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Abstract: Metabolomics-based genome-wide association studies (mGWAS) are key to understanding
the genetic regulations of metabolites in complex phenotypes. We previously developed mGWAS-
Explorer 1.0 to link single-nucleotide polymorphisms (SNPs), metabolites, genes and phenotypes for
hypothesis generation. It has become clear that identifying potential causal relationships between
metabolites and phenotypes, as well as providing deep functional insights, are crucial for further
downstream applications. Here, we introduce mGWAS-Explorer 2.0 to support the causal analysis
between >4000 metabolites and various phenotypes. The results can be interpreted within the context
of semantic triples and molecular quantitative trait loci (QTL) data. The underlying R package is
released for reproducible analysis. Using two case studies, we demonstrate that mGWAS-Explorer
2.0 is able to detect potential causal relationships between arachidonic acid and Crohn’s disease, as
well as between glycine and coronary heart disease.

Keywords: mGWAS; metabolomics; causal inference; two-sample Mendelian randomization; semantic
triples

1. Introduction

The circulating metabolites can act as inputs, mediators or products in metabolic
networks and play important roles in human health [1]. Over the past 15 years, growing
applications of metabolomics in genome-wide association studies (mGWAS) have revealed
a wealth of statistical associations between metabolites and genotypes [2–5], making mG-
WAS an important asset in the omics toolkits. Integrating these datasets has the potential
to identify robust genetic underpinnings of diseases and traits with improved statisti-
cal power [2,3,5–9]. For instance, a recent large-scale meta-analysis integrating genetic
associations for 174 metabolites from various platforms has significantly expanded our
understanding of the genetic loci that impact these metabolite levels [2].

We developed mGWAS-Explorer to help researchers navigate the findings from differ-
ent mGWAS studies [10]. Users can enter a list of genes, SNPs or metabolites and visually
explore their known connections, as well as perform cross-phenotype association analysis.
Over the past few years, causal inference techniques, such as Mendelian randomization
(MR), have become integral to GWAS research, enabling causal estimations of exposures on
outcomes, identifying novel risk factors, validating potential biomarkers and drug targets,
as well as investigating gene–environment interactions [11–15]. MR uses genetic variants,
known as instrumental variables, to infer potential causal relationships between exposures
(e.g., metabolites) and outcomes (e.g., phenotypes). The utility of MR arises from the
nature of genetic variants, which are randomly allocated at conception and remain fixed
throughout an individual’s life, closely mirroring the random allocation of interventions
in a randomized controlled trial. This unique characteristic strengthens the ability of MR
to counteract confounding and reverse causation, which are two prevalent limitations
in observational epidemiology [16]. The reliability of MR, however, depends on several
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assumptions, one of the most crucial being that the genetic variants should not influence
the disease outcome via any pathway other than the exposure under investigation [17].
Many computational methods, databases and tools have been developed to support MR
analysis [18–21]. Among them, two-sample Mendelian randomization (2SMR) emerges
as a particularly useful method by enabling causal inference based on associations (ge-
netic variant–exposure association and genetic variant–outcome association) from separate
GWAS studies [22]. Bioinformatic resources such as IEU OpenGWAS and MR-Base [18,23]
have been developed to streamline the process of causal inferences from an extensive
collection of GWAS studies using 2SMR. They are becoming indispensable infrastructures
for researchers in the field of genetic epidemiology.

MR has proven effective in estimating the causal effects of metabolites on diseases
or other phenotypes by using metabolite quantitative trait loci (mQTLs) as genetic instru-
mental variables (IVs) [16,18,24]. For example, MR studies have identified the causal role
of low-density lipoprotein cholesterol (LDL-C) in coronary artery disease (CAD), lead-
ing to the discovery of LDL-C-lowering drugs [25,26]. More recently, the phenome-wide
Mendelian randomization (PheMR) has become a promising approach for investigating the
potential causal associations between molecular phenotypes and a broad range of human
traits and diseases [14,27,28]. PheMR analysis is a time-consuming, resource-intensive
process and requires the careful selection of IVs [14]. Despite these advancements, a
comprehensive and user-friendly bioinformatics tool for performing metabolome-wide
MR mapping and interpretation has been lacking. Researchers usually need to use mul-
tiple tools coupled with script commands to obtain causal insights between genetically
influenced metabolites and disease phenotypes. There is an unmet need for accessible
bioinformatics tools to support MR analysis in mGWAS.

