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Abstract: Mutagenesis is a highly efficient tool for establishing genetic variation and is widely used
for genetic enhancement in various plants. The key benefit of mutation breeding is the prospect of
enhancing one or several characteristics of a variety without altering the genetic background. In this
study, we exposed the seeds of Salvia officinalis to four concentrations of hydrazine hydrate (HZ),
i.e., (0%, 0.1%, 0.2%, and 0.3%) for 6 h. The contents of terpenoid compounds in the S. officinalis
plantlets driven from the HZ-treated seeds were determined by GC-MS, which resulted in the iden-
tification of a total of 340 phytochemical compounds; 163 (87.48%), 145 (84.49%), 65 (97.45%), and
62 (98.32%), from the four concentrations of HZ (0%, 0.1%, 0.2%, and 0.3%), respectively. Further-
more, we used the qRT-PCR system to disclose the “transcriptional control” for twelve TPS genes
related to terpenoid and terpene biosynthesis, namely, SoGPS, SoMYRS, SoNEOD, SoCINS, SoSABS,
SoLINS, SoFPPS, SoHUMS, SoTPS6, SoSQUS, SoGGPS, and SoGA2. Altogether, results are likely to
ensure some positive relationship between the concentrations of the chemical mutagen HZ used
for treating the seeds, the type and amount of the produced terpenes, and the expression of their
corresponding genes.

Keywords: Salvia officinalis; hydrazine hydrate (HZ); transcriptional control; chemical mutagens;
terpene synthase genes

1. Introduction

Plant improvement has been the cornerstone of the ever-growing human population’s
food security for many years. Despite the availability of large germplasm collections, crop
development still depends on effective genetic diversity evaluation [1–3]. Furthermore,
genetic diversity is essential for crop improvement and climate adaptation, especially
in plants with low genetic diversity that are more susceptible to stresses [4–9]. Genetic
variation is greatly influenced by the degree of DNA damage and the cell’s capacity to
repair it [10]. According to estimates made by McCulloch and Kunkel (2008) [11], each
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day during the normal replication mechanism, each cell experiences between 1000 and
1,000,000 molecular damages. Unrepaired DNA damage has the ability to lead to mutations
in somatic or germline cells, which can change both the genotype and phenotype of the cell
by impairing protein synthesis’s transcription and translation processes [12]. Alkylating
agents, such as hydrazine hydrate, ethyl methane sulphonate (EMS), ethyleneimides, alkyl
methane sulphonates, sulphur mustards, methyl methane sulfonate, epoxides, and alkyl
nitrosoureas, can be utilized as chemical mutagens [13,14]. In this context, mutagenesis is
a highly efficient tool for establishing genetic variation, and it has been widely used for
genetic enhancement in many different plants, including; cauliflower (Brassica oleracea) [15],
dianthus (Dianthus caryophyllus) [16], chickpea (Cicerarietinum L.) [17], barley (Hordeumvul-
gare L.) [18], Arabidopsis (Arabidopsis thaliana) [19], Malaysian rice and Korean commercial
rice (Oryza sativa) [20,21], and sweet corn (Zea mays) [22].

Salvia officinalis, an important annual medicinal herb of the Lamiaceae family, is exten-
sively cultivated in Europe, the Middle East, Mediterranean areas, Northern Africa, and
North Sinai in Egypt. The active pharmaceutical ingredients of salvia species mainly include
(1,8-cineole, sabinene, limonene, a-terpineole, ocimene, myrcene, a- and b-pinene, and
caryophyllene) [23,24]. As one of the most important popular Egyptian medicinal plants,
S. officinalis has been used to treat various diseases because of its antioxidant, choleretic,
antihypertension, antitumor, antiulcer, anticancer, antimicrobial, anti-thrombosis, antibacte-
rial, antitumorigenic, anti-inflammatory, and anticoagulant properties [25,26]. Terpenoids
or isoprenoids are considered one of the biggest secondary metabolites compounds with
various structures and sizes [23,24,27,28]. On the other hand, thousands of terpene and
terpenoid compounds, such as hemiterpenes, oxygenated monoterpenes, monoterpene
hydrocarbons, sesquiterpene hydrocarbons, oxygenated sesquiterpenes, diterpenes, non-
iso-prenoid, and triterpene compounds are derived from mevalonate and non-mevalonate
pathways [23,24,29–32]. Due to terpene compounds being involved in the synthesis of
various pharmaceutical ingredients, more attention has been paid to them in different salvia
species, such as; Salvia santolinifolia, S. isensis, S. hydrangea, S. epidermidis, S. mirzayanii, S.
fruticosa, S. tomentosa, S. officinalis, S. chloroleuca, S. guaranitica, S. lavandulifolia, S. przewalskii,
S. japonica, S. macrochlamys, S. allagospadonopsis, S. recognita, S. lavandulaefolia, S. lanigeraPoir.,
S. glabrescens, S. aureus, S. euphratica, S. tuxtlensis, S. eremophila, S. sclaria, Salvia staminea,
Salvia virgata, S. nipponica, and Salvia verbenaca [23,31–33].

