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Abstract: The flower is the reproductive organ of the tea plant, while it is also processed into different
kinds of products and thus of great significance to be utilized. In this study, the non-volatile secondary
metabolites in the internal and external petals of white, white and pink, and pink tea flowers were
studied using a widely targeted metabolomics method with ultra-high liquid chromatography–
tandem mass spectrometry (UPLC-MS/MS). A total of 429 metabolites were identified, including
195 flavonoids, 121 phenolic acids, 40 alkaloids, 29 lignans and coumarins, 19 tannins, 17 terpenoids,
and 8 other metabolites. The metabolites in the internal and external petals of different colored
flowers showed great changes in flavonoids. Most flavonoids and all tannins in the internal petals
were higher compared with the external petals. Some phenolic acids were more accumulated in
the external petals, while others showed opposite trends. The pink tea flower contained more
flavonoids, alkaloids, lignans, coumarins, terpenoids, and tannins compared with white tea flowers.
In addition, cyanidin-3-O-glucoside was more accumulated in the external petals of the pink flower,
indicating that anthocyanin may be the main reason for the color difference between the pink and
white tea flower. The enriched metabolic pathways of different colored flowers were involved in
flavonoid biosynthesis, glycine, serine and threonine metabolism, glycerophospholipid metabolism,
and phenylpropanoid biosynthesis. The findings of this study broaden the current understanding
of non-volatile compound changes in tea plants. It is also helpful to lay a theoretical foundation for
integrated applications of tea flowers.

Keywords: Camellia sinensis; tea flower; metabolomics analysis; mass spectrometry

1. Introduction

The tea (Camellia sinensis [L] O. Kuntze) plant originates from the southwestern region
of China and has been cultivated globally, especially in Asian countries such as China,
Japan, India, and Thailand, for more than 5000 years [1]. In the tea industry, the tea plant is
generally treated as a leaf-use plant, while the tea flower is often regarded as a worthless
part of the plant. This results in a great waste of tea flower resources [2], which could
provide huge economic benefits if they were used. As the reproductive organ of the tea
plant, the tea flower has a showy appearance and can also affect pollination behavior and
regulate plant defense response [3]. In addition, the tea flower is directly brewed and
drunk after drying in some regions, or is processed into different kinds of products, like tea
flower wine and tea flower soap in China [3,4]. Additionally, it is used as food garnish or
in drinks in Japan [5]. The tea flower industry also involves cosmetics, functional foods,
and other applications.

Metabolites 2023, 13, 784. https://doi.org/10.3390/metabo13070784 https://www.mdpi.com/journal/metabolites

https://doi.org/10.3390/metabo13070784
https://doi.org/10.3390/metabo13070784
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0002-1607-7358
https://doi.org/10.3390/metabo13070784
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo13070784?type=check_update&version=1


Metabolites 2023, 13, 784 2 of 15

As a biological organ of tea plants, tea flowers have similar chemical compositions to
tea leaves, including abundant flavonoids, polysaccharides, saponins, proteins, and amino
acids [6]. Moreover, some recent studies have reported that these bioactive compounds in
tea flowers had immense potential in biological activities, such as anticancer, antivirus, and
antioxidation [3,7]. Apart from the biological activities above, tea flower extraction can also
be used as an intestinal homeostasis regulator and immune stimulator [8]. In addition, tea
flower extraction has exhibited antiproliferative activities against human digestive tract
carcinoma HSC-2, HSC-4, MKN-45, and Caco-2 cells [9]. The antiproliferative activities
of the saponins, such as chakasaponins I, chakasaponins II, and floratheasaponin A, were
more potent than those of catechins, flavonoids, and caffeine [10]. The inhibition-induced
apoptosis of tea flower extraction was via endogenous rather than exogenous pathways by
inhibiting the growth and proliferation of ovarian cancer cell [11]. Moreover, the saponins
of the Camellia japonicum flower can significantly inhibit the proliferation and dryness of
OCSLCs, and inhibit the activation of the Wnt/β-synprotein signaling pathway [12]. These
studies imply that tea flowers have broad application values.