Interpreting causal assessments returned by MR methods remains a difficult task. One
promising approach is to combine causal estimates with information derived from the
literature, such as semantic triples (subject–predicate–object) [29]. This triangulation ap-
proach leverages literature-mined knowledge from resources such as Semantic MEDLINE
Database (SemMedDB) and MELODI Presto to facilitate interpretations [30–32]. In addition
to literature mining, the increased use of QTL analysis has notably broadened our capacity
to explore complex genetic structures. Various molecular quantitative trait loci such as
eGenes (eQTLs) or proteins (pQTLs) can provide important mechanistic links from genetic
variants to phenotypes [33–36]. Integrating QTL data from various studies can increase
statistical power and accuracy, as highlighted by two recent studies [37,38].

Here, we introduce mGWAS-Explorer 2.0 to address the evolving bioinformatics
needs and challenges in mGWAS research. Compared to version 1.0, mGWAS-Explorer 2.0
contains several new features:

• Implemented a two-sample MR strategy to allow the investigation of causal relation-
ships between >4000 metabolites and various phenotypes;

• Integration of semantic triples with eQTL and pQTL data to support functional anno-
tation and mechanistic insights from MR results;

• Added a new “Joint Search” module that allows users to flexibly enter and search
different molecules of interest;

• Enhanced data harmonization workflow and released the underlying mGWASR pack-
age to support reproducible analysis.

2. Materials and Methods
2.1. Knowledgebase Curation

The data source for the mGWAS summary statistics can be found in the publication
of version 1.0 of mGWAS-Explorer [10]. The eQTL data from 49 tissues and pQTL data
from blood were obtained from the Genotype–Tissue Expression (GTEx) project and QTL-
base [39,40]. The complete GWAS summary statistics of the disease outcome were based
on the Application Programming Interface (API) service of the IEU OpenGWAS [23].



Metabolites 2023, 13, 826 3 of 13

2.2. Methods for MR Analysis

The statistical methods for pre-processing and MR analysis are based on the TwoSam-
pleMR and MRInstruments R packages [18]. The pre-processing procedure facilitates the
acquisition of independent instrumental variables by performing linkage disequilibrium
(LD) clumping. In cases where the SNP query is absent in the outcome GWAS, we identify
a proxy SNP in LD with the input SNP, utilizing the 1000 Genomes Project phase 3 data as
a reference [41]. A crucial aspect of the analysis is harmonizing exposure and outcome data
to make sure that the effects of the SNP on exposure and outcome are associated with the
same allele. Three options are available: (i) assume all alleles are on the forward strand;
(ii) infer the forward strand alleles based on allele frequency; (iii) adjust the strand for
non-palindromic SNPs while excluding all palindromic SNPs.

Our approach incorporates 18 distinct MR methods together with support for hetero-
geneity and horizontal pleiotropy testing. In particular, the heterogeneity test is based on
Cochran’s Q test, while the horizontal pleiotropy test is conducted using Egger regression.
These tests allow a comprehensive understanding of the potential biases within the MR
analysis and promote robust and reliable results.

2.3. Pre-Computed Phenome-Wide MR

A comprehensive collection of 1825 SNPs associated with 1016 distinct metabolites
was derived from five recent mGWAS datasets [2,4,42–44]. We first selected SNPs that
were associated with any metabolites with a p-value threshold of 5 × 10−8 in at least one
of the five studies. Because of intricate LD patterns of SNPs located within the human
major histocompatibility complex (MHC) region (chr6: from 26 Mb to 34 Mb), we excluded
both SNPs and the associated metabolites within that region. Finally, we performed LD
clumping for the IVs to identify independent SNPs for each metabolite using a threshold
of r2 < 0.001. A total of 1544 IVs related to 825 metabolites were retained. We used
2SMR to comprehensively evaluate the potential causal impact of these 825 metabolites on
236 distinct phenotypes, which comprised an array of diseases and associated risk factors.