In this study, we inspected the effect of different concentrations of HZ on the expression
levels of various terpene biosynthesis genes and determined the biological effect of HZ on
terpene and terpenoid production. These results suggested that each concentration of HZ
has various effects on the expression level of every terpene synthases gene and terpene
production in S. officinalis plants. The results of our investigation identifieda method
of determining the suitable concentration from chemical mutagenesisand analyzed the
biological effects of chemical mutagens, which will facilitate the use of chemical mutagens
for the improvement of the salvia plant through mutation breeding.

2. Materials and Methods
2.1. Plant Material and Growth Conditions

Seeds of S. officinalis were pre-soaked in distilled water for 12 h, then soaked in four
different concentrations (0%, 0.1%, 0.2%, and 0.3%) of HZ solution for 6 h by placing seeds
in 10 mm × 100 mm petri plates (about 60 seeds per plate in a single layer), as described
by [34–36]. The seeds from each treatment were then washed with distilled water three
times to remove the traces of the HZ solution. The S. officinalis seeds were then surface
sterilized with 75% (v/v) ethanol for 1:30 min and then in 2.5% (v/v) sodium hypochlorite
solution for 12 min, thoroughly washed three times with sterilized distilled water, and
sown in solid Murashige and Skoog (MS) [37] with pH 5.8 medium containing 30 g L−1

sucrose and 2.5 g L−1 phytagel. The seeds were incubated in the dark for three days then
grown at 23 ◦C under a photoperiod of 8 h dark and 16 h light (110 µmol m−2s−1) in a
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controlled growth chamber until the plantlets were grown for 6 weeks. After sowing, the
percentage of surviving seedlings (survival rate, SR) was investigated.

2.2. RNA Extraction and cDNA Library Preparation

The total RNAs from the three biological plantlets replicates from each S. officinalis
line (three plantlets from each treatment) were extracted using the plant TRIzol Reagent
(Invitrogen, Carlsbad, CA, USA), according to the manufacturer’s protocol. RNA purity
was analyzed using a Nano-Photometer® spectrophotometer (IMPLEN, CA, USA), and the
quality was examined on 1.4% agarose gels as described previously [23,24,31,38,39]. For
quantitative RT-PCR, the first strand of complementary DNA (cDNA) was synthesized from
1 µg total RNA, which was previously treated with DNase I (Takara), using an M-Malva
Reverse Transcriptase (RNase H) kit, according to the manufacturer’s protocol. The second
strand of cDNA was synthesized in the presence of DNA Polymerase I and Rnase-H, as
described previously [23,24,31,38,39].

2.3. Metabolite Extraction from S. officinalis Plantlet after Treatment with Different
Concentrationsof HZ

For extraction and analysis of terpenoid compounds from the non-treated (con-
trol) and treated S. officinalis plantlets under different concentrations from hydrazine
hydrate, we followed the procedures described by Ali et al., 2017, 2018, 2021, 2022, 2022,
2022 [23,24,31,38,39]. In short, the plantlets from each S. officinalis line (three plantlets from
each treatment) were collected. Then all collected samples from non-treated (control) and
treated S. officinalis plantlets were homogenized in liquid nitrogen and the powder was
directly soaked in n-hexane in 60 mL bottles. Then, the bottles were incubated with shaking
at 36 ◦C and 210 rpm for 73 h. Afterward, the solvent was purified using a centrifuge
at 5050 rpm for 9 min at 5 ◦C to remove plant debris. The extract was concentrated and
transferred to fresh 1.5 mL crimp neck vial amber glass screw-top vials. The terpenoid
content in the extract solution was determined by gas chromatography–mass spectrometer
(GC-MS: Shimadzu model GCMS-QP2010 Ultra (Tokyo, Japan) system). Three libraries:
NIST Library (2014 edition), Volatile Organic Compounds (VOC) Analysis S/W software,
and Wiley GC/MS Library (10th Edition), were used to identify the terpenoid constituents
by parallel comparison of terpenoid recorded mass spectra with the data that stored in these
previous Libraries [23,24,31,38,39]. All of the experiments were performed simultaneously
three times under the same conditions for each isolation technique, with a total GC running
time of 80 min.