The taste, health benefits, and color of tea flowers are generally dominated by the non-
volatile components [13]. Compared with tea leaves, many metabolites are more abundant
in tea flowers, such as terpenoid compounds, sugars (like glucose, galactose, sorbate, and
fructose), organic acids (like shikimic acid, gallic acid, quinic acid, and fumaric acid), and
amino acids (like proline, alanine, serine, threonine, valine, n-leucine, and phenylalanine),
while catechin gallate, epicatechin, proanthocyanidin B2, quercetin, cunninghamine, and
myricetin in tea flowers are lower than that in tea leaves [2,14]. Tea tree flowers contain
catechins and theanine, and it was found that theanine content accounts for about 50% of
the total free amino acids [15]. EGCG is the most abundant catechu in tea plant flowers.
Tea flowers can also be used as a source of hypocaffeine because of their low content of
caffeine [16]. In a comparison with other tea species (C. japonica, C. tenuifolia, 2 savoury
Camellias, and C. synaptica), EGCE and EGC were only detected in tea flower (Camellia
sinensis) [17]. There are also different flavonoid components between tea flowers of different
varieties [18]. Zhou found that a significant difference in flavonoid levels resulted in a dif-
ference in the color of golden-flower tea [19]. In addition to non-volatile compounds, there
are significant differences in volatile compounds between white and pink tea flowers [20].
The volatile compounds of purple tea flowers are more fragrant than those of white flowers,
like methyl eugenol and alpha-ionone [21].

At present, studies on chemical constituents in tea flowers mainly focus on single
chemical constituents, such as saponins and tea polyphenols [22–24]. The types and
contents of chemical components in tea flower have not been presently clarified, which is
an important reason to restrict the deep development and utilization of tea flowers. Ultra-
high-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) is
suitable for the strict requirements of the detection results of scientific research because of
its high detection accuracy and great ability to distinguish isomers [25]. As an accurately
qualitative and quantitative tool, it has been used to study other species as well, such as
Camellia nitidissima [26], Michelia crassipes [27], and cherry tomato [28], amongst others.

Although a great deal of progress has been made in studying the metabolic difference
of different colors of tea flowers, these studies have focused on a few common ingredients.

Thus, UPLC-MS/MS was used to identify and quantify the metabolites in three
different-color tea flowers in this study. Multivariate statistical analysis was used to clarify
the differences of secondary metabolites in tea flower petals with different colors. The
results can provide valuable information and a data reference for the deep development
and utilization of tea flowers as an available resource, food, and ornament.



Metabolites 2023, 13, 784 3 of 15

2. Materials and Methods
2.1. Chemicals and Reagents

MS-grade methanol, acetonitrile, and ethanol were purchased from Merck Corporation
(Darmstadt, Germany). Standard compounds were purchased from BioBioPha Co., Ltd.
(Kuming, China) or Sigma Corporation (St. Louis, MO, USA).

2.2. Plant Materials

The tea flowers used in this study were collected in Wangmo County, Guizhou
Province (E106◦29′49′′, N25◦35′29′′) on 8 December 2021. Wangmo County has an av-
erage annual temperature of 16.3 ◦C and an average annual rainfall of 1339.7 mm. The wild
tea trees in this region are community species and have different colors of flowers. White,
white and pink, and pink tea flowers were separately collected from different individual
tea plants (Figure 1). The external and internal petals in white, white and pink, and pink
flowers were labeled as WE, WI, WPE, WPI, PE, and PI. Additionally, when the flowers
were more than 75% open, the full blooming stage of tea flower samples was used in
the subsequent experiment. After the external and internal petals were separated, the
tea flower petals were immediately frozen in liquid nitrogen and stored at −80 ◦C. Prior
to widely targeted metabolomic analysis, tea flowers were freeze-dried with a vacuum
freeze-dryer (Scientz-100F, Zhejiang Hengyue Instrument Co., Ltd., Hangzhou, China). The
freeze-dried tea flower sample was crushed into homogeneous powder using a mixer mill
(MM 400, Retsch, Haan, Germany) with a zirconia bead for 1.5 min at 30 Hz. Dissolved
100 mg powder was extracted with 1.2 mL 70% methanol. Within the first three hours of
extraction, the solutions were vortexed for 30 s every 30 min. After that, the solutions were
placed at 4 ◦C overnight. Finally, the solutions were then centrifugated at 12,000 rpm for
10 min. The resulting suspensions were filtered (SCAA-104, 0.22-µm pore size; ANPEL,
Shanghai, China) prior to UPLC-MS analysis.
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2.3. Widely Targeted Metabolic Analysis

Widely targeted metabolomic analysis was assisted by a professional corporation,
MetWare (http://www.metware.cn/, accessed on 22 March 2023, Wuhan, China). The
extracted non-volatile compounds were separated using an UPLC system (Nexera X2,
SHIMADZU, Tokyo, Japan). The UPLC was equipped with an SB-C18 column (1.8 µm,
2.1 mm × 100 mm; Agilent, Palo Alto, CA, USA). Mobile phases A and B were 0.1% formic
acid (v/v) solution and acetonitrile with 0.1% formic acid, respectively. The elution profiles
were as follows: 0 min, 95% A and 5% B; 9 min, 5% A and 95% B; 10 min, 5% A and 95% B;
11.1 min, 95% A and 5.0% B; and 14 min, 95% A and 5.0% B. The flow velocity was set as

http://www.metware.cn/
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0.35 mL per minute. The column oven temperature was 40 ◦C. The injection volume was
4 µL.

