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Abstract: Very long-chain acylcarnitine dehydrogenase deficiency (VLCADD) is a rare inherited
metabolic disorder associated with fatty acid β-oxidation and characterized by genetic mutations in
the ACADVL gene and accumulations of acylcarnitines. VLCADD, developed in neonates or later
adults, can be diagnosed using newborn bloodspot screening (NBS) or genetic sequencing. These
techniques have limitations, such as a high false discovery rate and variants of uncertain significance
(VUS). As a result, an extra diagnostic tool is needed to deliver improved performance and health out-
comes. As VLCADD is linked with metabolic disturbance, we postulated that newborn patients with
VLCADD could display a distinct metabolomics pattern compared to healthy newborns and other dis-
orders. Herein, we applied an untargeted metabolomics approach using liquid chromatography–high
resolution mass spectrometry (LC-HRMS) to measure the global metabolites in dried blood spot (DBS)
cards collected from VLCADD newborns (n = 15) and healthy controls (n = 15). Two hundred and six
significantly dysregulated endogenous metabolites were identified in VLCADD, in contrast to healthy
newborns. Fifty-eight and one hundred and eight up- and down-regulated endogenous metabolites
were involved in several pathways such as tryptophan biosynthesis, aminoacyl-tRNA biosynthe-
sis, amino sugar and nucleotide sugar metabolism, pyrimidine metabolism and pantothenate, and
CoA biosynthesis. Furthermore, biomarker analyses identified 3,4-Dihydroxytetradecanoylcarnitine
(AUC = 1), PIP (20:1)/PGF1alpha) (AUC= 0.982), and PIP2 (16:0/22:3) (AUC= 0.978) as potential
metabolic biomarkers for VLCADD diagnosis. Our findings showed that compared to healthy
newborns, VLCAADD newborns exhibit a distinctive metabolic profile, and identified potential
biomarkers that can be used for early diagnosis, which improves the identification of the affected
patients earlier. This allows for the timely administration of proper treatments, leading to improved
health. However, further studies with large independent cohorts of VLCADD patients with different
ages and phenotypes need to be studied to validate our potential diagnostic biomarkers and their
specificity and accuracy during early life.

Keywords: VLCADD; newborns; untargeted metabolomics profiling; potential biomarkers

1. Introduction

Long-chain fatty acids (LCFA) play a crucial role as vital energy sources for various
body tissues and organs, such as the liver, heart, and skeletal muscle, enabling them to
carry out their essential functions and ensure survival. Specifically, LCFAs are transported
into the mitochondrial matrix via the carnitine shuttle [1]. After that, fatty acids undergo
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mitochondrial fatty acid β-oxidation to be metabolically oxidized via very long-chain acyl-
CoA dehydrogenase (VLCAD). The last is a mitochondrial enzyme, essentially required
for the first step of the oxidation of long-chain fatty acyl-CoAs with a chain length of
12–20 carbons [2]. The responsible enzyme for the breakdown of very long-chain fatty acids
is produced by a nuclear gene called acyl-CoA dehydrogenase very long chain (ACADVL).
Mutations in this gene have been detected in newborn patients during the early stages
of life. This is linked to a condition known as very long-chain acyl-CoA dehydrogenase
deficiency (VLCADD), which falls under the category of inherited metabolic disorders
(IMDs) [3]. VLCADD is associated with elevated levels of long-free fatty acids, complex
lipids, and acylcarnitines. Lastly, the main biomarker of VLCADD patients specifically
is characterized by toxic accumulations of C14:1-carnitine, C14:2-carnitine, C14:1/C16-
carnitine ratio, C14:1/C2-carnitine ratio, and C14:1/C12:1 ratio [4–6]. These abnormal
accumulations of acylcarnitines can negatively affect the physiology of tissues and organs,
leading to clinical complications that could be life-threatening and lethal [7]. To illustrate,
the elevated toxic accumulation of acylcarnitines causes increased cellular permeability,
releasing intracellular proteins and altering cellular function.