2.4. Quantitative Real-Time PCR (qRT-PCR) Analysis

Quantitative real-time PCR was performed using an IQTM5 Multicolor Real-Time
PCR Detection System (Bio-Rad, Agitech, New Cairo Cairo, Egypt) as described previously
by Ali et al., 2017 [23], with SYBR Green I Mix-Master (Roche Diagnostics Ltd., Lewes,
UK) following the manufacturer’s instructions, with a total reaction volume of 20 µL,
andgene-specific primers for SoActin as, a reference gene, and the other twelve genes
involved in the biosynthesis of terpenes: SoGPS (geranyldiphosphatesynthase), SoMYRS
(myrcene/ocimene synthase), SoNEOD ((+)-neomenthol dehydrogenase), SoCINS (1,8-
cineole synthase), SoSABS ((+)-sabinene synthase), SoLINS ((3S)-linalool synthase), SoFPPS
(farnesyl pyrophosphate synthase), SoHUMS (a-humulene/b-caryophyllene synthase),
SoTPS6 ((−)-germacrene D synthase), SoSQUS (squalenemonooxygenase), SoGGPS (ger-
anylgeranyl pyrophosphate synthase) and SoGA2 (gibberellin 2-oxidase) from S. officinalis.
The primers for these previous genes were designed using the primer designing tools of
IDTdna (http://www.idtdna.com/scitools/Applications/RealTimePCR/ (accessed on 25
December 2022); primer sequences are listed in (Supplementary Table S1). The quantita-
tive RT-PCR conditions were set as standard conditions: 97 ◦C for 3:30 min, 36 cycles of
amplification (94 ◦C for 12 s, 58 ◦C, or 59 ◦C, or 60 ◦C for 30 s, and 72 ◦C for 22 s), and a
final extension at 66 ◦C for 1 min, then to 65 ◦C for 5 s, and 95 ◦C for 5 s). The values are

http://www.idtdna.com/scitools/Applications/RealTimePCR/
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means ± SE of the three replicates normalized using SoActin as a reference gene. The rela-
tive expression levels were calculated by comparing the cycle thresholds (CTs) of the target
genes with that of the reference gene SoActin using the 2−∆∆Ct method [23,24,31,38,39]. The
sizes of amplification products were 150–161 bp. The quantified data were analyzed using
Bio-Rad IQTM 5 Multicolor Real-Time Manager software. Finally, the relative expression
levels of SoGPS, SoMYRS, SoNEOD, SoCINS, SoSABS, SoLINS, SoFPPS, SoHUMS, SoTPS6,
SoSQUS, SoGGPS, and SoGA2 genes were detected.

3. Results
3.1. Identification of Terpenoid Compounds from S. officinalis Plantlets under Different
Concentrationsof HZ by GC-MS

To study the effect of HZ on the percentage of survived seedlings, after 6 weeks from
plantlets growth, the SR rate was investigated, and we found an inverse relationship be-
tween the HZ concentrations and seedlings’ survival rate, which means the SR dramatically
decreased with the increase in HZ concentration, and the percentage of SR rate at differ-
ent concentrations (0%, 0.1%, 0.2%, and 0.3%) of HZ were 51 seedlings (85%), 42 (70%),
33 (55%), and 18 (30%), respectively. Then, the contents of terpenoid compounds in
S. officinalis plantlets after being treated with different concentrations of HZ were de-
termined by GC-MS, and the results are shown in Figure 1 and Table 1. S. officinalis
plantlets, after being treated with different concentrations of HZ, produced various lev-
els of mono-, sesquit-, dit-and triterpenes when compared with the control treatment.
The numbers of obtained terpenoid and phytochemical compounds from S. officinalis
plantlets at different concentrations (0%, 0.1%, 0.2%, and 0.3%) of HZ were 163 (87.48%), 145
(84.49%), 65 (97.45%), and 62 (98.32%), respectively. From the GC-MS analysis, we identified
274 phytochemical compounds using n-hexane extracts from the four S. officinalis plantlets
extracts at different concentrations (0.0%, 0.1%, 0.2%, and 0.3%) of HZ. In S. officinalis
plantlet extract at 0.0% (control), the monoterpene compounds were shown as the main
group (63.3%), followed by the group of sesquiterpene compounds (22.4%) and diterpene
compounds (1.78%). At 0.1%, the monoterpene compounds were shown as the main group
(52.88%), followed by the group of sesquiterpene compounds (18.13%), then by the group
of diterpene compounds (13.41%) and one triterpene compound (0.07%). Monoterpene
forms the main group of compounds (78.4%) found in the extract of S. officinalis plantlet
at 0.2% concentration, followed by the sesquiterpene group (13.27%), diterpenes group
(5.78%). Finally, at 0.3% concentration, the monoterpenes compounds were shown as the
main group (74.57%), followed by the diterpenes group (14.44%) and sesquiterpene group
(9.31%), as shown in Figure 1 and Table 1.
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Figure 1. Typical GC-MS mass spectragraphs for terpenoids from S. officinalis plantlet under the effect
of different concentrations (0%, 0.1%, 0.2%, and 0.3%) of HZ.
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Table 1. The major chemical composition of the essential oils of S. officinalis under the effect of different concentrationsof HZ.