The detection of non-volatile compounds was performed on a triple quadrupole
linear ion trap/orbitrap mass spectrometer (QQQ-LTQ-Orbitrap-MS, API 4500 QTRAP
system, Applied Biosystems owned by Thermo; Carlsbad, CA, USA) equipped with an ESI
turbo ion-spray interface, operating in positive and negative ion mode and controlled by
Analyst version 1.6.3 (AB Sciex). The ESI source operation parameters were as follows: ion
source, turbo spray; source temperature, 550 ◦C; ion spray (IS) voltage, 5500 V (positive
ion mode)/4500 V (negative ion mode); ion source gas I, gas II, curtain gas was 50, 60,
and 25.0 psi, respectively; the collision-activated dissociation (CAD) was high. Instrument
tuning and mass calibration were performed with 10 and 100 µmol/L polypropylene glycol
solutions in the QQQ and LIT modes, respectively. QQQ scans were acquired through
MRM experiments with collision gas (nitrogen) set to medium. DP and CE for individual
MRM transitions was carried out with further DP and CE optimization. A specific set
of MRM transitions were monitored for each period according to the metabolites eluted
within this period.

2.4. Data Processing

Unsupervised principal component analysis (PCA) was performed by SIMCA version
14.1 (Umetrics AB, Umeå, Sweden), and the data used for PCA were Pareto-scaled (in
which the data are centralized and then divided by the square root of standard deviation).
The imputed data matrix contained all tea flower samples and respective replicates (n = 3)
as rows and metabolites as columns. The hierarchical cluster analysis (HCA) results of
sample dendrograms were generated by the cofunctions in R (www.r-project.org, accessed
on 22 March 2023). The filter criteria for differential metabolites between two groups was
as follows: the p-value was less than 0.01 and the fold change was greater than 1.5 or less
than 0.67. The orthogonal projection to latent structures discriminant analysis (OPLS-DA)
was performed by R software (http://www.r-project.org/, accessed on 22 March 2023).
Differential metabolites were calculated by combining p-values or fold changes of the
univariate analysis with VIP (variable importance plot) scores for the OPLS-DA model.
Identified metabolites were annotated using the KEGG Compound database (http://www.
kegg.jp/kegg/compound/, accessed on 23 March 2023), and annotated metabolites were
then mapped to the KEGG Pathway database (http://www.kegg.jp/kegg/pathway.html,
accessed on 23 March 2023). Pathways with mapped differential metabolites were then fed
into MSEA (metabolite sets enrichment analysis), and their significance was determined
with the hypergeometric test. The Heat maps, Venn plot, and K-Means graphs were
generated using R online software (http://www.r-project.org/, accessed on 22 March 2023).

3. Results
3.1. Overall Characterization of Non-Volatile Metabolites

In this study, non-volatile secondary metabolites in the external and internal petals of
white, white and pink, and pink tea flowers (labeled as WE, WI, WPE, WPI, PE, and PI)
were investigated using an UPLC-QQQ-LTQ-Orbitrap-MS. After comparing the RT and
MS information of each peak to that in the MetWare MS database, a total of 429 metabolites
were identified, including 195 flavonoids, 121 phenolic acids, 40 alkaloids, 29 lignans and
coumarins, 19 tannins, 17 terpenoids, and 8 other metabolites (Table S1 and Figure 2A).
HCA was then carried out for six tea flower petals, and the results showed that the external
and internal petals were well clustered into two classes (Figure 2B). This implied that the
internal and external petals have obvious differences in secondary metabolites.