2.4. Semantic Triples

The semantic triples are queried using the API service of the MELODI Presto [32].
MELODI Presto enables the exploration of enriched literature data corresponding to specific
search terms and the identification of potential intermediate disease mechanisms among
term lists. The SemMedDB [31] serves as a repository for semantic predications, including
subject–predicate–object triples.

2.5. R Package

The underlying analysis is based on the mGWASR package available on GitHub (https:
//github.com/xia-lab/mGWASR (accessed on 27 May 2023)). The R package includes
detailed vignettes for step-by-step analysis. To guarantee that the identical results will be
generated, the R package and the web server have been thoroughly tested.

3. Results
3.1. Two-Sample Mendelian Randomization (2SMR)

The growing number of mGWAS makes it possible to systematically investigate the
potential causal relationships between metabolites (targeted) or metabolite features (untar-
geted) and human diseases. To facilitate this process, we implemented a “MR Analysis”
module to support 2SMR analysis between >4000 metabolites and various phenotypes.

On the data upload page of this module, users first specify the metabolites (exposure)
and disease (outcome) of interest. The mGWAS-Explorer 2.0 will automatically identify
SNPs significantly associated with the metabolites from our curated mGWAS data and
subsequently extract these instrumental SNPs associated with the disease outcome available
in the IEU OpenGWAS database [23]. After acquiring summary statistics for both exposure
and outcome, users need to harmonize data to ensure consistency in genetic instruments,
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effect sizes and effect alleles. The parameter page allows users to perform LD clumping or
pruning, retaining only independent genetic variants for MR estimation [18]. Our platform
currently offers 18 distinct MR analysis methods for causal effects estimation, including
MR–Egger, weighted median, inverse variance-weighted methods, etc. [18]. Additionally,
mGWAS-Explorer 2.0 automatically performs sensitivity assessments and heterogeneity
tests to evaluate potential violations of MR assumptions and the robustness of causal
estimates. Upon completion, the MR results are displayed in a summary table together
with four types of graphical outputs.

The summary table provides a grouped display containing the outputs from MR
analysis, heterogeneity tests and horizontal pleiotropy tests. The MR analysis results within
the table are organized to show the selected SNPs used as instrumental variables, along with
their corresponding causal effect estimates, standard errors and p-values. The summary
table also displays the outcomes of heterogeneity tests, detailing the Cochran’s Q statistic
along with its degrees of freedom and the p-value. The Q statistic aids in determining if
the variation seen in effect sizes is a result of randomness or actual heterogeneity. Further,
the table displays the results of the horizontal pleiotropy tests. Key values such as the
MR–Egger regression intercept and its corresponding p-value are presented. These metrics
are crucial for detecting horizontal pleiotropy, which occurs when the SNPs have additional
effects on the outcome aside from their impact on the exposure.

Four types of plots are generated to visually represent the data and facilitate intuitive
interpretation. (i) The forest plot provides a visual summary of the individual causal
effect estimates from each SNP, with their corresponding confidence intervals contributing
towards the overall MR estimate. This effectively allows for the evaluation of both the
direction and magnitude of the causal effect and heterogeneity among variants. (ii) The
scatter plot displays the causal effect estimates from each SNP against their respective
associations with the exposure. This gives a graphical representation of the MR assumptions
to aid in detecting potential outlier SNPs. (iii) The funnel plot provides a unique perspective
by plotting the precision of individual variant estimates against their corresponding causal
effect estimates. Users can visually identify asymmetry that might suggest the presence of
directional pleiotropy or outliers. (iv) Lastly, the plot for leave-one-out analysis graphically
demonstrates the robustness of the MR findings. It illustrates how the overall MR estimate
varies when individual SNPs are excluded from the analysis to help identify influential
SNPs that may unduly skew the results. These diagnostic plots allow users to thoroughly
evaluate the MR results. Users have the option to customize these plots in terms of format,
resolution or size for downloading purposes.