NO. Compound Name R.T Formula M.W/Da
Terpene
Type

Average of% Peak Area Standard Deviation

Control 0.1% 0.2% 0.3% Control 0.1% 0.2% 0.3%

1 α-thujene 5.577 C10H16 136.234 Mono 0.12 0.17 0.34 0.78 0.17 0.17 0.16 0.58

2 α-pinene 5.815 C10H16 136.234 Mono 1.27 3.87 3.81 3.55 2.18 1.36 0.59 1.32

3 camphene 6.477 C10H16 136.234 Mono 0.21 2.70 1.69 0.82 0.20 2.22 1.88 0.74

4 (+)-camphene 6.49 C10H16 136.234 Mono 0.76 0.67 1.05 6.02 0.19 0.96 0.25 1.67

5 1,8-cineole 11.298 C10H18O 154.2493 Mono 15.63 35.83 47.96 32.32 10.93 11.53 5.45 8.86

6 geranylisobutyrate 11.935 C14H24O 208.3398 Sesquit 0.50 0.01 0.00 0.00 0.40 0.01 0.00 0.00

7 cajeputol 11.913 C10H18O 154.2493 Mono 0.00 0.36 0.00 0.00 0.00 0.09 0.00 0.00

8 P-menth-8-en-1-ol, stereoisomer 13.778 C10H18O 154.2493 Mono 0.57 0.63 0.37 0.51 0.09 0.40 0.25 0.23

9 Cis-β-terpineo 15.491 C10H18O 154.2493 Mono 0.07 0.05 0.00 0.00 0.02 0.06 0.00 0.00

10 thujan-3-one 15.706 C10H16O 152.2334 Mono 0.69 0.81 0.64 0.00 0.62 0.93 0.54 0.00

11 thujone 15.808 C10H16O 152.2334 Mono 0.39 1.06 0.00 0.72 0.13 0.97 0.00 0.85

12 camphor 17.698 C10H16O 152.2334 Mono 4.88 8.18 6.77 9.75 4.18 6.65 1.51 2.38

13 l-2-camphanol 18.901 C10H18O 154.2493 Mono 2.46 1.08 0.00 0.00 4.26 0.61 0.00 0.00

14 (L)-alpha-terpineol 18.93 C10H18O 154.25 Mono 1.19 0.52 0.00 0.00 1.30 0.70 0.00 0.00

15 alpha terpineol 20.071 C10H18O 154.25 mono 1.57 0.76 0.00 0.00 1.21 0.52 0.00 0.00

16 2-hydroxy-1,8-cineole 20.735 C10H18O2 170.2487 Mono 0.63 1.46 0.00 0.00 0.56 2.18 0.00 0.00

17 (+)-angelicoidenol 20.832 C10H18O2 170.25 Mono 1.66 0.12 0.00 0.36 2.66 0.19 0.00 0.18

18 2,5-bornanedione 24.456 C10H14O2 166.217 Mono 0.16 0.42 0.10 0.00 0.16 0.42 0.09 0.00

19 cis-2-acetoxy-1,8-cineole 25.609 C12H20O3 212.2854 Mono 0.13 0.18 1.43 0.00 0.18 0.12 2.28 0.00

20 ledene 27.914 C15H24 204.3511 Sesquit 0.00 0.09 0.16 0.00 0.00 0.16 0.08 0.00

21 (E)-β-caryophyllene 28.208 C15H24 204.3511 Sesquit 9.80 9.63 8.69 6.26 3.42 5.58 1.43 1.82

22
1H-cycloprop[e]azulene,
decahydro-1,1,7-trimethyl-4-
methylene-

28.838 C15H24 204.3511 Sesquit 0.35 0.20 0.00 0.00 0.36 0.11 0.00 0.00
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Table 1. Cont.