www.r-project.org
http://www.r-project.org/
http://www.kegg.jp/kegg/compound/
http://www.kegg.jp/kegg/compound/
http://www.kegg.jp/kegg/pathway.html
http://www.r-project.org/
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To obtain an overview of the differences of non-volatile secondary compounds of
tea flower samples, PCA was applied using the peak areas of 429 identified compounds
after the data were Pareto-scaled. As shown in Figure 2C, the main judgment of the
PCA model (R2X = 0.941; and Q2 = 0.863) showed that this model could well illustrate
significant differences in metabolites among PE, PI, WE, WI, WPE, and WPI. The first
two components of PCA explained 33.48% and 22.45% of the total variance, respectively.
It is interesting to note that WE, WPE, and PE were on the left side of the PCA score
plot, while WI, WPI, and PI were on the right, which indicated a separation between the
external and internal petals and was consistent with the result of HCA (Figure 2B). To
further identify the important compounds distinguishing these tea flower samples, the
PCA loading plot was generated (Figure 2D). In the PCA loading plot, the dispersion
degree of a compound represents its content difference in different groups of samples.
As shown in Figure 2D, the metabolites which noticeably contributed to the differences
among the six samples were coniferin, catechin gallate, trilobatin, narcissin, procyanidin
B4, kaempferol-3-O-glucoside-7-O-rhamnoside, quercetin-7-O-glucoside, 3-O-methylgallic
acid, epicatechin gallate, eriodictyol-7-O-glucoside, guaijaverin, theaflagallin, kaempferol-
7-O-glucoside, vicenin-2, apigenin-6-C-(2′′-glucosyl)arabinoside, 4-O-methylgallic acid,
luteolin-7-O-gentiobioside, luteolin-7-O-sophoroside-5-O-arabinoside, luteolin-7-O-(2′′-
O-rhamnosyl)rutinoside, kaempferol-3-O-rhamnosyl(1→2)glucoside, isorhamnetin-7-O-
glucoside, isorhamnetin-3-O-glucoside, and quercetin-3-O-(2′′-O-rhamnosyl)galactoside,
amongst others.

3.2. Comparison of Non-Volatile Secondary Metabolites among the Petals of Three Different
Tinctorial Flowers

To better understand the metabolite difference among the external or internal petals
of different tinctorial tea flowers, the differential metabolites were screened by two crite-
ria: p < 0.01 (Student’s t-test), and the fold change values being greater than 1.50 or less
than 0.67. A total of 225 metabolites showed a significant change, and there were 164
and 154 differential metabolites among the external and internal petals, respectively, and
89 metabolites were mutual in both comparison groups (Figure 3A). The relative content of
the differential metabolites was standardized and centralized to study the changing trend
of the relative content of metabolites. According to K-means clustering, these differential
metabolites among the six tea flower samples were divided into 10 subclasses (Figure 3B).
It can be seen that subclass 2, subclass 5, subclass 7, subclass 9, and subclass 10 contained
25, 38, 19, 25, and 35 metabolites, respectively. Additionally, the standardized value of the
internal petal was higher than that in the external petal of the three tinctorial flowers in
subclass 2, subclass 5, subclass 7, subclass 9, and subclass 10, while subclass 6, contain-
ing 45 metabolites, displayed the opposite result. Additionally, WPI showed the highest
standardized value in subclass 3 and subclass 7.

For metabolites, KEGG enrichment analysis can better demonstrate the relationship be-
tween metabolites and metabolic pathways. In order to understand the internal metabolism
relations among the differential metabolites in the external or internal petals of the three
different tinctorial flowers, we performed KEGG functional annotation and pathway en-
richment analysis. As shown in Figure 3C, differential metabolites among WE, WPE, and
PE were annotated in glycine, serine, and threonine metabolism (ko00260); glycerophos-
pholipid metabolism (ko00564); glycosylphosphatidylinositol (GPI)–anchor biosynthesis
(ko00563); phenylalanine metabolism (ko00360); phenylpropanoid biosynthesis (ko00940);
caffeine metabolism (ko00232); arginine and proline metabolism (ko00330); flavonoid
biosynthesis (ko00941); flavone and flavonol biosynthesis (ko00944); and other metabolic
pathways, which were involved in the accumulation of important functional metabolites.
As shown in Figure 3D, differential metabolites among WI, WPI, and PI were annotated in
lysine degradation (ko00310), d-amino acid metabolism (ko00470), indole alkaloid biosyn-
thesis (ko00901), porphyrin metabolism (ko00860), glycolysis/gluconeogenesis (ko00010),
isoquinoline alkaloid biosynthesis (ko00950), and monoterpenoid biosynthesis (ko00902).
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The significantly enriched pathways between the WE vs. WPE vs. PE group and the WI vs.
WPI vs. PI group were obviously different, which implied that the metabolic differences
among external petals were significantly different from that among internal petals.

Metabolites 2023, 13, x FOR PEER REVIEW 7 of 16 
 

 

 

Figure 3. Difference analysis of non-volatile secondary metabolites. (A) Venn plot. (B) K-means 

clustering plot. (C) KEGG-enriched pathways of WE vs. WPE vs. PE; (D) KEGG-enriched pathways 

of WI vs. WPI vs. PI. The Y-axis on the left represents the KEGG pathway; the X-axis represents 

“enrich factor”, which is the ratio of DEP number to the total number of annotated proteins in each 

pathway. 

