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Abstract: Red blood cells (RBC) are the most abundant cell in the human body, with a central role
in oxygen transport and its delivery to tissues. However, omics technologies recently revealed the
unanticipated complexity of the RBC proteome and metabolome, paving the way for a reinterpretation
of the mechanisms by which RBC metabolism regulates systems biology beyond oxygen transport.
The new data and analytical tools also informed the dissection of the changes that RBCs undergo
during refrigerated storage under blood bank conditions, a logistic necessity that makes >100 million
units available for life-saving transfusions every year worldwide. In this narrative review, we
summarize the last decade of advances in the field of RBC metabolism in vivo and in the blood bank
in vitro, a narrative largely influenced by the authors’ own journeys in this field. We hope that this
review will stimulate further research in this interesting and medically important area or, at least,
serve as a testament to our fascination with this simple, yet complex, cell.

Keywords: red blood cell; erythrocyte; transfusion medicine; storage lesion; hemolysis; spleen;
mitochondria; iron; hematology

1. Red Blood Cell Metabolism: The Central Role of Oxygen

By recent estimates, the adult human body contains ~30 trillion cells [1,2]. Approxi-
mately 90% of these cells are derived from the hematopoietic lineage, of which the over-
whelming majority are red blood cells (RBCs) [3]. The 25 trillion circulating RBCs in an
adult account for ~83% of all host cells, making RBCs a type of circulating organ critical
for human health [4]. The stability of the number of circulating RBCs is ensured by a deli-
cate equilibrium between de novo erythropoiesis and erythrophagocytosis by splenic and
hepatic macrophages, which recycle RBC contents, especially iron, proteins and lipids [5].

The evolution of human RBCs has maximized their capacity to transport and deliver
oxygen to tissues via progressive loss of nuclei and organelles during the maturation of
erythroid precursors to reticulocytes and, ultimately, mature discocytic RBCs [6]. As a
result of this process, each mature RBC contains ~250–270 million copies of hemoglobin [7],
with hemoglobin accounting for ~98% of the cytosolic proteome and 92% of the total
proteome [8]. At full oxygen saturation, RBCs can theoretically carry up to 1 billion
molecules of oxygen/cell, a function that is facilitated by the presence of all mature
RBCs combined with ~2.6 g of iron (66% of the total body iron) [4]. Fenton and Haber–
Weiss chemistry constantly generate the formation of hydrogen peroxide and reactive
oxygen species [9,10], making the RBC’s 120 days circulatory lifespan a struggle against
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the oxidation [11] of proteins (especially redox-sensitive functional residues in hemoglobin
such as C93 and H92 of the beta chain [12]), small molecule metabolites [13] and lipids [14].
Every day, 0.2 trillion RBCs are removed from the bloodstream and replaced by de novo ery-
thropoiesis (2 million RBCs are produced per second [15]), accounting for ~40% of the total
body mass turnover despite the small mass of each RBC (in the range of 100–300 pg) [3].

The relative simplicity of RBCs, as historically perceived, has attracted multiple ef-
forts to leverage them as a model of simplified human cell metabolism. Indeed, RBCs
exclusively rely on glycolysis (Embden–Meyerhof–Parnas pathway) to generate high-
energy phosphate compounds, such as adenosine triphosphate (ATP)—whose main source
in other cells is oxidative phosphorylation in mitochondria. ATP and its guanosine
triphosphate equivalent GTP substantially fuel all key processes in mature RBCs, in-
cluding: hemoglobin allostery [16,17] to metabolism [18], from proton pumps [19] to
membrane integrity by phosphorylating structural proteins [20], from protein stabilization
via fueling of transglutaminase 2 [21] to cellular mechanics [22], from cytoskeletal actin
polymerization [23] to vesiculation [24], from membrane lipid symmetry by fueling phos-
phatidylserine flippases [25] to proteasomal activity to remove damaged proteins [26–28].
Ultimately, the energy-depleted erythrocyte is rapidly lost from the bloodstream [29]
via intra- or, more commonly, extravascular hemolysis through splenic sequestration
and erythrophagocytosis.