3.2. Pre-Computed Phenome-Wide MR

To facilitate the exploration of the potential causal relationships between metabolites
and a range of phenotypes, we conducted a phenome-wide MR analysis based on five recent
mGWAS [2,4,39,43,44] and identified 1825 SNPs associated with 1016 metabolites. After
removing metabolites and SNPs by using the selection criteria (see Section 2), 1544 SNPs
and 825 metabolites were kept as instrumental variables for MR analysis. We performed
2SMR to systematically assess the causal effects of these 825 metabolites on 236 phenotypes,
including diseases and disease-related risk factors.

Our analysis identified 1243 metabolite–trait associations with significant MR evidence
(p < 2.57 × 10−7 at a Bonferroni-corrected threshold, 0.05/(825 × 236)) (Figure 1 and
Supplementary Table S1). We also conducted sensitivity analyses, including MR–Steiger
filtering [45], to test for reverse causality and heterogeneity analyses [46] for metabolites that
have multiple IVs. Our MR results revealed significant associations between metabolites
and various disease categories, including many new associations that have not yet been
reported before.
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Figure 1. Miami plot showing significant phenome-wide Mendelian randomization results of metabo-
lites. The x axis is the traits sorted according to a meaning set of biological categories (for example,
circulatory system, digestive traits). The y axis represents the −log10 p-value of the MR results; MR
results with positive effects (increased level of metabolites associated with increasing the phenotype
risk) are represented on the top half of the plot, while MR results with negative effects (decreased
level of metabolites associated with increasing the phenotype risk) are shown on the bottom half
of the plot. The color indicates metabolite super pathways. The significant p-value cut-off for MR
results is 2.57 × 10−7 at a Bonferroni-corrected threshold, 0.05/(825 × 236).

3.3. Triangulating Evidence from Semantic Triples

Integrating evidence from different studies could minimize the sources of bias and
obtain more trustworthy answers. The basic concept is that if the results from different
sources all lead to the same conclusion, the confidence in the findings increases. This
strategy has been referred to as ‘triangulation’ and has gained increasing attention in
epidemiology research for causal inference [30]. Driven by this concept, we have leveraged
the MELODI Presto method to enable triangulation of the causal estimates from MR with
millions of semantic triples curated from the literature [26].

In the result page of the MR module, users can retrieve the semantic triples (subject–
predicate–object) associated with the exposure (metabolite) and the outcome (disease) to
identify overlapping enriched terms, namely, the object from the exposure query overlaps with
a subject from the outcome query [32]. The query usually takes a few seconds and returns the
results in a data table. Alternatively, users can explore the results using a network diagram.

3.4. Enabling Joint SNP/Metabolite Analysis

Recent studies have shown that leveraging SNPs and metabolite data has the potential to
reveal associations beyond traditional metabolic pathways [47]. Therefore, we have added a new
“Joint Search” module that enables users to input SNPs, metabolites or both simultaneously.

For metabolite input, users can enter various identifiers such as compound names,
Human Metabolome Database (HMDB) IDs or Kyoto Encyclopedia of Genes and Genomes
(KEGG) IDs. Users can then choose from multiple mapping options, such as linking
metabolites to SNPs based on statistical associations, associating metabolites to genes
through knowledge-based mappings or connecting metabolites to diseases.

The SNP input accepts rsID. Four different mapping options are available to link
SNPs to metabolites, genes (either the nearest gene or eQTL), proteins (using pQTL) or
diseases. Moreover, users can filter SNP to metabolite mappings based on specific biofluid
or population data. The biofluids cover blood, urine, cerebrospinal fluid (CSF), saliva,
as well as mitochondria, while the populations include European, American, Hispanic,
Middle Eastern and South Asian groups.