For metabolites, KEGG enrichment analysis can be�er demonstrate the relationship 

between metabolites and metabolic pathways. In order to understand the internal me-

tabolism relations among the differential metabolites in the external or internal petals of 

the three different tinctorial flowers, we performed KEGG functional annotation and 

pathway enrichment analysis. As shown in Figure 3C, differential metabolites among 

WE, WPE, and PE were annotated in glycine, serine, and threonine metabolism 

(ko00260); glycerophospholipid metabolism (ko00564); glycosylphosphatidylinositol 

(GPI)–anchor biosynthesis (ko00563); phenylalanine metabolism (ko00360); phenylpro-

panoid biosynthesis (ko00940); caffeine metabolism (ko00232); arginine and proline me-

tabolism (ko00330); flavonoid biosynthesis (ko00941); flavone and flavonol biosynthesis 

(ko00944); and other metabolic pathways, which were involved in the accumulation of 

important functional metabolites. As shown in Figure 3D, differential metabolites among 

WI, WPI, and PI were annotated in lysine degradation (ko00310), d-amino acid metabo-

lism (ko00470), indole alkaloid biosynthesis (ko00901), porphyrin metabolism (ko00860), 

glycolysis/gluconeogenesis (ko00010), isoquinoline alkaloid biosynthesis (ko00950), and 

monoterpenoid biosynthesis (ko00902). The significantly enriched pathways between the 

WE vs. WPE vs. PE group and the WI vs. WPI vs. PI group were obviously different, 

which implied that the metabolic differences among external petals were significantly 

different from that among internal petals. 

3.2.1. Comparison of Non-Volatile Secondary Metabolites among the External Petals 

Figure 3. Difference analysis of non-volatile secondary metabolites. (A) Venn plot. (B) K-means
clustering plot. (C) KEGG-enriched pathways of WE vs. WPE vs. PE; (D) KEGG-enriched pathways
of WI vs. WPI vs. PI. The Y-axis on the left represents the KEGG pathway; the X-axis represents
“enrich factor”, which is the ratio of DEP number to the total number of annotated proteins in
each pathway.

3.2.1. Comparison of Non-Volatile Secondary Metabolites among the External Petals

The levels of differential secondary metabolites among the external petals are shown
in Figure 4. As the color changed, the level and variety of metabolites of the three different
tinctorial flowers showed great difference.

A total of 78 flavonoids were different among the external petals, among which 45 metabo-
lites were more abundant in PE, including kaempferol-4′-O-glucoside, kaempferol-3-O-
glucoside, kaempferol-3-O-glucoside-7-O-rhamnoside, kaempferol-3-O-rutinoside, kaempferol-
3-O-neohesperidoside, quercetin-3-O-rutinoside, quercetin-3-O-neohesperidoside, quercetin-
3,7-di-O-rhamnoside, vitexin-7-O-(6′′-p-coumaroyl)glucoside, luteolin-7-O-sophoroside-5-O-
arabinoside, isoorientin-7-O-(6′′-p-coumaroyl)glucoside, isorhamnetin-3-O-rutinoside-7-O-
rhamnoside, and so on. In total, 25 of 47 phenolic acids were highly expressed in WPE, like
phthalic anhydride, cinnamic acid, isovanillin, 4-hydroxyphenylacetic acid, 3-methoxybenzoic
acid, 2-hydroxy-3-phenylpropanoic acid, vanillic acid, 3-hydroxy-4-methoxybenzoic acid, gallic
acid, 2,3,4-trihydroxybenzoic acid, hydroxyphenyllactic acid, 3-O-methylgallic acid, syringic
acid, methyl syringate, and 3,4′-dihydroxy-3′-methoxybenzenepentanoic acid, while others
were more accumulated in PE. A total of 11 differential alkaloid metabolites were found, 8 of
which were higher in WPE, including choline, betaine, n-benzylmethylene isomethylamine,
histidinol, n-acetylcadaverine, caffeine, spermine, N1, and N8-bis(sinapoyl)spermidine. There
are 11 different tennis metabolites, 7 of which were more abundant in PE, including ellagic
acid-4-O-glucoside, theaflavin, procyanidin B4, gambiriin A1, strictinin, gemin D, and isostric-
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tinin. WPE had more varieties of lignans, coumarins, and terpenoids. In total, the levels and
varieties of flavonoids, tannins, lignans, and coumarins in PE were higher.
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3.2.2. Comparison of Non-Volatile Secondary Metabolites among the Internal Petals