Two critical functional RBC pathways branch from glycolysis: the Rapoport–Luebering
shunt, which generates 2,3-diphosphoglycerate (DPG), and the pentose phosphate pathway
(hexose monophosphate shunt), which generates ribose phosphate and, importantly, re-
duced nicotinamide adenine dinucleotide phosphate (NADPH). DPG is a critical allosteric
modulator of hemoglobin, promoting oxygen release from hemoglobin to counteract hy-
poxia (e.g., at high-altitude [30] or from hemorrhage [31]). NADPH fuels multiple antiox-
idant processes in RBCs [32]: (i) it is essential for the reduction in oxidized glutathione
by glutathione reductases; (ii) it directly or indirectly fuels glutathione peroxidase 4 [33],
catalase, peroxiredoxins [34], glutaredoxins, the thioredoxin reductase system, biliverdin
reductase B [35], the ascorbate-tocopherol axis [36] and other diaphorases such as NADPH-
dependent quinone oxidoreductases (NQO1) [37]. NAD(P)H-dependent methemoglobin
reductases are also essential for converting (auto-oxidized) ferric hemoglobin iron back to its
ferrous state. The C93 residue of hemoglobin beta also participates in antioxidant systems
by buffering free glutathione [38], participating in recycling oxidized peroxiredoxin 2 [39],
and contributing to nitrite reduction [40] (resulting in the pathological generation of methe-
moglobin in the setting of nitrite poisoning [41]). Owing to its role in redox chemistry, it has
also been proposed that hemoglobin may serve as a murzyme (i.e., a redox enzyme working
along the principles of the Murburn concept), thereby contributing to ATP synthesis [42].

The rate-limiting enzyme of the pentose phosphate pathway is glucose 6-phosphate
dehydrogenase (G6PD). G6PD is encoded by a gene on chromosome X. Mutations of this
gene are found in >500 million people around the world, with >200 G6PD mutations
known in humans [43]. Individuals carrying such mutations typically present with a
significant loss of enzymatic activity, ranging from <1% in the most severe forms (e.g., the
Mediterranean variant-S188F) [44,45] to <10% in the common African variant (V68M); the
latter is extremely common in some metropolitan areas such as New York, especially in
African American communities (~13% prevalence) [46]. In China, the six most common
mutations account for ~90% of G6PD-deficient alleles, with an overall national prevalence
of ~2.10% [47]. Human and mouse RBCs carrying these mutations are extremely susceptible
to hemolysis following oxidant insults [48,49]. As in the case of hemoglobinopathies, such
as sickle cell trait [50] and beta-thalassemia [51], positive selection for these mutations
in human populations is thought to be associated with the selective pressure by malaria
infections in the Mediterranean and South East Asia areas, with considerable overlap
between the incidence of G6PD deficiency and malaria-endemic regions [52]. Protection
against mild malaria infection is also observed in heterozygous G6PD deficient females [52].
G6PD deficiency, sickle cell trait (or disease) and beta-thalassemia (minor or major) are all
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associated with RBC metabolic reprogramming consistent with increased susceptibility to
oxidant stress-induced hemolysis (e.g., by quinone antimalarials and sulfa drugs in the
setting of G6PD deficiency).

The regulation of glycolysis by oxidant stress to functional thiols in rate-limiting
enzymes, including glyceraldehyde 3-phosphate dehydrogenase (GAPDH) at cysteine
residues 152 and 156 [53] and pyruvate kinase [54,55], provides a strategy to constrain
metabolic fluxes through late glycolysis when oxidant stress is high while redirecting
glucose oxidation to the pentose phosphate pathway to produce reducing equivalents that
counteract this stress. Similarly, the most abundant RBC membrane protein, band 3 (or,
equivalently, anion exchanger 1—AE1) has a very acidic N-terminus cytosolic domain that
can serve as an inhibitory docking site for glycolytic enzymes at high oxygen saturation; in
contrast, at low oxygen saturation deoxyhemoglobin outcompetes the glycolytic enzymes,
displacing them from the membrane and boosting glycolysis to stimulate ATP and DPG
production in the face of hypoxia [56,57]. Prolonged, unmitigated oxidant stress, such as
during refrigerated RBC storage under blood bank conditions, promotes proteolytic or
reactive oxygen species (ROS)-triggered proteolysis of the N-terminus of band 3, ultimately
causing the loss of this RBC oxygen-dependent metabolic modulation pathway [58–60]. In
addition, genetic mutations of the N-terminus region of band 3 are associated with severe
hemolysis and necessitate lifelong transfusion [59].