NO. Compound Name R.T Formula M.W/Da
Terpene
Type

Average of% Peak Area Standard Deviation

Control 0.1% 0.2% 0.3% Control 0.1% 0.2% 0.3%

23 gamma-caryophyllene 28.868 C15H24 204.3511 Sesquit 0.37 0.83 0.00 0.20 0.65 1.44 0.00 0.15

24 humulene 29.416 C15H24 204.3511 Sesquit 5.83 2.46 0.00 4.91 2.97 2.14 0.00 3.58

25 1,4,7,-cycloundecatriene,
1,5,9,9-tetramethyl-, Z,Z,Z- 29.432 C15H24 204.3511 Sesquit 0.04 0.10 2.50 0.00 0.08 0.17 0.86 0.00

26 (+)-germacrene D 30.272 C15H24 204.3511 Sesquit 0.35 0.14 0.34 0.82 0.30 0.01 0.15 0.00

27 elemene 30.723 C15H24 204.3511 Sesquit 1.19 1.20 0.00 0.00 0.79 1.15 0.00 0.00

28 1-aromadendrene 31.486 C15H24 204.3511 sesquit 0.13 0.41 0.00 0.00 0.11 0.53 0.00 0.00

29 Cis-muurola-3,5-diene 31.491 C15H24 204.3511 Sesquit 0.18 0.30 0.00 0.00 0.05 0.39 0.00 0.00

30 spathulenol 33.333 C15H24 204.3511 Sesquit 0.58 0.37 0.00 0.00 0.67 0.03 0.00 0.00

31 caryophyllene oxide 33.419 C15H24 204.3511 Sesquit 1.74 1.14 1.38 1.16 1.38 1.05 1.14 0.77

32 1,2-humulene epoxide 34.278 C15H24O 220.35 Sesquit 0.04 0.54 0.00 0.27 0.00 0.17 0.00 0.17

33 9-hydroxynerol 36.742 C10H18O2 170.25 Mono 0.00 0.35 0.00 0.00 0.00 0.13 0.00 0.00

34 elema-1,3-dien-6.alpha.-ol 36.893 C15H26O 222.37 Sesquit 1.01 0.00 0.00 0.16 0.99 0.00 0.00 0.06

35 beta.-ylangene 41.488 C15H24 204.35 Sesquit 0.62 0.28 0.81 0.00 0.42 0.00 1.06 0.00

36 trans-biformene 42.357 C20H32 272.4681 Diter 0.24 0.22 0.12 0.24 0.10 0.17 0.03 0.12

37 labda-8(20),14-dien-13-ol, (13R)- 45.802 C20H34O 290.5 Diter 0.00 1.62 0.00 0.00 0.00 1.15 0.00 0.00

38 eudesm-11-en-1-ol 46.516 C15H26O 222.3663 Sesquit 0.00 0.60 0.00 0.00 0.00 0.04 0.00 0.00

39 viridiflorol 46.574 C15H26O 222.37 sesquit 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.03

40 humulane-1,6-dien-3-ol 50.98 C15H26O 222.3663 Sesquit 0.29 0.60 0.00 0.00 0.22 0.21 0.00 0.00

41 ferruginol 52.105 C20H30O 286.4516 Diter 0.50 0.53 0.32 0.49 0.34 0.03 0.11 0.29

42 sugiol 53.089 C20H28O2 300.4351 Diter 0.54 7.76 0.00 1.06 0.14 3.24 0.00 0.44

43 podocarpa-8,11,13-trien-7-one,
12-hydroxy-13-isopropyl- 53.27 C20H28O2 300.4351 Diter 0.12 0.00 3.89 6.81 0.21 0.00 3.33 4.86