The levels of differential secondary metabolites among the internal petals of three tinc-
torial tea flowers are shown in Figure 5. A total of 62 flavonoids were significantly different
among the internal petals; 9, 38, and 15 flavonoids showed the highest contents in WI, WPI, and
PI, respectively. Pinocembrin, kaempferol-3-O-glucoside-7-O-rhamnoside, epigallocatechin,
kaempferol-3-O-rutinoside, kaempferol-3-O-glucorhamnoside, eriodictyol-7-O-rutinoside, and
luteolin-7,3′-di-O-glucoside were more accumulated in WI. Most flavonoids, like naringenin-7-
O-glucoside, myricetin-3-O-xyloside, myricetin-3-O-β-D-glucoside, myricetin-3-O-galactoside,
epicatechin-epiafzelechin, vitexin-7-O-(6′′-p-coumaroyl)glucoside, luteolin-7-O-rutinoside-5-O-
rhamnoside, and kaempferol-3-O-rutinoside-7-O-glucoside, among others, were more accumu-
lated in PI. The rest of the flavonoids were more accumulated in WPI. In total, 27 of 46 phenolic
acids, 11 of 20 alkaloids, 8 of 9 lignans and coumarins, 6 of 7 tannins, 3 of 3 terpenoids, and
2 other metabolites were differentially expressed in WPI, which showed that WPI contained
more varieties of metabolites. These mainly consisted of metabolites including benzamide,
4-hydroxyacetophenone, phenyl acetate, cinnamic acid, methyl 4-hydroxybenzoate, vanillin,
2-picoline, choline, betaine, histidinol, scopoletin-7-O-glucuronide, syringaresinol, and so
on. It could be concluded that the levels and varieties of WPI were higher than the other
internal petals, shown in a different way compared with external petals. Additionally, the
tea flowers with pink color contained more flavonoids, like kaempferol, luteolin, quercetin,
isorhamnetin, and others. However, WPE and WPI contained more phenolic acids, alkaloids,
and tannin varieties.
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3.3. Comparison of Non-Volatile Secondary Metabolites between the Internal and External Petals of
Pink Flowers

As the features of external petals were obviously different from that of internal petals
in pink tea flowers, the differential metabolites between the external and internal petals
of pink flowers were screened according to the following criteria: FC ≥ 1.5 or ≤0.67;
p < 0.01, and VIP ≥ 1. In the present study, there were 88 differentially accumulated
metabolites between PE and PI (Figure 6A). The KEGG database facilitates the study of
metabolites and expression information as a whole network. To more comprehensively
understand the relations of differential metabolites between the internal and external petals
of pink tea flowers, KEGG functional annotation and pathway enrichment analysis were
performed. Most of them were involved in secondary metabolite synthesis, including
metabolic pathways (ko01100); biosynthesis of secondary metabolites (ko01110); carbon
metabolism (ko01200); biosynthesis of cofactors (ko01240); glycine, serine, and threonine
metabolism (ko00260); tryptophan metabolism (ko00380); folate biosynthesis (ko00790); one
carbon pool by folate (ko00670); porphyrin metabolism (ko00860); biosynthesis of various
plant secondary metabolites (ko00999); aminoacyl-tRNA biosynthesis (ko00970); ABC trans-
porters (ko02010); and so on. Among them, tyrosine metabolism (ko00350), biosynthesis
of cofactors (ko01240), and biosynthesis of various alkaloids (ko00996) were involved in
accumulation of phenolic acids; and phenylpropanoid biosynthesis (ko00940), flavonoid
biosynthesis (ko00941), flavone and flavonol biosynthesis (ko00944), and anthocyanin
biosynthesis (ko00942) were relative to the accumulation of flavonoids. Consequently,
the different metabolic pathways could probably be the reason for the color changes and
metabolite changes of the internal and external petals of pink flowers.
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Among the 88 metabolites, 29 metabolites were up-regulated and 59 metabolites were
down-regulated (Figure 6A) between the internal and external petals of pink flowers, and the
top differential metabolites with high fold change are shown in Figure 7A. The up-regulated
metabolites with high fold change were antiarol, 3,4,5-trimethoxybenzoic acid methyl es-
ter, isolariciresinol, 2,4,6-trihydroxybenzoic acid methyl ester, trihydroxycinnamoylquinic
acid, isolariciresinol-9′-O-glucoside, syringaresinol-4′-O-(6′′-acetyl)glucoside, and methyl
syringate; and the down-regulated metabolites with high fold change were 4-hydroxy-7-
methoxycoumarin-β-rhamnoside, kaempferol-7-O-rhamnosid, ginnalin A, kaempferol-3-O-
rutinoside-7-O-rhamnoside, and kaempferol-3-O-(6′′′-p-Coumaroyl) glucosyl-(1→2)
-glucoside-7-O-rhamnoside.