The search results are networks representing complex associations between SNPs and
metabolites mediated by other molecules. To further tailor the generated networks, users
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can apply filters based on network topology metrics such as node degree and betweenness,
shortest path calculations, etc.

3.5. Improving Transparency/Reproducibility through Releasing mGWASR Package

Transparent data processing and analysis procedures are essential for reproducible re-
search [48]. To support this direction, we have added a Result Download page in each module
to allow users to obtain all results tables and images generated during the analysis, as well as
the R command history. The underlying R functions of mGWAS-Explorer 2.0 are released as the
mGWASR package (https://github.com/xia-lab/mGWASR (accessed on 27 May 2023)). We
anticipate that the R package and the R command history will enable users to track each stage of
their analysis in an easily sharable and reproducible format (i.e., R script). Additionally, we have
migrated all our frequently asked questions (FAQs) to the OmicsForum (https://omicsforum.ca
(accessed on 27 May 2023)) to better engage with our user communities.

3.6. Case Studies
3.6.1. Crohn’s Disease Case Study

Crohn’s disease is a complex disease that causes chronic inflammation of the gastroin-
testinal tract. Previous studies have suggested that arachidonic acid has a causal effect on
Crohn’s disease through colocalization analysis [49]. Therefore, we sought to investigate the
potential causal effect of the arachidonic acid on Crohn’s disease using the summary statis-
tics for both traits in mGWAS-Explorer 2.0 [4,50]. Using 24 independent genetic instruments
(i.e., SNPs), the results of four commonly used MR methods (inverse variance-weighted,
MR–Egger, weighted median estimator and weighted mode estimator) consistently illus-
trate that the decrease in arachidonic acid levels had a causal effect on Crohn’s disease
(Figures 2 and S1), which is consistent with the findings reported by Chu et al. [49]. This
case study highlights how users can easily perform MR analysis by leveraging our compre-
hensive knowledgebase of mGWAS summary statistics as well as an easy-to-use interface
to test the hypothesis of the plausible causal roles of metabolites on diseases.
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plot comparing the causal effects calculated using the methods including all the SNPs (illustrated
by red color) to using each SNP separately (illustrated by black color). (c) a scatter plot showing the
relationships between SNP effects on arachidonic acids against the SNP effects on Crohn’s disease,
with slope indicating the causal association.

3.6.2. Coronary Heart Disease Case Study

To demonstrate triangulating casual inference from MR with evidence from the litera-
ture, we used glycine and coronary heart disease as an example to explore the semantic
evidence connecting the metabolite and the disease. Figure 3a shows the causal asso-
ciations between SNP effects on glycine against the SNP effects on the coronary heart
disease. Genetic predisposition to higher glycine levels is associated with lower risk
of coronary heart disease. Figure 3b displays the semantic-triples connections between
glycine and coronary heart disease after searching for enriched overlapping terms. A total
of 73 overlapping terms was identified, including homocysteine [51–53], ethanol [54,55]
and TNF protein [56,57]. In the case of homocysteine, “homocysteine—PREDISPOSES—
Coronary Arteriosclerosis” is the most enriched semantic triple on the outcome side (p-
value: 4.38 × 10−120), whereas “Glycine—INTERACTS_WITH—homocysteine” has a p-
value of 8.3 × 10−6. Therefore, we can hypothesize that the protective effect of glycine on
coronary heart disease may be due to the interactions with homocysteine.
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Table 1. Comparison of the main features of mGWAS-Explorer (version 1.0–2.0) with other web-
based tools. Symbols used for feature evaluations: ‘√’ for present, ‘−’ for absent and ‘+’ for a more 
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Figure 3. Triangulation of MR results and literature evidence on the effects of glycine on coronary
heart disease case study. (a) A scatter plot showing the relationships between SNP effects on glycine
against the SNP effects on coronary heart disease, with slope indicating the causal association; (b) a
network of semantic triples (subject–predicate–object) from evidence from the literature between
“glycine” and “coronary heart disease”. Each node represents either an exposure subject (blue), an
outcome object (green) or an overlapping enriched element (orange), where the object of a triple
from the exposure query overlaps with a subject of a triple from the outcome query. Each edge is a
“predicate” connecting two semantic elements. The path between glycine, homocysteine and coronary
arteriosclerosis is highlighted in orange.