44 squalene 74.13 C30H50 410.718 Tri 0.00 0.02 0.00 0.00 0.00 0.04 0.00 0.00

Abbreviations: R.T: retention Time, M.W/Da: molecular weight/Daltons mass.
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Moreover, the four hexane extracts from the different concentrations (0%, 0.1%, 0.2%,
and 0.3%) of HZ have unique, common, and major compounds. For example, the extracts
at 0.0% (control) of essential oils (A) had 113 unique compounds, 22 common compounds
shared with the extract at 0.1%, 1 common compound shared with the extract at 0.2%,
2 common compounds shared with the extract at 0.3%, and 14 common compounds
shared among all 4 HZ concentrations. Furthermore, the extracts at 0.1% concentration (B)
contained 94 unique compounds, 1 common compound shared with the extract at 0.2%,
and 4 common compounds shared with the extract at 0.3%. In addition, the extracts at
0.2% concentration (C) contained 41 unique, and 2 common compounds shared with the
extract at 0.3%. On the other hand, extract at 0.3% (D) contained 35 unique compounds, as
reported in (Figure 2).
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Regarding the major terpenoid compounds, 1,8-cineole (15.63%) was the major com-
pound in the extracts from S. officinalis plantlet at 0.0% concentration, followed by (E)-β-
caryophyllene (9.80%), humulene (5.83%), camphor (4.88%), l-2-camphanol e (2.64%), and
caryophyllene oxide (1.74%). Whereas the essential oil extract at 0.1% concentration was
characterized by 1,8-cineole (35.83%), followed by (E)-β-caryophyllene (9.63%), camphor
(8.18%), sugiol (7.76%), α-pinene (3.87%), camphor (2.70%), and humulene (2.46%).

Moreover, 1,8-cineole (47.96%) was the major compound in the extracts from
S. officinalis plantlet at 0.2% concentration, followed by (E)-β-caryophyllene (8.69%), cam-
phor (6.77%), podocarpa-8,11,13-trien-7-one,12-hydroxy-13-isopropyl (3.89%), α-pinene
(3.81%), and 1,4,7,-cycloundecatriene, 1,5,9,9-tetramethyl-,Z,Z,Z (2.50%). In addition, 1,8-
cineole (32.32%) was characterized as the major compound in the extracts from S. officinalis
plantlet at 0.3% concentration, followed by camphor (9.75%), podocarpa-8,11,13-trien-7-
one,12-hydroxy-13-isopropyl (6.81%), (E)-β-caryophyllene (6.26%), (+)-camphene (6.02%),
β-pinene (3.55%), humulene (4.91%), caryophyllene oxide (1.16%), and sugiol (1.06%)
(Table 1). On the other hand, we found fourteen common compounds shared among
all four extracts, such as (α-thujene, α-pinene, sabinen, β-pinene, 1,8-cineole, p-menth-
8-en-1-ol, stereoisomer, camphor, bornyl acetate, (E)-β-caryophyllene, (+)-germacrene D,
caryophyllene oxide, trans-biformene, estra-1,3,5(10)-trien-16-one, 3-((trimethylsilyl)oxy),
and ferruginol (Table 1)

When the alignment of the terpenoid composition of the four S. officinalis plantlets
extracts at different concentrations of HZ, we deduced that some common terpenoid
compounds exist at different levels within the four extracts. Therefore, we propose that
different concentrations of HZ have a major effect on the kind and level of terpenoid
composition in their extract. An important query has been prompted by these data: How
does the accumulation of the terpenoid composition in the S. officinalis plantlets change
depending on the HZ concentration? Before beginning our research, it was difficult to
address this question because there was less information at the molecular genetics level
regarding the effect of different concentrations of HZ on the terpenoid biosynthetic in
S. officinalis plantlets.

3.2. Overexpressing Terpenoid and Terpene Biosynthesis Genes under the Effect of Different
Concentrations of HZ

To unveil the effects of different concentrations of HZ on various terpenoid and ter-
pene genes expression, we used the qRT-PCR system to measure the level of expression.
The results showed that the expression patterns of our candidate genes at different con-
centrations of HZ (e.g., 0.1%, 0.2%, and 0.3%) were detected, and their expression profiles
were compared with the control (0.0% HZ) (Figure 3). For example, the expression levels
of SoFPPS and SoHUMS were the highest under the effect of HZ at 0.0% concentration.
Moreover, the highest expression levels for SoMYRS, SoSABS, SoSQUS, and SoGGPS were
observed at a concentration of 0.1% of HZ. On the other hand, the expression of SoGPS,
SoCINS, and SoLINS were the highest in HZ at a concentration of 0.2%. Furthermore, the
highest expression levels for SoNEOD, SoTPS6, and SoGA2 were detected in a concentration
of 0.3% HZ (Figure 3). Therefore, different concentrations of HZ may have an impact on
the level of gene expression for genes involved in terpenoid and terpene biosynthesis,
according to differences in expression patterns for these genes.
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Figure 3. Quantitative RT-PCR validation of expression of terpene synthase genes selected from
S. officinalis plantlet under the effect of different concentrations of HZ (0%, 0.1%, 0.2%, and 0.3%).
Total RNAs were extracted from the previous concentrations, and the expression of SoGPS, SoMYRS,
SoNEOD, SoCINS, SoSABS, SoLINS, SoFPPS, SoHUMS, SoTPS6, SoSQUS, SoGGPS, and SoGA2 genes
were analyzed using quantitative real-time. SoACTIN was used as the internal reference. The values
are means ± SE of three biological replicates.
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4. Discussion
4.1. Validation of the Relationship between the Type and Amount of Terpenoid and Gene Expression
under Different Concentrations of HZ