The cellular inflammation is increased in VLCADD, where insulin-stimulated glucose
uptake is decreased, via Ca2+-mediated pathways. Also, VLCADD causes lipid toxicity
and cellular stress, subsequently leading to cellular death [8–11]. The manifestations of
VLCADD in patients can develop during the neonatal period or adulthood, and include
hypoglycemia, hypoketotic, lactic acidemia, hyperammonemia, cardiomyopathy, and rhab-
domyolysis [12,13]. Recently, there have been newly reported manifestations observed
in VLCADD patients, such as non-fluctuating weakness and isolated hyper-CKemia [14].
Furthermore, the severity of these complications can vary greatly among patients with
VLCAAD, with some having mild symptoms, while others experience more severe mani-
festations. Interestingly, there have been reports of individuals suspected to have VLCADD
who are clinically asymptomatic [14], which poses a significant challenge when accounting
for the incidence of VLCADD. Additionally, the incidence of VLCADD varies in different
ethnicities. For instance, Germany reported an incidence of 1:76,000, Taiwan had the lowest
worldwide at 1:1,392,000, and Korea had a VLCADD incidence of 1:383,000 [15]. In Saudi
Arabia, the incidence of VLCADD is among the world’s highest, reported at 1:37,000 due
to the high rate of consanguineous marriages [16]. The incidence of VLCADD may be
underestimated for several reasons. Firstly, asymptomatic individuals have not been taken
into consideration. Secondly, some VLCADD patients may not have undergone a proper
diagnosis. Lastly, there is a possibility of false positive or false negative diagnoses. These
factors can significantly impact the accuracy of estimated incidence rates of VLCADD and
require appropriate adjustment.

The primary diagnostic approaches for detecting VLCADD are genetic sequencing,
encompassing whole genome, or exome sequencing, and the newborn bloodspot screening
(NBS) program [17,18]. Genetic testing has limitations due to the variants of uncertain
significance (VUS) reported in the ACADVL gene [19]. For the NBS program, the measure-
ments of acylcarnitine specifically (C14:1, C14:2, C14, and C12:1) and ratios of acylcarnitine
levels (C14:1/C2, C14:1/C16) on dried blood spots are primarily used for VLCADD diag-
nosis [12].

The increased use of NBS has positively impacted the identification of VLCADD.
However, it also poses some drawbacks, such as false negative or false positive results,
which may affect the accuracy of the diagnosis [20–23]. For example, some newborns with
severe body weight loss were diagnosed with VLCADD in the first NBS results. However,
they were false positive results, and the elevation of C14:1-carnitine was due to the increased
catalytic process of fatty acids [24]. Also, it was found that the acylcarnitine profile used for
VLCADD patients might be interfering with LCADD [25]. In addition, it was reported that
the plasma acylcarnitine profile of carnitine/acylcarnitine translocase (CACT) deficiency
disease showed a marked increase in long-chain acylcarnitines and decreased levels of free
carnitine [26], which may conflict with VLCADD. Furthermore, the acylcarnitine profile of
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VLCADD exhibits a low level of carnitine, but this observation has been identified in other
disorders related to carnitine transport and cycle [27]. Given the above limitations of the
current diagnostic methods for VLCADD, there have been increasing recalls and demands
from the clinical field to develop other accurate, alternative diagnostic approaches for the
diagnosis and prognosis of VLCADD so that it can be managed and treated with improved
accuracy.

Metabolomics, the technique of studying the levels of small molecular weight molecules
identified in biological samples such as blood, urine, and dried blood spot (DBS) cards,
has been proposed for clinical practice and use as a screening and diagnostic tool for
IMDs [28–32]. Since VLCADD is one of the IMDs associated with altered energetic home-
ostasis and defective metabolism, untargeted metabolomics can be a useful tool to com-
prehensively investigate the metabolic alterations and mechanisms in VLCADD. Very
few studies have focused on applying the metabolomics approach to VLCADD diagno-
sis [33–35]. For example, Miller et al. (2015) applied untargeted metabolomics analyses
on plasma samples collected from VLCADD-diagnosed patients to identify distinctive
metabolic profiling and biomarkers for VLCADD. Although the number of plasma samples
from VLCADD patients in their study was low, their analyses showed interesting metabolic
analytes, including myristoylcarnitine (C14), stearoylcarnitine (C18), palmitoylcarnitine
(C16), and oleoylcarnitine (C18:1) [33]. Furthermore, a recent study by Knottnerus et al.
(2020) aimed to identify metabolic patterns used to distinguish between VLCADD patients
with mild or severe phenotypes using untargeted metabolomics. Based on the metabolic
results of those patients, they illustrated that the level of C18:2- and C20:0-carnitine, 13,14-
dihydroretinol, and deoxycytidine monophosphate were distinctive between mild or severe
phenotypic VLCADD patients [34]. Along the same line, in this study, we aimed to identify
and uncover distinct metabolic biomarkers and pathways altered in VLCADD patients dur-
ing the neonatal stage, which could potentially be used as predictive diagnostic biomarkers
in early life. Thus, we comprehensively explored the metabolic alterations in VLCADD new-
borns by performing untargeted metabolomics analyses of DBS collected from newborns
diagnosed with VLCADD and healthy newborns.