2. RBC Metabolism beyond Glycolysis

Over the last 50 years, almost all computational efforts to simulate the RBC metabolome
ex vivo were limited to the pathways described above [61–63]. The recent implementa-
tion of omics technologies to study RBCs has revealed an unanticipated complexity of
the erythrocyte proteome, now counting ~2500–3000 unique proteins; indeed, functional
metabolic tracing experiments suggest that even this list may be incomplete [8,59,64–69].
Leveraging these recent datasets, systems biology experts are redrawing connectivity maps
of the human RBC metabolome (Figure 1), of relevance for basic science and translational
applications [70,71]. With >77 active transporters, circulating RBCs can take up and release
many metabolites from peripheral tissues, making RBCs a unique window into system
health [72]. From creatinine and carnitine (as markers of renal function [73]) to conjugated
bile acids (from the gut microbiome [74]), from transamination products (e.g., alanine,
glutamate, aspartate) to neurotransmitters (e.g., serotonin, dopamine, acetylcholine), RBCs
can directly and indirectly participate in systems metabolism throughout the body.
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During erythropoiesis, amino acid metabolism (e.g., glycine, glutamine, branched-
chain amino acids) is essential to heme synthesis as both direct and indirect substrates
(e.g., succinyl-CoA from glutaminolysis and branched-chain amino acid catabolism). This
process concomitantly releases ammonium, making erythropoiesis and de novo glu-
tamine synthesis two of the leading pathways contributing to ammonium homeostasis
in humans [75]. Genetic defects of rate-limiting genes in the branched-chain amino acid
catabolism (e.g., in propionic [76] or methylmalonic acidemias) are associated with defects
in erythropoiesis [77]. Along with cysteine, both glycine and glutamine-derived glutamate
contribute to the synthesis of the glutathione tripeptide. The exchange of cystine—a cys-
teine disulfide—to glutamate is a critical regulator of a process previously referred to as
eryptosis [78] and, more recently, recognized as ferroptosis [79] owing to its expanded
relevance in other cells besides RBCs.

When considering erythropoiesis, one-carbon metabolism is one of the first pathways
that is referenced. Folates and methyl group donors such as methionine, choline and
betaine—along with B6, B12 and B5 cofactors [80,81]—are essential for de novo purine
nucleotide synthesis to support proliferation, as well as for generating glycine to contribute
to heme synthesis described above. However, methyl-group donors also participate in RBC
redox homeostasis and its dysregulation, such as in the context of folate dietary deficiency
or excess [81]. This is also relevant in diseases associated with alterations of this pathway
such as homocystinuria [82] or Down syndrome [83], owing to gene dosage of cystathionine
beta synthase resulting in a “folate trap”-like phenotype [84]. These conditions present
with macrocytic or megaloblastic anemia [82]. In addition, in keeping with the central
role of oxidant stress in the economy of RBC metabolism, methionine uptake and con-
sumption in RBCs fuel a pathway of isoaspartyl protein damage repair. As a hallmark of
RBC aging in vivo [85], deamidation of asparagine residues in key structural membrane
proteins and glycolytic enzymes [86–92] alters the protein backbone, with important struc-
tural/functional implications. Since RBCs cannot replace damaged components by de novo
protein synthesis, repairing this damage is essential to their survival. The methylation
of deamidated residues favors the formation of a succinimide intermediate, ultimately
promoting the rescue of the protein backbone structure in 15–30% of the cases, a reac-
tion catalyzed by the enzyme “protein isoaspartyl o-methyltransferase” (PIMT). Increased
uptake of methyl donors such as methionine is observed in RBCs in response to oxida-
tive challenges (e.g., incubation with hydrogen peroxide [93], refrigerated storage under
blood bank conditions [92]). Thus, one can speculate that RBC uptake and consumption of
methyl-group donors (e.g., methionine, choline) could compete with other tissues where
these substrates are used to fuel epigenetic regulatory mechanisms, such as methylation
of proteins (e.g., histones), RNA (N6-methyladenosine) and DNA (CpG islands), making
RBCs an indirect player in systemic long-term responses to oxidant stress events.

In response to oxidant stress, ATP synthesis is reduced because of the redox sensitivity
of glycolytic enzymes and the band 3-dependent mechanism, as described above. In this
case, ATP breaks down into lower energy phosphate compounds, ADP and AMP, the latter
being prone to deamination to IMP by RBC-specific AMP deaminase 3 [94]. Phosphoriboly-
sis of IMP releases hypoxanthine, a substrate for xanthine oxidase to generate xanthine and
urate, with concomitant production of hydrogen peroxide [94]. The presence of an active
xanthine oxidase in mature RBCs was reported and challenged [95]. Exogenous urate is
a potent antioxidant in mature RBCs [96]. Similarly, the breakdown of AMP into adeno-
sine, with adenosine oxidation by adenosine deaminase was reported as contributing to
hypoxanthine accumulation [97]. The recycling of hypoxanthine by X-linked hypoxanthine
guanosine phosphoribosyltransferase (HPRT) preserves IMP/GMP homeostasis in RBCs.
Lesch Nyhan syndrome patients exhibit genetic mutations of this enzyme and present with
a range of clinical manifestations, including macrocytic anemia [98]. Purine homeostasis
is relevant to RBC homeostasis for additional reasons beyond those described above. For
example, ATP release by RBCs has regulatory effects on endothelial cells and on the RBCs
themselves, as a type of autocrine signaling. The breakdown of extracellular ATP to ADP,
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AMP and adenosine by ectonucleotidases (e.g., CD38) generates agonists of P2Y recep-
tors on endothelial cells, but adenosine can also be imported by equilibrative nucleotide
transporters (ENT1) or stimulate adenosine receptors (e.g., ADORA2b). Both of these
pathways contribute to RBC responses to hypoxia, the former, for example, by limiting
circulating adenosine, a process that is counteracted by irreversible ENT1 degradation to fa-
cilitate acclimatization to high altitude hypoxia upon reascent [99]. In addition, ADORA2b
transduces an intracellular signaling pathway that activates downstream protein kinase A
and AMP-dependent kinase (AMPK), both contributing to metabolic reprogramming; for
example, via phosphorylation-mediated activation of bisphosphoglycerate kinase [97,100].

