

Response against Trypanosoma cruzi. Pathogens 2023, 12, 282. [CrossRef]
20. Ganz, T. Hepcidin and iron regulation, 10 years later. Blood J. Am. Soc. Hematol. 2011, 117, 4425–4433. [CrossRef]
21. Ganz, T.; Nemeth, E. Hepcidin and iron homeostasis. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Res. 2012, 1823, 1434–1443.

[CrossRef]
22. Drakesmith, H.; Nemeth, E.; Ganz, T. Ironing out ferroportin. Cell Metab. 2015, 22, 777–787. [CrossRef] [PubMed]
23. Winter, W.E.; Bazydlo, L.A.; Harris, N.S. The molecular biology of human iron metabolism. Lab. Med. 2014, 45, 92–102. [CrossRef]

[PubMed]
24. Kalinowski, D.S.; Richardson, D.R. Cellular and molecular biology of iron-binding proteins. In Cellular and Molecular Biology of

Metals; CRC Press: Boca Raton, FL, USA, 2010; pp. 177–190.
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