2. Materials and Methods
2.1. Ethics Approval

The Institutional Review Boards at King Faisal Specialist Hospital and Research Centre
(KFSHRC) in Riyadh, Saudi Arabia (RAC# 2160 027) reviewed and approved this study and
its related procedures. In agreement with KFSHRC’s institutional and national legislation,
the legal guardians of the VLCADD patients approved the possible use of their banked
DBS samples for experimental development and validation.

2.2. Patient Inclusion and DBS Collection

DBS cards used in this study were collected from the metabolomics section in the
Center for Genomic Medicine at KFSHRC. Thirty DBS cards included in this study were
collected from genetically and biochemically confirmed VLCADD newborns (n = 15) and
healthy controls (n = 15). These healthy controls were age- and gender-matched with
the patient group (Scheme 1). The inclusion criteria of this study were applied to the
following cases. Firstly, VLCADD patients were only diagnosed with VLCADD. Secondly,
the age of participants was a month at maximum. Any study participants not fitting the
inclusion criteria were excluded from the study. DBS cards were prepared by dripping
blood samples collected from VLCADD and healthy newborns on filter paper called
Whatman ProteinSaver 903 using the heel prick method. After that, the DBS cards were
dried before storing them in a sealed bag at 4 ◦C, pending further metabolomics analysis.
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Scheme 1. The workflow of the study sample collection, processing, LC-HRMS questioning, and
data analysis.

2.3. Chemicals and Materials

LC-MS-grade acetonitrile (ACN), methanol, formic acid, and water were purchased
from Fisher Scientific (Ottawa, ON, Canada).

2.4. Sample Preparation

The metabolites were extracted as reported previously with modifications
(Scheme 1) [32]. In detail, one punch, a size of 3.2 mm, was collected from each DBS
sample and transferred into a 96-well plate for metabolite extraction. Metabolite extraction
was performed by adding 250 µL extraction solvent (20:40:40) (H2O:ACN:MeOH) to each
well with agitation for 2 h at room temperature. Subsequently, sample extracts were dried
using SpeedVac (Thermo Fischer, Christ, Germany). The dried samples were reconstituted
in 100 µL of 50% A:B mobile phase. (A: 0.1% Formic acid in H2O, B: 0.1% FA in 50%
ACN:MeOH). Additional punches were collected for quality control (QC) samples and
pooled from the study samples to maintain the instrument performance. All study and
quality control samples were randomized and placed on the UPLC-QToF-MS autosampler
for metabolomics analyses. A quality control sample was analyzed after each set of 5 study
samples.

2.5. LC-MS Metabolomics

Metabolomics analysis was explored using the Waters Acquity UPLC system coupled
with a Xevo G2-S QTOF mass spectrometer equipped with an electrospray ionization source
(ESI) [32,36]. The extracted metabolites were chromatographed using an ACQUITY UPLC
using an XSelect (100 × 2.1 mm 2.5 µm) column (Waters Ltd., Elstree, UK): the mobile
phase composed of 0.1% formic acid in H2O as solvent A and solvent B consisted of 0.1%
formic acid in 50% ACN:MeOH. A gradient elution schedule was run as follows: 0–16 min
95–5% A, 16–19 min 5% A, 19–20 min 5–95% A, and 20–22 min 5–95% A at a 300 µL/min
flow rate. MS spectra were acquired separately under positive and negative electrospray
ionization modes (ESI+, ESI−). MS conditions were as follows: source temperature was
150 ◦C, the desolvation temperature was 500 ◦C (ESI+) or 140 ◦C (ESI−), the capillary
voltage was 3.20 kV (ESI+) or 3 kV (ESI−), the cone voltage was 40 V, the desolvation gas
flow was 800.0 L/h, and the cone gas flow was 50 L/h. The collision energies of low and
high functions were set at 0 and 10–50 V, respectively, in MSE mode. The mass spectrometer
was calibrated with sodium formate in 100–1200 Da. Data were collected in continuum
mode with Masslynx™ V4.1 (Waters Technologies, Milford, MA, USA) workstation.