We used the qRT-PCR system to reveal the “transcriptional control”, which represents
the natural link between the “number of mRNA copies” and “the number of copies of
enzyme”, which follow the end-product quantity, in order to ascertain the relationship
between the type and amount of terpenoid that was produced under the effect of different
concentrations of HZ and gene expression. Therefore, the expression patterns of our
twelve candidate genes with various expression levels were detected, and their quantity
expression profiles were compared with our GC-MS analysis data. Therefore, according
to the gene’s expression levels and the findings of our GC-MS analysis, we found that the
SoGPS gene showed the highest expression levels at 0.2% concentration, followed by 0.3%,
0.1%, and 0.0% of HZ, and these qRT-PCR results are in line with our GC-MS analysis data,
which indicate that the main group of monoterpene compounds was observed at 0.2%
concentration, followed by 0.3%, 0.0%, and 0.1% of HZ. Moreover, the highest expression
levels for the SoFPPS2 gene were observed at a concentration of 0.0% of HZ, followed by
0.2%, 0.1%, and 0.3%. In this context, the most abundant sesquiterpene compounds group
was detected at a concentration of 0.0% of HZ, followed by 0.1%, 0.2%, and 0.3%.

Additionally, we discovered a favorable link between the gene expression levels of
1, 8-cineole synthase at various concentrations of HZ. For instance, the higher of the 1,
8-cineole synthase gene product and expression level presented at 0.2% concentration,
followed by 0.3%, 0.1%, and 0.0%of HZ. In addition, we found an engagement between
the (+)-germacrene-D product and germacrene-D-synthase (SoTPS-6):the highest product
and gene expression were discovered at a concentration of 0.3% of HZ, followed by 0.2%,
0.1%, and 0.0%. Likewise, there is a linkage detected between the (E)-β-caryophyllene,
gamma-caryophyllene, humulene, caryophyllene oxide, and 1,2-humulene epoxide as
a product and the expression of humulene synthase (SoHUM) gene at different con-
centrations of HZ. Our findings concur with those of other researchers and our earlier
research [23,24,31,38–47], which discovered and discussed a connection between gene
expression and the end product, which gives the impression that the production of the
terpene compounds under study can be controlled by the gene transcription process.

On the other hand, we discovered that some genes (e.g., SoMYRS, SoSABS, SoSQUS,
SoNEOD, SoLINS, and SoGA2) fluctuate in their gene expression level, and also, some
terpene compounds (e.g., camphene, geranylisobutyrate, cajeputol, Cis-β-terpineo, thujan-
3-one, thujone, l-2-camphanol, ledene, elemene, labda-8(20),14-dien-13-ol, (13R)-, and
labda-8(20),14-dien-13-ol, (13R)-) were not detected or were detected in quantities that
are not commensurate with the expression levels of their genes under the influence of
some concentrations of the HZ. There are numerous explanations for this. First, the
expression of some terpene synthase genes may be controlled by the cell’s circadian rhythm.
Secondly, the fact that there is a positive correlation between transcript levels and terpene
emission which suggests that changes in transcript level are an important determinant
of terpene production, even though changes in transcript levels might not directly affect
protein levels or enzyme activities due to potential posttranscriptional, post-translational,
or enzyme-regulatory mechanisms. Third, the reason why some terpene compounds do
not appear may be due to the different rates of protein synthesis, protein modifications,
protein degradation, and protein proteolytic turnover. Additionally, by converting some
compounds to other compounds through oxidation or glycosylation of monoterpene olefins
and sequestration [23,24,48,49]