Recent applications of unsupervised metabolomics and lipidomics approaches identi-
fied a sphingolipid sphingosine 1-phosphate (S1P) as a relevant metabolite regulating RBC
responses to hypoxia [101]. For example, in response to high altitude-induced hypoxia [101]
S1P can bind to deoxyhemoglobin following its stabilization by DPG, further promoting
oxygen off-loading [102]. By further stabilizing deoxyhemoglobin, S1P also contributes to
energy metabolism by promoting the release of glycolytic enzymes from band 3 into the
cytosol, with subsequent activation of glycolysis at the expense of the pentose phosphate
pathway. Although this adaptation is beneficial in hypoxia, it is deleterious when RBCs are
challenged by oxidant stress, such as during refrigerated storage in the blood bank [103]
or in sickle cell disease, where deoxy-sickle hemoglobin stabilization further promotes
its crystallization [102].

Using a combination of state-of-the-art multi-omics technologies, we recently identi-
fied the presence and activity of oxidant stress-sensitive fatty acid desaturases (especially
FADS2) in mature RBCs [104]. By introducing double bonds in an NADH-dependent
fashion, FADS contribute to NADH homeostasis by recycling reducing equivalents back
to their oxidized state, which is essential for the glycolytic step catalyzed by GAPDH.
Of note, alterations of this pathway are critical for regulating abnormal hematopoiesis
in aging mice and humans [105]. Dietary interventions that alter fatty acyl membrane
composition predispose, or protect, lipids from peroxidation [106], a hallmark of ferroptosis
that regulates RBC extravascular hemolysis; the latter is—at least in part modulated by
the activity of the ferrireductase STEAP3 [107]. Pathways exist in mature RBCs to cope
with lipid peroxidation; for example, via glutathionylation by GPX4—which is present and
active in mature erythrocytes [33]. Genetic polymorphisms in the GPX4 coding region are
common in humans and are associated with an increased propensity to hemolysis following
oxidant stress [49]. Alternatively, phospholipase A2 (or PLA2-like enzymes such as perox-
iredoxin 6 [108]) can release the oxidized fatty acid moiety from membrane phospholipids,
thereby generating lysophospholipids. The acyl-coA/acyl-carnitine system can then fuel
the transfer of new fatty acids to the lysophospholipid, restoring phospholipid composition.
Carnitine availability limits the rate of this pathway, known as the Lands cycle, which is
activated in response to oxidant stress (e.g., in response to exercise [109] or in patients with
hemoglobinopathies, such as sickle cell trait [110] and sickle cell disease [111,112]).

Arginine metabolism in mature RBCs was found to be more complex than anticipated,
despite the absence of mitochondria, where a subset of critical reactions in the urea cycle are
known to occur. For example, RBCs contain high levels of arginase 1 [113], which converts
arginine to ornithine, a precursor of polyamines via ornithine decarboxylase. Although
this pathway is critical in erythropoiesis, owing to the role of polyamines in regulating
the intracellular pH of hematopoietic precursors [114], in adult RBCs this pathway has
been associated with cellular responses to iron-deficient anemia and abiotic stresses, such
as exposure to radiation [115]. Arginine metabolism cross-talks with heme synthesis,
glutathione homeostasis and one-carbon metabolism, in that polyamine synthesis and
creatine synthesis are both affected in human RBCs by factors such as sex and age [48], and
compete for rate-limiting substrates for the generation of each product. During the last
decade, RBCs were found to harbor a functional nitric oxide synthase [116], which converts
arginine to citrulline and concomitantly generates nitric oxide, a potent vasodilator with a
crucial role in the regulation of endothelial cells and related vascular function [117,118].
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As already mentioned above, carboxylic acid intermediates of the Krebs cycle, such
as succinyl-CoA participate in erythropoiesis by fueling heme synthesis. In addition,
small molecule dicarboxylates in this pathway (e.g., succinate, fumarate, malate) sustain
erythropoiesis by the mechanism of stabilization of the Hypoxia Inducible Factor 1alpha
upon exposure to hypoxia, which otherwise is degraded following hydroxylation by alpha-
ketoglutarate-dependent prolyl hydroxylases [119]. The conversion of alpha-ketoglutarate
to 2-hydroxyglutarate can occur under hypoxic conditions by non-canonical lactate de-
hydrogenase activity [120], and testosterone-induced stimulation of erythropoiesis [121].
The absence of mitochondria in healthy mature RBCs originally led the field to believe
that minimal carboxylic acid metabolism would occur in this cell system. However, pro-
teomics recently identified functional cytosolic isoforms of acetyl-CoA ligase, isocitrate
dehydrogenase 1, malate dehydrogenase 1 and malic enzyme 1; thus, catabolism of pyru-
vate and citrate can occur in mature RBCs [122,123] via a series of reactions that can fuel
the alternative generation of reducing equivalents (e.g., NADPH and NADH), especially in
hypoxia [124]. The activation of these pathways may be especially beneficial as a partial
compensatory mechanism in the face of genetic aberrations leading to a dysfunctional
pentose phosphate pathway, such as G6PD deficiency [46,125].