2.6. Data Processing and Statistical Analyses

The MS raw data were processed following a standard pipeline starting from alignment
based on the m/z value and the ion signals’ retention time, peak picking, and signal
filtering based on the peak quality using the Progenesis QI v.3.0 software from Waters
(Waters Technologies, Milford, MA, USA) [37]. Features detected in at least 80% of the
samples were retained for further analyses. Multivariate statistical analysis was performed
using MetaboAnalyst version 5.0 (McGill University, Montreal, QC, Canada) (http://
www.metaboanalyst.ca, accessed on 5 January 2023) [38]. For proper selection of the

http://www.metaboanalyst.ca
http://www.metaboanalyst.ca
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right statistical model, the data sets (compounds and abundances) were mean-normalized,
Pareto-scaled, and log-transformed to maintain their normal distribution. The normalized
datasets generated principal component analysis (PCA), partial least squares-discriminant
analysis (PLS-DA), and orthogonal partial least squares-discriminant analysis (OPLS-DA)
models. The OPLS-DA models created were evaluated using the fitness of model (R2Y)
and predictive ability (Q2) values using permutation validation of 100 samples. Univariate
analysis was performed using Mass Profiler Professional (MPP) software (Agilent Inc.,
Santa Clara, CA, USA) [39]. Volcano plots were used to identify significantly altered mass
features based on a fold change (FC) cut-off of 1.5 and no correction p value < 0.05. Venn
diagrams were developed using MPP Software. Heatmap analysis for altered features was
performed using the distance measure of Pearson. Pathway analysis, biomarkers linked
with VLCADD disorder, and receiver operating characteristic (ROC) curves were created
using the PLS-DA approach in the MetaboAnalyst v 5.0 for global analysis to identify
possible biomarkers.

2.7. Peak Annotation (Metabolite Identification)

The significant features in each dataset were selected and tagged in Progenesis QI
software for peak annotation. The chemical structures of the metabolites were identified
by acquiring their accurate precursor masses, fragmentation patterns, and isotopic dis-
tributions for the Human Metabolome Database (HMDB) [40]. The precursor mass and
theoretical MS/MS fragmentation tolerance values were set to 5 ppm. The exogenous
compounds, such as drugs, food additives, and environmental compounds, were manually
excluded from the final list.

3. Results
3.1. Demographic and Clinical Characteristics of Study Participants

This study had two study groups, including VLCADD and healthy newborns (con-
trols), and their demographic and clinical data are summarized in Table 1. A total of 15 VL-
CADD and age- and sex-matched 15 healthy newborns were included in the study. The age
of the participants in the VLCADD group and healthy control group were 6.2 ± 1.1 days
and 5.6 ± 2.5 days, respectively. VLCADD newborns had significantly elevated levels
of C14:1-carnitine (2.30 ± 0.51) compared with healthy newborns, as determined by the
routine tandem mass spectrometry in the NBS lab. Also, VLCADD newborns showed
a significantly increased C14:1/C16-carnitine ratio of 0.44 ± 0.05 when compared with
healthy newborns. Thus, we used DBS cards from the participants in the two groups for
the subsequent metabolomics analyses.

Table 1. Demographic and clinical characteristics of VLCADD newborns and controls.

Demographic and Clinical Characteristics
VLCADD Newborns (n = 15) Healthy Newborns (n = 15)

p-Value
Mean SEM Mean SEM

Age (Day) 6.20 1.19 5.66 2.5 0.7518

Female (%) 53.3 NA 53.3 NA NA

Data

C14:1-carnitine
(Cutoff: <0.75 µM) 2.30 0.51 <0.75 NA 0.005 **

C14:1/C16-carnitine ratio
(Cutoff: <0.25 µM) 0.44 0.05 <0.25 NA 0.002 **

For statistical analyses, an unpaired student t test was conducted. Data are represented by mean ± SEM. Student’s
t-test; Two-tailed was used, ** p < 0.01.