4.2. Assessment of the Effects of Hydrazine Hydrate on the Terpene Genes Expression and
Terpenoid Production

Hydrazine hydrate (N2H4 × H2O) is an important inorganic compound, which is
mainly used in agrochemicals as a foaming agent [50]. Hydrazine hydrate is considered
as one of the alkylating agents (e.g., ethyl methane sulphonate (EMS), ethyleneimides,
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alkyl methane sulphonates, sulfur mustards, methyl methane sulfonate, epoxides, and
alkyl nitrosoureas), which can be used as chemical mutagens [13,14]. Chemical mutagens
have been widely used to alter plants’ genetic makeup in various ways, such as: changing
the chemistry of the base pairs; nucleotides, and confusing the DNA replication machin-
ery; stripping DNA nucleotides from the essential modifications; in sertion or deletion
of some extra base pairs through a round of DNA replication; and two DNA nucleotides
cross-linking together, introducing a single base pair (SNPs) [51]. Moreover, the chemical
mutagens are usually high in induction and more applicable in the in-vitro compared to
physical and radiation approaches [52–55]. Cells generally attempt to fix these mutations
via the cell cycle checkpoints by nucleotide excision repair (NER) and base excision repair
(BER) for the eradication of damaged bases and the repair of nucleotides, respectively [52].
Furthermore, in some cases, the disruption of the DNA nucleotide mutation repair mecha-
nism could create mutations in the genetic makeup, which can alter the gene expression
and encoding protein and create genetic variability for increased crop productivity through
crop improvements, such as that seen in Mung bean (Phaseolus aureus Roxb.) [51,56]; for
example, EMS, which belongs to the alkylating agents, and is used as a chemical muta-
gen in plants. EMS has the ability to induce GC→ AT transitions in the genomic DNA,
which results in mutant proteins that perform alternate roles to those of the normal pro-
tein [51]. Additionally, it has been demonstrated that the application of alkylating agents
such as EMS and HZ is a practical and efficient way to develop distinctive gene pools in
plants [34–36,51,56]. Therefore, we can assume that the alkylating compounds are the
ones that are used the most commonly use dto cause point mutations, a sort of genetic
modification in which only one nucleotide base from an organism’s DNA or RNA se-
quence is changed, added, or removed [57]. According to the type of point mutation,
these changes can have a variety of effects on protein function, composition, and synthesis,
ranging from positive effects (synonymous mutations) to negative effects (nonsynonymous
mutations) [58,59]. In this context, these mutations can lead to different effects on the
differential protein expression levels, such as removing or adding stop codon, which causes
the translated protein to be abnormally extended or shortened, change in chemical and
physical properties of the amino acids, protein may lose its function and may exhibit a new
function or become activated [60,61]. For example, in Yokoyama et al.’s 2022, 2021 study
on the stability of mutations in aromatic amino acid (AAAs) compounds from A. thaliana
seeds, that were mutagenized using EMS [62,63], they isolated a total of 351 suppressor
of tyra2 (sota) mutants that lacked one of two TyrA genes that were associated with Tyr
biosynthesis—used as a common substrate for the shikimate pathway [62]. This kind of
mutant showed an increase in AAAs compared with other amino acids at F1 and F2 of the
plant population with dominant or semidominant characteristics, and was accompanied
by an increase in net CO2 assimilation and flux through the shikimate pathway [62–65].
These results provide genetic evidence that the induction of point mutations using chemical
mutagens has the ability to enhance plant metabolic levels in a dominant fashion.

5. Conclusions

The application of chemical mutagens on crops is an easy and effective method for
the improvement of various agronomic traits. Seeds from many different plants have
been widely used in investigations as the initial materials to produce plant mutations via
chemical mutagenesis. There have been fewer studies about the effect of chemical muta-
gens on medicinal plants because it is difficult to determine the biological and molecular
genetic effects of a chemical mutagen on the seeds and plantlets of these plants. This
investigation was carried out in order to comprehend the potential impacts of HZ on
S. officinalis terpenoids and terpene synthesis genes. The goal of the study was to shed light
on the effects of four HZ concentrations on the expression levels of the genes involved
in terpene synthesis, as well as terpene and terpenoid biosynthesis. The acquired results
showed that varied HZ concentrations considerably raised the percentage of most monoter-
penes, sesquiterpenes, and diterpenes while increasing the expression levels of twelve
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terpene genes. The findings of our study open the door to additional research on the use
of chemical mutagens to improve a variety of features in medicinal and aromatic plants
without changing their genetic makeup. This study might be widely applicable toother
salvia species or other genera that principally belong to the Lamiaceae family plants.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/metabo13070807/s1, Table S1: List of S. officinalis genes and primer pairs used for qRT-PCR.
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