Although healthy mature RBCs are indeed devoid of mitochondria, recent evidence
unequivocally documented the presence of up to 6–7 mitochondria per cell in mature RBCs
from sickle cell patients [126–129]. Similar observations have been reported in the context
of other pathophysiological conditions, such as systemic lupus erythematosus [130] and
Rett syndrome [131,132]. Whether and to what extent these organelles still function is
incompletely understood, though their retention might result from a defect in mitophagy or
the ubiquitin-proteasome system [126,127,132] Nonetheless, the presence of metabolically
active mitochondria in mature RBCs could induce oxygen consumption and consequently
oxidant stress through ROS generation [128]. The induction of reticulocytosis or heteroge-
neous retention of mitochondria is associated with alloimmunization in a murine model
of transfusion [133], which could be relevant to blood donors with heterogeneous mito-
chondrial DNA content in circulating erythroid cells and recipients with inflammatory
conditions such as systemic lupus erythematosus [131]. The relevance of this phenomenon
in RBC aging in vivo—to the extent this may result from/contribute to processes of age-
related aberrant erythropoiesis and age-related comorbidities remains to be determined.
Nonetheless, one may speculate that intra- or extra-vascular hemolysis of mitochondria-
containing RBCs may release prokaryotic-like RNA and DNA into the circulation or in
phagocytic macrophages, thereby triggering cGAS-STING-Interferon responses [130,134],
ultimately driving interferon-mediated inflammatory complications in sickle cell patients,
lupus patients and in other conditions in which interferonopathies and hematological
anomalies are observed (e.g., Down syndrome) [135].

3. RBC Metabolism and Blood Storage for Clinical Transfusion Purposes

Understanding RBC metabolism holds critical translational implications in modern
medicine. Transfusion of packed RBCs is a life-saving intervention for 4–5 million Amer-
icans every year. With over 110 million units of packed RBCs collected and transfused
annually worldwide, RBC transfusion is the most common hospital iatrogenic intervention
after vaccination [136]. Storage in the blood bank for up to 42 days in most countries is a
logistic necessity to make RBC units available for transfusion to acutely or chronically ill
recipients, such as those with trauma [137] or beta-thalassemia/sickle cell disease [138],
respectively. Unfortunately, during refrigerated storage under blood bank conditions, RBCs
undergo a series of biochemical, metabolic and morphological changes, collectively referred
to as the “storage lesion” [139]. Application of omics technologies to the investigation of
the metabolic storage lesion has documented a plethora of changes [140], with a temporal
sequence of events [141] first started by slower kinetics of metabolic enzymes at 4 ◦C [142].
As temperature-sensitive ion pumps fail under refrigerated storage conditions, increased
ATP demands to counteract these effects through the active transport of potassium and
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calcium ions against gradients [143] results in additional metabolic strains for RBC gly-
colysis. While glucose consumption and the generation of lactate are still observed in
stored erythrocytes, the rate at which these fluxes occur is insufficient to meet the demand
for ATP and DPG of refrigerator-stored RBCs [144]. Slow glycolytic rates are aggravated
by multiple mechanisms beyond storage temperature. First, in the closed system of a
blood bag, accumulation of lactic acid for up to 42 days is accompanied by the progressive
acidification of the intracellular and extracellular pH, ultimately leading to slower kinetics
for pH-sensitive enzymes, such as phosphofructokinase, bisphosphoglycerate mutase and
G6PD, rate-limiting enzymes of glycolysis, the Rapoport–Luebering shunt and the pentose
phosphate pathway, respectively [145]. Strategies have been envisaged to counteract this
phenomenon, such as the development of alkaline additives with low/no chloride and high
bicarbonate content [146,147]. As ATP and DPG are consumed, the latter >95% depleted
by storage weeks 2–3 [148], and RBC oxygen saturation increases up to 95% by storage
day 21, with concomitant accumulation of ROS [141]. ROS attack on functional residues of
hemoglobin and glycolytic enzymes such as GAPDH further negatively affects glycolytic
fluxes, resulting in the transient activation of the PPP to generate NADPH and counteract
storage-induced oxidant stress [53]. These antioxidant systems are insufficient to cope
with oxidant stress, ultimately resulting in the irreversible oxidation of functional enzymes
and structural proteins, such as band 3, ankyrin and spectrin [141,149], with consequent
alteration of the membrane band 3 interactome [59]. Mechanisms of isoaspartyl protein
damage methylation—such as the ones described above as a function of PIMT activity
in aging RBCs in vivo—are activated to cope with oxidant stress to structural proteins
and glycolytic enzymes in stored RBCs [92]. However, calcium-activated caspase and
oxidative stress both contribute to the fragmentation of the N-terminus of band 3 [150],
ultimately depriving RBCs of the capacity to inhibit GAPDH (and other glycolytic enzymes)
by mechanism of inhibitory binding to this region [59,60]. Interestingly, a similar failure
of this mechanism is observed upon exposure to chronic oxidant stress in vivo in sickle
cell disease [151]. Since fragmentation to band 3 is irreversible, and no new band 3 protein
can be synthesized, stored transfused RBCs cannot respond to oxidant stress in vivo by
activating the pentose phosphate pathway at the same rate that fresh RBCs would do—as
observed in storage-biotinylation-recovery studies in humans [152]. Interestingly, transient
activation of the pentose phosphate pathway at the second week of storage is a measurable
transient metabolic state in the unsupervised elaboration of omics data of stored RBCs [70].
The activation of glycolysis at the expense of the pentose phosphate pathway by exoge-
nous supplementation (or inter-donor heterogeneity in the levels at donation) of S1P is
associated with an increased susceptibility of stored RBCs to extravascular hemolysis [103].
Genetic ablation of the S1P synthesizing enzyme Sphk1 in mice improves storability and
post-transfusion recovery (PTR) [103]. Polymorphisms in the S1P transporter Mtfsd2b
are relatively common in the blood donor population and are associated with increased
susceptibility to osmotic fragility [49].