3.2. Metabolomics Profiling of VLCADD Newborns

A distinctive metabolomics profile of VLCADD newborns was determined using
untargeted analysis based on DBS cards. Metabolomics data showed that 17,542 mass
ion features were detected (Table S1), including 11,318 in positive and 6624 in negative
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ionization modes. To ensure quality in the data analyses, features with missing values >80%
were excluded, resulting in 14,593 features remaining for further statistical analysis. Multi-
variate analysis using unsupervised principal component analysis (PCA) revealed clear
clustering and separation between VLCADD newborns (green) and healthy control new-
borns (red), suggesting there were metabolic changes differentiating these two groups. The
total variance of the first two principal components contributed 56.6% in the PCA model
for the two study groups (PC1 = 43.1% and PC2 = 13.5%) (Figure 1A). Also, orthogonal
partial least squares-discriminant analysis (OPLS-DA) was performed and displayed in
(Figure 1B), illustrating group sample clustering and separation between VLCADD and
healthy newborns groups. The OPLS-DA model, robust with good predictive ability, was
evaluated using permutation analysis with sample number 100 and satisfactory R2Y and
Q2 values (R2Y = 0.909 and Q2 = 0.825) (Figure 1C).

Metabolites 2023, 13, x FOR PEER REVIEW 6 of 16 
 

 

3.2. Metabolomics Profiling of VLCADD Newborns 
A distinctive metabolomics profile of VLCADD newborns was determined using un-

targeted analysis based on DBS cards. Metabolomics data showed that 17,542 mass ion 
features were detected (Table S1), including 11,318 in positive and 6624 in negative ioni-
zation modes. To ensure quality in the data analyses, features with missing values >80% 
were excluded, resulting in 14,593 features remaining for further statistical analysis. Mul-
tivariate analysis using unsupervised principal component analysis (PCA) revealed clear 
clustering and separation between VLCADD newborns (green) and healthy control new-
borns (red), suggesting there were metabolic changes differentiating these two groups. 
The total variance of the first two principal components contributed 56.6% in the PCA 
model for the two study groups (PC1 = 43.1% and PC2 = 13.5%) (Figure 1A). Also, orthog-
onal partial least squares-discriminant analysis (OPLS-DA) was performed and displayed 
in (Figure 1B), illustrating group sample clustering and separation between VLCADD and 
healthy newborns groups. The OPLS-DA model, robust with good predictive ability, was 
evaluated using permutation analysis with sample number 100 and satisfactory R2Y and 
Q2 values (R2Y = 0.909 and Q2 = 0.825) (Figure 1C). 

(A) 

(B) 
(C) 

Figure 1. (A) Unsupervised principal component analysis (PCA) shows a clear separation between 
VLCADD newborns and healthy newborns (controls). (B) Orthogonal Partial Least Squares—Dis-
criminant Analysis (OPLS-DA) displays a clear separation between the two groups (VLCADD vs. 
healthy newborn controls). The robustness of the created models was evaluated by the fitness of 
model (R2Y = 0.909) and predictive ability (Q2 = 0.825) values in a larger dataset (n = 100). (C) Per-
mutation analysis showing the observed and cross-validated R2Y and Q2 coefficients. 

Figure 1. (A) Unsupervised principal component analysis (PCA) shows a clear separation be-
tween VLCADD newborns and healthy newborns (controls). (B) Orthogonal Partial Least Squares—
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(C) Permutation analysis showing the observed and cross-validated R2Y and Q2 coefficients.

A volcano plot analysis evaluated 14,593 features between the two groups and applied
a moderated t test, raw p-values ≤ 0.05 (y-axis), and log2(FC) 1.5 (x-axis), showing 2012
significantly dysregulated metabolites between the groups (Table S2). In newborns with
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VLCADD, 774 and 1238 features were up-regulated and down-regulated, respectively
(Figure 2). The identification of the 2012 features was conducted with HMDB, resulting in
767 significantly identified metabolites (Table S3). After excluding the exogenous molecules
(i.e., drugs, environmental exposures, etc.), 206 metabolites were identified as human
endogenous and listed in (Table S4). Fifty-eight significantly upregulated endogenous
metabolites were present in VLCADD newborns, as demonstrated in a heatmap (Figure 3A).
In contrast, 148 downregulated metabolites were present in VLCADD newborns, and this
is partially demonstrated in a heatmap (Figure 3B).
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DA was used as a classification and feature ranking approach to creating a multivariate 
exploratory ROC analysis (Figure 5A). ROC curves of the top-ranked metabolites illus-
trated that the area under the curve (AUC) ranged from 0.986 to 0.992, with confidence 
intervals (CI) of 0.92–1 and 0.96–1 (Figure 5A). The selected frequency plots represent the 
15 significant metabolites with the highest VIP scores in the OPLS-DA model according 
to their level in VLCADD and healthy newborns (Figure 5B). The selected frequency plot 
shows metabolites, such as 3,4-Dihydroxytetradecanoylcarnitine (AUC= 1), PIP 
(20:1)/PGF1alpha) (AUC= 0.982), and PIP2(16:0/22:3) (AUC = 0.978), as shown in (Figure 
5C-E). 