As shown in Figure 7B, a total of 48 flavonoids were differentially accumulated and
37 of them were abundantly detected in internal petals, such as prunin, isorhamnetin-
3-O-arabinoside, aromadendrin-7-O-glucoside, apigenin-6-C-xyloside-8-C -arabinoside,
pinocembrin-7-O-rutinoside, epitheaflavic acid-3-O-Gallate, naringin, luteolin-7-O-
rutinoside, eriodictyol-7-O-(6′′-O-p-coumaroyl)glucoside, vitexin-7-O-(6′′-p-coumaroyl)
glucoside, catechin–catechin–catechin, and the derivatives of kaempferol and quercetin.
Meanwhile, dihydrochrysin, epigallocatechin-3-gallate, gallocatechin gallate, kaempferol-3-
O-(2′′-O-acetyl)glucuronide, limocitrin-3-O-glucoside, limocitrin-3-O-galactoside, apigenin-
6-C-xyloside-8-C-arabinoside, vitexin-2′′-O-glucoside, apigenin-6,8-di-C-glucoside, and
cyanidin-3-O-glucoside were more accumulated in PE.

Overall, there were 22 phenolic acids detected and 13 of them were highly accu-
mulated in PI, including methyl 4-hydroxybenzoate, vanillin, 2,3-dihydroxybenzoic acid,
gentisic acid, protocatechuic acid, methyl ester, 2,4,6-trihydroxybenzoic acid methyl ester,
antiarol, sinapinaldehyde, methyl syringate, 3,4,5-trimethoxybenzoic acid methyl ester,
1-O-vanilloyl-D-glucose, trihydroxycinnamoylquinic acid, and 3-O-digalloyl quinic acid,
while other phenolic acids were more accumulated in PI, including 4-Aminobenzoic acid,
methyl anthranilate, caffeic acid, 1-O-galloyl-β-D-glucose, 3-O-galloyl-D-glucose, 1-O-
caffeoyl-(6-O-glucosyl)-β-D-glucose, and so on.

Most lignans and coumarins were more abundant in PE. Alkaloids, terpenoids, and
tannins, mainly consisting of metabolites like ginnalin A, procyanidin B4, procyanidin
B3, procyanidin B1, gambiriin A1, procyanidin C2, 5-aminolevulinic acid, N-acetyl-5-
hydroxytryptamine, and 10-formyltetrahydrofolic acid, were both abundantly detected
in PI.
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4. Discussion

Tea flower is bisexual and the complete flower contains the stalk, calyx, corolla, stamen,
pistil, and 5–6 petals [3]. With the excavation of germplasm resources, some tea tree flowers
with 11 petals have been found, and the corolla size varies with the variety [17]. Color is
an important phenotypic trait reflecting flower shape and is also a standard for labeling
tea germplasm [29]. Tea flowers generally present a white color, while the flowers of a few
tea plants may present pink, light yellow, and green colors [30]. The color of tea flowers
depends on the variety, genes, and growth environment [31]. At present, most studies
focus on the biochemical components, processing [32], and physiological characteristics
of white tea flowers [33]. There are few studies on the phenotypic data and metabolite
characteristics of pink tea flowers.

Pink tea flower resources were taken from the Wangmo area, in the Guizhou province
of China. According to color difference, the samples tended to form six groups (Figure 1),
and the clustering results could well distinguish the internal and external petals of the
three tea flowers (Figure 2B,C). Although these tea flowers grow in the same environment,
the differences in external traits also cause the differences in internal components. In
our study, there were 429 secondary metabolites, including 195 flavonoids, 121 phenolic



Metabolites 2023, 13, 784 12 of 15

acids, 40 alkaloids, lignin, and 29 coumarin and terpenoids (Figure 2A). Flavonoids in tea
flowers were mainly composed of aglycones, including kaempferol, quercetin, myricetin,
isorhamnoside, and catechin, amongst others, and a combination of glucuronylation,
glycosylation, and glycosylation [34]. Differential phenolic acids included chlorogenic acid,
gallic acid, caffeic acid, ferulic acid, coniferin, vanillic acid, and syringic acid. Flavonoids
in plants have many effects, indicating that the high content of secondary metabolites of
flavonoids in petals are valuable [35]. The sensory flavor, depending on the metabolites,
is one of the key factors to evaluate if it is suitable as a food [36]. Flavonoids, alkaloids,
and other flavoring components are influential for flavor in tea drinks, and different
compositions of them could bring different flavor characteristics [37]. It was reported that
the content of flavonoids in tea flowers was higher than that in other flowers, leading to
better biological activity with dosage effect [38]. Tea flowers with higher polyphenol content
have better antioxidant activity [39]. The accumulation of its composition and content in
different tea flowers has specific differences. We found that pink tea flowers contained
more flavonoids, alkaloids, lignans, coumarins, terpenoids, and tannins compared with
white tea flowers (Figures 4 and 5), while PE and WPI contained more flavonoids, including
kaempferol, quercetin, myricetin, isorhamnoside, and catechin. Those metabolites showed
a different trend in internal and external petals, especially in petals with color. PE and WPI
contained more flavonoids. Flavonoid compounds also have potential medicinal value,
and investigations have shown that ingestion of flavonoids can reduce the incidence of
various non-communicable diseases, and some flavonoids also show strong physiological
activity in vivo and in vitro [40,41]. Thus, tea flowers with color might be a useful resource
for processing as drinks for health promotion or used in substance extraction.