In RBCs obtained from donors with non-hemolytic G6PD deficiency, whose RBCs have
naturally aberrant flux through the pentose phosphate pathway at baseline, storage results
in higher basal levels of glycolysis and ATP, despite increased oxidant stress; this unusual
combination yields RBCs that have better-preserved morphology by the end of the storage
period [44,45] yet suffer from an exacerbated redox storage lesion, ultimately resulting in
increased susceptibility to storage, osmotic and oxidant stress-induced hemolysis [48,49],
as well as poorer PTR, i.e., the percentage of stored RBCs that still circulates at 24 h upon
transfusion. As the ATP synthesis rate does not meet demand, lower energy phosphate
compounds such as AMP accumulate and are deaminated by AMPD3 into IMP and
hypoxanthine, a phenomenon exponentially activated after storage week 3 [94]. The
timeline is not casual, in that by storage day 21 we observe a peak in consumption of DPG,
with concomitant significant accumulation of intracellular calcium—both factors promoting
AMPD3 activity [94]. The accumulation of hypoxanthine, a biomarker of the RBC metabolic
storage lesion and a predictor of PTR in stored human and murine RBCs, is observed not just
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in human RBCs, but also in other primates (macaques [153], baboons [154]) and mammals
(e.g., mouse [155], rats [156], guinea pigs [157], cows, dogs, donkey and horses [158]),
though at different rates as a function of species genotypes, suggesting a genetic regulation
of this pathway—which is relevant for veterinary transfusion considerations [159]. Since
HPRT (see above) is an X-linked gene, sex dimorphisms in this pathway are observed in
the stored RBCs [48]. One additional confounder related to sex pertains to the relative
age of circulating RBCs at the time of donation, generally younger in pre-menopausal
females [160], further confirming a sex dimorphism in RBC storability [161]. Indeed, small-
scale studies have demonstrated RBC storability differences in the hemolytic propensity
and membrane binding of stress protein markers between pre- and post-menopausal
women [162,163]. Similarly, and still part of the purine oxidation pathway, inter-donor
heterogeneity in uric acid levels is observed and contributes to the overall variability in
antioxidant capacity across blood units [96].

Ultimately, unmitigated oxidant stress contributes to increased fatty acid desaturation,
oxidation and migration to the membrane of oxidized proteins (e.g., peroxiredoxin 2 [34]),
vesiculation of oxidized proteins [12] and lipids [164], a process that promotes the loss of
the RBC discocytic phenotype and the acquisition of an echinocytic, spheroechinocytic
and spherocytic morphology [141,143,165,166]. Losing cell volume increases the surface-to-
volume ratio, making the small microcytic erythrocyte (<43 µm2) less deformable and more
susceptible to sequestration in the splenic slits, ultimately priming erythrophagocytosis. It
should be noted that the extracellular vesicles that accumulate in stored RBC supernatant
could act as biological response modifiers, potentially affecting post-transfusion responses,
especially in light of recent studies that demonstrate the presence of several RNA transcripts
in RBC-derived vesicles [167].