Figure 3. Hierarchal clustering (HAC) and heatmap analysis of the top 206 significantly altered
metabolites between the two study groups: VLCADD newborns (gold) and healthy newborn controls
(red). (A) Heatmap demonstrating up-regulated metabolites and (B) down-regulated metabolites
in VLCADD newborns compared with healthy newborn controls. The color range bar indicates
downregulated metabolites as red and upregulated metabolites as green.
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3.3. Metabolomic Pathway and Biomarker Analyses

Pathway analysis was performed on the 206 significantly dysregulated endogenous
metabolites to identify the most altered pathways in VLCADD newborn patients. Pheny-
lalanine, tyrosine, and tryptophan biosynthesis, aminoacyl-tRNA biosynthesis, amino
sugar and nucleotide sugar metabolism, pyrimidine metabolism, and pantothenate and
CoA biosynthesis pathways were the most affected in VLCADD, as illustrated in (Figure 4).
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Figure 4. Pathway analysis of significantly dysregulated endogenous metabolites in VLCADD
newborns compared to their corresponding healthy newborn controls.

There were significantly altered metabolites involved in these pathways, including
L-Phenylalanine, L-Lysine, L-Tyrosine, UDP-alpha-D-galactose, and deoxyuridine diphos-
phate, which were upregulated. In contrast, L-Valine, L-Tryptophan, 6-deoxy-L-galactose,
D-Glucosamine, and deoxycytidine monophosphate deoxyuridine triphosphate were down-
regulated. In order to identify potential metabolic biomarkers used to distinguish between
VLCADD newborns and healthy newborns, receiver operating characteristic (ROC) anal-
ysis was performed on the significantly dysregulated metabolites. PLS-DA was used as
a classification and feature ranking approach to creating a multivariate exploratory ROC
analysis (Figure 5A). ROC curves of the top-ranked metabolites illustrated that the area
under the curve (AUC) ranged from 0.986 to 0.992, with confidence intervals (CI) of 0.92–1
and 0.96–1 (Figure 5A). The selected frequency plots represent the 15 significant metabolites
with the highest VIP scores in the OPLS-DA model according to their level in VLCADD
and healthy newborns (Figure 5B). The selected frequency plot shows metabolites, such
as 3,4-Dihydroxytetradecanoylcarnitine (AUC = 1), PIP (20:1)/PGF1alpha) (AUC = 0.982),
and PIP2 (16:0/22:3) (AUC = 0.978), as shown in (Figure 5C–E).
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Figure 5. Metabolomics profiling and biomarker evaluation between VLCADD newborns and healthy
newborn controls. (A) Receiver operating characteristic (ROC) curve for significantly dysregulated
metabolites in VLCADD newborns. (B) Frequency plot of 15 identified metabolites. (C–E) Repre-
sentative ROC curves for significantly dysregulated metabolite molecules in VLCADD newborns.
(C) 3,4-Dihydroxytetradecanoylcarnitine, AUC = 1; (D) PIP (20:1)/PGF1alpha), AUC = 0.982; (E) PIP2
(16:0/22:3), AUC = 0.978).