3.7. Comparison with Other Tools

Table 1 compares mGWAS-Explorer 2.0 with its previous version and several other
web-based tools, including EpiGraphDB [29], The Molecular Human [58] and MR-Base [18].
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EpiGraphDB is a graph database and analytical platform containing comprehensive epi-
demiological and biomedical relationships, including pre-computed MR causal estimates,
drugs, pathways, evidence from the literature, ontology information, etc. The Molecular
Human focuses on providing a comprehensive characterization of the molecular interac-
tions using the integrated multi-omics data from 18 different platforms. MR-Base is an
integrated platform that automates the two-sample MR analysis with a web interface, API
and R package, which incorporates a database of complete GWAS summary statistics. In
comparison, mGWAS-Explorer 2.0 supports both linking multi-omics with diseases and
performing MR analysis to identify metabolites with causal impacts on the diseases in the
context of mGWAS.

Table 1. Comparison of the main features of mGWAS-Explorer (version 1.0–2.0) with other web-
based tools. Symbols used for feature evaluations: ‘

√
’ for present, ‘−’ for absent and ‘+’ for a more

quantitative assessment (more ‘+’ symbols indicate better support).

Tool Name
mGWAS-Explorer

EpiGraphDB The Molecular Human MR-Base
2.0 1.0

Data input and processing
Metabolite

√ √ √ √ √

SNP
√ √ √ √

−
Gene

√ √ √ √
−

MR exposure
√

−
√

−
√

MR outcome
√

−
√

−
√

Output
Data table

√ √ √ √ √

Interactive network +++ +++ ++ ++ −
Forest plot

√
− − −

√

Scatter plot
√

− − −
√

Funnel plot
√

− − −
√

Functions and resources
Mendelian randomization

√
− *

√
−

√

Exposure (metabolite) ** 4238 metabolic
traits, 65 studies − 123 metabolic

traits, 1 study − 123 metabolic
traits, 1 study

Enrichment analysis
√ √

− − −
Pre-computed phenome-wide MR

√
−

√
− −

Semantic triples evidence
√

−
√

− −
URL links: EpiGraphDB: https://www.epigraphdb.org/ (accessed on 23 January 2023). The Molecular Human:
http://comics.metabolomix.com/ (accessed on 23 January 2023). MR-Base: http://www.mrbase.org/ (accessed
23 January 2023). * EpiGraphDB contains pre-computed MR causal estimates. ** Metabolic trait number includes
both metabolites, metabolic features and metabolite ratios based on mGWAS-Explorer 1.0 when the effect size and
standard error are available in the summary statistics.

4. Discussion

Systematic causal inferences between modifiable risk factors and complex traits re-
main challenging in human genetics [14,59,60]. We have developed mGWAS-Explorer
2.0, which integrates published mGWAS summary statistics with analytical methods and
visualization, with a particular focus on understanding the relationships between genetic
variants, metabolites and diseases.

The main approach for causal estimates is based on 2SMR. However, 2SMR relies on
strict assumptions [61]. To minimize the violations and help obtain valid causal estimates,
we have implemented two types of protections—algorithmic and data protections. Algorith-
mic protections include two strategies: (i) Multiple IVs: leveraging multiple independent
genetic variants as IVs can help mitigate the effects of individual genetic variants violating
the MR assumptions. Techniques such as weighted median or MR–Egger regression can
account for potential violations and yield more reliable causal estimates. (ii) Sensitivity
analyses: conducting various sensitivity analyses can aid in identifying and evaluating
the impact of potential MR assumption violations. For instance, MR–Egger regression