The implementation of high-throughput metabolomics technologies is now informing
the data-driven development of novel storage additives [168]. In the meantime, the sum-
mary above generally holds true for RBCs stored in almost all currently licensed storage
additives, from saline adenine glucose mannitol (SAGM), to additive solution (AS) 1, 3, 5,
and phosphate adenine glucose gluconate saline mannitol (PAGGSM), with slightly dif-
ferent kinetics [145,169–172]. The data are so consistent that biomarkers of the metabolic
storage lesion have been calculated [70] and used to predict stored RBC metabolic states
throughout the time course even from just a single data point [173]. Heterogeneity in blood
storage solutions is indeed a critical parameter modulating the storage lesion, one that
explains almost the same percentage of the total metabolic variance across stored units as
storage duration itself [174].

Nonetheless, the extent to which these storage-induced changes correlate with func-
tional and clinically relevant outcomes is only partially understood. For example, it is
now evident that DPG and ATP depletion perfectly predict alterations in RBC oxygen
kinetics, with faster oxygen binding and slower oxygen off-loading kinetics [18]. Of note,
RBC storage under hypoxic and hypocapnic (reduced carbon dioxide) conditions promotes
intracellular alkalinization by boosting the exchange of chloride for bicarbonate (strong
vs. weak acid) via carbonic anhydrase/band 3 activity—which is dependent on residues
559–630 and 681 as per Uniprot entry P02730—phenocopying the benefits of alkaline
additives [175]. In so doing, hypoxic storage boosts RBC DPG levels [176], preserving
oxygen kinetics of the stored RBC [177]. At the same time, hypoxic storage deprives the
system of oxygen, a substrate for the chemistry driving the formation of ROS, ultimately
mitigating PTR of murine [178] and human RBCs [179]. It is tempting to hypothesize that
improved ATP preservation under hypoxic conditions [177,179] could additionally benefit
stored RBCs through enhanced proteostatic regulation, including efficient chaperoning and
proteasome activity, a feature that is crucial for a cell without the ability to produce new
protein molecules.
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4. All Blood Units Are Created Equal, but Some Blood Units Are More Equal
than Others

A meta-analysis of multiple PTR studies in healthy volunteers has clearly shown that
the quality of donated blood is heterogeneous across donors [180] (Figure 2). In recent
years, a series of studies have shed light on inter-donor heterogeneity that manifests itself
in variable hemolytic propensity and post-transfusion hemoglobin increment as a function
of donor biology, including donor sex, age, ethnicity and body mass index/obesity as well
as genetic mutations in enzymes or Hb [48,51,181–183]. Further studies in monozygotic
(identical) and dizygotic (non-genetically identical) twins have shown that hemolysis
and metabolite levels, especially of antioxidants such as glutathione, are heritable in the
blood donor population [184–186]. Leveraging this concept, studies in murine models
of blood storage and PTR have clearly shown cross-strain heterogeneity in extravascular
hemolysis [155,187].
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Elegant breeding strategies were executed to cross good and poor storing mouse
strains, ultimately leading to the identification of the ferrireductase STEAP3 as a critical
mediator of lipid peroxidation and extravascular hemolysis of stored, transfused murine
RBCs [107]. The rationale driving the aforementioned studies is now being expanded to
large-scale studies in humans, with investigations such as the Recipient Epidemiology and
Donor Evaluation Study (REDS) [188,189]. As part of this study, ~14,000 volunteers were
enrolled to donate blood at four different blood centers across the United States. Units
were stored for up to 42 days and, at the end of the storage period, they were tested for
spontaneous hemolysis or hemolysis induced by oxidative or osmotic insults [190]. Donors
with extreme hemolytic propensity (5th and 95th percentile) were invited to donate a
second unit of blood, which was tested again for the same parameters, showing significant
reproducibility of intra-donor hemolytic propensity across multiple donations [190]. These
donors were genotyped for 879,000 Single Nucleotide Polymorphisms (SNPs) [191], which
identified genetic underpinnings of hemolytic propensity, including G6PD and GPX4 sta-
tus, among others [49]. The linkage of genetic polymorphisms, hemolytic propensity, and
hemoglobin increments in recipients of units from these donors via a vein-to-vein linkage
database [181,192] and metabolite levels (metabolite quantitative trait loci—mQTL) [193] is
currently underway, and early results are already significantly expanding our understand-
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ing of the impact of donor genetics on RBC metabolism during aging in vitro in the blood
bank on in vivo RBC recovery and function following transfusion.