4. Discussion
4.1. Untargeted Metabolomics as a Diagnostic Tool for VLCADD Newborns

VLCADD is one of the most inherited disorders of mitochondrial fatty acid β-oxidation,
and VLCADD can manifest in early life or adulthood. VLCADD is diagnosed based on
family health history, phenotypic symptoms, and clinical testing. Phenotypically, VL-
CADD is associated with various clinical symptoms, ranging from mild to severe signs
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such as hypoglycemia, hypoketotic, lactic acidemia, hyperammonemia, cardiomyopa-
thy, and rhabdomyolysis. However, there are VLCADD patients who are reportedly
asymptomatic [13,14], which may cause difficulties for diagnosis. Currently, there are two
diagnostic methods, those being genetic testing and NBS. Both methods have advanced the
diagnosis of VLCADD; however, they have demonstrated some pitfalls and limitations,
causing uncertainty in diagnoses. For genetic testing, it has been reported that >300 VUSs
in the ACADVL gene require functional analyses to determine their potential pathogenic-
ity. For NBS analyses, false negative or positive results have been observed [19,24,41,42],
causing doubt and requiring further validation and confirmatory techniques to ensure the
accuracy of VLCADD diagnosis. Thus, the urgent need for an additional complementary
method to diagnose VLCADD has been raised in the clinical field to increase the accuracy of
VLCADD diagnosis. Untargeted metabolomics has been proposed as a promising diagnos-
tic tool for various diseases [28,30,33], which may also be useful for diagnosing VLCADD.
There are very few recent studies that have used metabolomics analyses of DBS cards and
plasma samples collected from VLCADD patients at different ages to identify potential
biomarkers, first to diagnose VLCADD [33] and then to discriminate between VLCADD
patients with severe phenotypes and those with mild phenotypes early in life [34]. The
potential of metabolomics for diagnosing VLCADD is very promising, which may help find
undercover and unrecognized biomarkers that could be used with the current acylcarnitine
markers to strengthen and increase the accuracy of VLCADD diagnoses. For that reason, it
is necessary to perform further metabolomics analyses of VLCADD patients of different
ages with different phenotypes.

Herein, we focused on comprehensive metabolomics analyses of VLCADD during
early life. The study used untargeted metabolomics analyses of DBS cards collected
from VLCADD newborns, showing distinctive metabolic profiling compared to healthy
newborns. Also, altered metabolic pathways and interesting metabolic biomarkers were
found to be pronounced in VLCADD newborns. Our findings may help diagnose VLCADD
early on and validate other diagnostic methods to achieve greater accuracy.

4.2. Distinctive Metabolomics Profile of VLCADD Newborns

Performing untargeted metabolomics showed several metabolites contributing more
to the differentiation between VLCADD newborns and their corresponding healthy con-
trols. In particular, there are different categories of lipid metabolites affected in VLCADD
newborns, including glycerophospholipids (such as PIP, PA, PG, PE, PGP, PC), glycerolipids
(such as TG, CDP-DG, DG, MG) and cardiolipin (CL). It is expected that in the condition of
VLCADD, there are many defects in the mitochondrial oxidation of fatty acids, potentially
contributing to altercations in other lipid classes that mainly depend on the use of fatty
acids in their compositions and concentrations. Our findings are consistent with a recent
study that used fibroblasts from VLCADD patients and investigated the lipid signatures
of these cells. Their results showed that VLCADD fibroblasts had altered CL, PC, LP, and
TG [43].

In addition, gangliosides were more affected in VLCADD newborns compared to
their corresponding controls. Gangliosides are sialic acid-containing glycosphingolipids,
containing a sphingoid base and sugar residues, and they are involved in maintaining
the integration of cellular membranes by controlling the lipid rafts [44,45]. Expectedly,
changes in the level or composition of gangliosides negatively impact the integrity of
the cell membranes and their modes of interaction with biological molecules in the cells,
impacting the overall cellular function.

Not surprisingly, glutathione was elevated in VLCADD newborns, suggesting oxida-
tive stress events resulted from the pathology of the diseases. Glutathione is a cellular
tripeptide antioxidant molecule involved in the defense of oxidative stress. Glutathione
can mitigate oxidative stress through the detoxification of free radicals. Also, glutathione
helps resist lipid peroxidation [46–48]. Of note, it was reported that dysregulation of very
long chain acyl-CoA dehydrogenase was coupled with lipid peroxidation [49]. These
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important facts related to glutathione, very long chain acyl-CoA dehydrogenase, and lipid
peroxidation may explain the elevation of glutathione in VLCADD newborns.