https://www.epigraphdb.org/
http://comics.metabolomix.com/
http://www.mrbase.org/
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can detect whether directional horizontal pleiotropy drives the results of an MR analysis.
Data protections involve the following measures. (i) Large and well-characterized cohorts:
utilizing data from sizable, well-characterized cohorts with high-quality genotyping and
phenotyping information can minimize measurement errors and enhance the precision
of causal estimates. This can help reduce violations of the relevance and independence
assumptions. (ii) Data harmonization: by ensuring consistency in exposure and outcome
definitions across the studies, potential biases stemming from varying definitions or data
collection methods can be diminished.

One of the key characteristics of clinical phenotypes and disease relationships is their
inherent complexity and diversity, with a single clinical phenotype potentially associated
with multiple diseases and a single disease often linked with multiple phenotypes. The
2SMR approach used by mGWAS-Explorer 2.0 can tackle this scenario effectively, allowing
for the investigation of whether a change in a metabolite concentration is causally related
to each disease or phenotype individually. Importantly, our approach utilizes summary
statistics from large-scale GWAS, providing robust, population-based evidence that is less
prone to confounding bias.

The capabilities of mGWAS-Explorer 2.0 extend beyond traditional GWAS and molec-
ular QTL analysis software. As highlighted in the studies by Shariatipour et al. [37,38],
meta-analysis of QTL is usually conducted using a combination of several tools. In contrast,
mGWAS-Explorer 2.0 provides a single platform to support causal analysis for more than
4000 metabolites and various phenotypes. It also enables result interpretation within the
context of known molecular interactions as well as semantic triples based on literature
mining. Such a streamlined process allows for the efficient, in-depth exploration of the
data, facilitating novel hypothesis generation.

Our first case study investigated the causal role of arachidonic acid (AA) on Crohn’s
disease (CD) using MR. AA belongs to omega-6 polyunsaturated fatty acids, and free AA
enhances and modulates type 2 immune response, which is crucial for resistance to allergens
and parasites [62]. In our analysis, the negative causal effect of AA on CD is consistent
with previous studies where CD patients had lower levels of AA [63,64]. However, more
studies are needed to understand the mechanisms underlying the association.

The second case study highlights the protective role of glycine on coronary heart
disease (CHD), which agrees with the findings from the MR study by Wittemans et al. [65].
In the semantic triples analysis, “Glycine—INTERACTS_WITH—homocysteine” and
“homocysteine—PREDISPOSES—Coronary Arteriosclerosis” present an example of how to
obtain possible mechanisms from the literature after MR analysis. A high homocysteine
level is strongly associated with the prevalence of CHD. The role of homocysteine on CHD
is explained by its negative effects on vascular endothelium and smooth muscle cells [66].
On the other hand, it was reported that intracellular concentrations of homocysteine were
lowered after 24 h of co-incubation with glycine [53], although the mechanism of how
glycine lowers the homocysteine concentrations is not clear.

While mGWAS-Explorer 2.0 has been developed primarily for human studies, it
can be extended to support a wider range of organisms. This is currently limited by
the availability of comprehensive genomic and metabolic datasets for these organisms.
Therefore, an important future effort will be collecting and integrating high-quality data
from other species, such as plants [67].

5. Conclusions

We developed mGWAS-Explorer 2.0 to allow researchers to investigate potential causal
relationships between metabolites and various phenotypes. By leveraging two-sample
MR, together with text mining and molecular networks for functional interpretations,
mGWAS-Explorer 2.0 has addressed a critical gap in the post-GWAS era [68]. The utilities
are demonstrated in two case studies. We expect that mGWAS-Explorer 2.0 will play an
important role in helping elucidate the etiology of disease with the growing number of
published GWAS data.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13070826/s1. Figure S1: assessment of causal effects
of arachidonic acid levels on Crohn’s disease: a leave-one-out plot and a funnel plot; Table S1:
Mendelian randomization results.
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