White is the main color of tea flowers. Through the collection of germplasm resources,
other colored tea flowers have been gradually found [3]. Via the phenotype, we can
preliminarily determine that biochemical components of pink tea flowers are different from
other tea varieties. In other plant species, there is a strong correlation between various
chemical components and color. Flavonoids mainly control the formation of light yellow or
nearly white color and are the accessory pigment, while anthocyanins play a major role
in the formation of red, pink, blue, and purple colors [42]. Flavonoids are also the main
chromogenic substances of flowers, fruits, and seeds, and they can also affect the elongation
of petals and promote the germination of pollen [43]. Flavonoid compounds can act as
colorants and make plant color more stable through conjunction [44]. For example, there
were also small amounts of delphinin and cyanidin in rhododendrons, and the content of
cyanin-3-O-rutin in the petals of pink rhododendrons was six times than that of purple
rhododendrons [45]. The anthocyanin content in the petals of 10 species of Rhododendron
alpinus was correlated with their color in the Snow Mountains of southeast Tibet [46]. The
level of safflower A was decreased with the reddened and darkened florets [47]. In another
study, orange and white safflower florets contained high levels of saffron A and kaempferol
3-o-β-D-glucoside, respectively [48]. In our study, most flavonoids accumulated in WPI
and PE (Figures 4 and 5). The color of tea flowers seems to be an important indicator of the
accumulation of metabolites. Anthocyanins were detected in all petals (Figure 7B), and the
anthocyanin content in the external petals was significantly higher than that in the internal
petals (Figure 7B). It implied that anthocyanins may be the main reason for their pink
formation. Previous studies have also pointed out that epidermal cytochrome deposition
in different parts of petals is different, resulting in phenotype changes [49]. At present, a
backcross between the hybrid varieties of Camellia japonica and Camellia nitidissima is being
cultivated to increase the accumulation of flavonoids and achieve the transfer of the yellow
gene and the cultivation of yellow camellia varieties [50]. Therefore, the pink tea flower is
likely a special material to achieve the ornamental value of Camellia sinensis.

Many secondary metabolites, such as phenolic acids, flavonoids, lignin, and other
compounds, are produced by the phenylpropanoid pathway and/or its branch pathways
in plants. Phenylalanine and tryptophan are catalyzed to produce cinnamic acid and p-
coumaryl coenzyme A [51]. The phenylalanine metabolic pathway can be divided into two
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branches: the phenylalanine metabolic pathway and flavonoid metabolic pathway; and
flavonoid biosynthesis is an important downstream branch of phenyl C metabolism [52].
Naringin plays a central role in the metabolic pathway that forms other isoflavones,
flavones, and flavonols during its metabolism [41]. Flavonoid scaffolds also undergo
a variety of tailoring reactions, such as glycosylation, methylation, and acylation, to form
metabolites with different physicochemical and biological properties, which are catalyzed
by flavonoid methyltransferase and flavonoyltransferase, respectively [46]. The metabolic
components identified in this study involved multiple metabolic pathways, and the main
biosynthetic pathways included tyrosine metabolism, biosynthesis of cofactors, biosynthe-
sis of various alkaloids, phenylpropanoid biosynthesis, and flavonoid biosynthesis.

5. Conclusions

In this study, the non-volatile secondary metabolites in the internal and external petals
of three different colors of tea flowers were studied using a widely targeted metabolomics
method. A total of 429 metabolites were identified in three different colors of petals, of
which 195 flavonoids, 121 phenolic acids, 40 alkaloids, 29 lignans and coumarins, 19 tannins,
17 terpenoids, and 8 other metabolites were detected. The metabolites of different petals
in the internal and external petals showed great changes in flavonoids, phenolic acids,
and tannins. The study also found that cyanidin-3-O-glucoside were more accumulated in
PE, indicating that anthocyanin may be the main reason for the color difference between
the pink and white petal. At present, the utilization rate is very low and studies on the
regulation mechanism of non-volatile compounds of tea flowers may provide theoretical
guidance for the metabolites basis of tea flower color and provide new ideas of tea flower
processing or further processing substance extraction for tea workers.
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