Beyond donor genetics, metabolites were identified that do not change with storage,
but are rather associated with donor exposures—the so-called exposome, factors that are
now being associated with hemolytic propensity [194]. From these studies, it is emerging
that donor habits, such as smoking or other nicotine exposures, consumption of alcohol,
coffee and caffeinated, taurine-rich beverages, all impact RBC energy and redox metabolism
in a way that affects storage biology and, potentially, post-transfusion performance, es-
pecially when combined with invasive processing such as RBC unit irradiation [195–198].
While phthalate plasticizers were historically added to polyvinylchloride bags to decrease
the rigidity of the blood bag, these compounds leach from the unit and intercalate into
the RBC membranes, resulting in an erythrocyte with altered deformability, decreased
hemolytic propensity [199,200], and altered increased risk for toxicity (e.g., infertility, car-
diodepression), especially in certain categories of recipients such as pediatric patients [201].
Controversial reports on the detection of metabolites of professional exposures such as
Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) in high-fidelity recurring donors
such as firefighters have been described [202], though the potential toxicity profiles of these
compounds in transfusion recipients remain to be assessed. Similarly, a long list of over-the-
counter or prescription drugs that are not grounds for blood donor deferral have been de-
tected, at least in traces, in blood units, including acetaminophen/paracetamol, ibuprofen,
statins, xartans, proton pump inhibitors, antidepressants, just to mention few [194]. Inter-
donor heterogeneity in diets results in differential lipid composition of RBC membranes,
which ultimately affects membrane fluidity and fragility [203–205]. Other antioxidant
molecules of dietary origin such as carnitine, vitamin C, vitamin E, resveratrol, quercetin
and ergothioneine have all been detected at variable levels in donated blood and could
theoretically affect RBC storability [194,206–212]. While exercise is known to significantly
impact RBC metabolism and deformability [109], little is known as to whether RBCs from
athletes store and recover better than RBCs from sedentary donors. Similar considerations
can be made for blood donors living at high altitudes vs. sea level [30]. RBCs from subjects
previously infected with corona- or flavi-viruses such as SARS-CoV-2, present metabolic
alterations consistent with anomalous activation of the pentose phosphate pathway and
band 3 oxidation/fragmentation [213,214]. In the case of Zika virus-infected donors,
clearance of viremia and seroconversion were still accompanied by months-long (up
to >100 days) alterations of RBC metabolism, suggesting potential long-lasting effects
of infection on circulating RBC biology, perhaps relevant to the blood donors and recipient
populations, e.g., in the context of sepsis [215]. Altogether, all the factors listed above
contribute to the metabolic heterogeneity of the stored RBC beyond the chronological age
of the unit (i.e., the days elapsed since donation), suggesting a more relevant role for the
metabolic age of the unit as a critical predictor of transfusion outcomes in the future [216].

Although all these changes are well documented, it is unclear whether and to what
extent they are reversed in vivo following transfusion, and whether they ultimately affect
RBC performance in vivo. Autologous blood transfusion studies in healthy volunteers have
shown that stored RBCs significantly impact healthy recipient plasma metabolism [113],
an observation that may inform strategies for autologous blood doping detection in
sports [217]. Studies on autologous volunteers and recovery of biotinylated RBCs suggest
that part of the storage lesion is reversible in vivo, such as the rescue of ATP and DPG levels,
a process that may require up to 24–72 h [152,218] and thus be sufficiently slow that stored
RBC transfusions may not correct oxygen kinetics within the golden hour of hypoxic pa-
tients undergoing massive bleeding, to mention a key category of recipients [137]. Studies
on the metabolic impact of transfusion in massively transfused trauma patients are currently
underway [137], while clear evidence of an association with cardiorenal dysfunction and
systemic hypoxia has been reported in sickle cell patients [111,138]. Interestingly, studies of
ex vivo preservation of murine RBCs have shown that erythrocytes from mice with good
or poor storage quality cross-regulate, suggestive of as yet under-investigated mechanisms
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of metabolic cross-regulation, ultimately impacting post-transfusion performance [219].
It remains to be determined whether these “good apple, bad apple” mechanisms occur
in vivo, for example in sickle cell patients undergoing exchange therapy, or even when the
donors’ RBCs are exposed to the recipients’ erythrocytes.

As our understanding of RBC metabolism in vivo and in vitro refines, novel pathways
are discovered and mechanisms elucidated, the simple cell of the early days of biochemistry
keeps surprising us with novel pathways and novel roles in systems metabolism beyond
oxygen transport. Multi-omics studies on RBC propensity to hemolysis upon storage and
transfusion are finding new mechanisms even for well-investigated proteins such as band 3;
for example, while the extracellular domain of this protein has long been recognized as the
Diego blood group in transfusion medicine [220], it has only recently emerged that genetic
polymorphisms in the region coding for this protein impact RBC hemolytic propensity and
post-transfusion performances [49]. It is easy to anticipate a near future where RBCs will
no longer be considered an inert background participant in human biology, but rather a
targetable vulnerability of human health, longevity and disease, beyond the current focus
in transfusion medicine.
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