The metabolic profiling of DBS cards illustrated that several amino acids were dys-
regulated in VLCADD newborns. Moreover, metabolic pathway analysis showed that
multiple amino acid-related pathways, including phenylalanine, tyrosine, and tryptophan
biosynthesis, were altered in VLCADD. Mechanistically, amino acids can be involved in
the tricarboxylic acid cycle (TCA) to help produce energy eventually. Briefly, amino acids
are catabolized, producing their corresponding TCA antimetabolites through transamina-
tion reactions to replenish the TCA intermediate metabolites and to keep the TCA cycle
going [50]. TCA links amino acids and fatty acids because they both share in synthesizing
TCA metabolite. As for fatty acids, they are catabolized to produce acetyl-CoA, which is
the first metabolite feeding into TCA [51]. Possibly, alteration of fatty acid oxidation, as
seen in the VLCADD condition, results in the decreased production of acetyl-CoA, which
may cause abnormalities in the use of amino acids in TCA, showing an overall impact
of VLCADD on the metabolism of fatty acids and amino acids, and this may explain the
altered amino acid findings in VLCADD newborns. Further research is required to study
the cellular modes and mechanisms that impact the levels of amino acids in VLCADD
conditions.

4.3. Distinctive Metabolic Biomarkers for VLCADD Newborns

The levels of acylcarnitines in fatty acid oxidation disorders, particularly in VLCAAD,
are known to be altered due to defects in fatty acid oxidation [52]. Thus, they are used as
biochemical diagnostic tests for VLCADD patients. In the VLCADD condition, acylcar-
nitines and their ratios, specifically C14:1-carnitine, C14:2-carnitine, C14:1/C16-carnitine
ratio, C14:1/C2-carnitine ratio, and C14:1/C12:1 ratio, are known to be elevated and used
as VLCADD biomarkers [4,5]. Currently, more than one thousand acylcarnitine species
have been found, and acylcarnitines are classified based on the length of carbon chains
and their acyl moieties’ saturation level and chemical structure [52]; therefore, unrecog-
nized derivatives of acylcarnitines may be correlated with VLCADD. For the first time,
our metabolomics data reveal that altered hydroxylated long-chain acylcarnitines, such
as 3-hydroxy-5,8-tetradecadienoylcarnitine and 3,4-dihydroxytetradecanoylcarnitine, are
found in VLCADD newborns.

Interestingly, the last metabolite mentioned, 3,4-dihydroxytetradecanoylcarnitine,
was shown in the biomarker analysis to be a potential biomarker for VLCADD since it
was the first metabolite in the top-15 biomarkers. 3,4-dihydroxytetradecanoylcarnitine
can be derived from tetradecenoylcarnitine, as a potential biomarker since it was dis-
covered in our metabolomics study and need for validation studies to be used as a
confirmed VLCADD biomarker. Interestingly, our findings of hydroxylated long-chain
acylcarnitines are consistent with a recent study indicating that hydroxylated long-chain
acylcarnitines could be used as biomarkers for mitochondrial myopathy [53]. Thus, hydrox-
ylated acylcarnitines may be found in the VLCADD newborns in our study, particularly
3,4-dihydroxytetradecanoylcarnitine, which could be used as a biomarker for VLCADD.

Notably, phosphatidylinositol phosphates and their oxidized forms were disrupted
in VLCADD newborns, and the biomarker analyses revealed that PIP (20:1)/PGF1alpha)
and PIP2 (16:0/22:3) were potential biomarkers. Structurally, phosphatidylinositol phos-
phates are usually located in the cellular membranes and are involved in cellular signaling,
apoptotic processes, and proliferation [54,55]. Alterations in phosphatidylinositol phos-
phates and their derivatives have been correlated with certain metabolic diseases such
as insulin resistance and diabetes [56]. In the condition of VLCADD, fatty acid oxidation
is defective. This could be associated with abnormalities of the cellular metabolism and
structure, explaining our findings of altered phosphatidylinositol phosphates and their
derivatives in VLCADD newborns, either as a result or as a cause of the disease. However,
more validation and functional studies are warranted to explore our findings further.
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Performing a comprehensive metabolomics profile of VLCADD newborns expanded
our knowledge of the pathology of the disease. It revealed new insights into the underly-
ing perturbed molecular mechanisms, metabolic pathways, and their related metabolites
corresponding with the disease. However, our study has some limitations that must be
considered in future studies. The number of samples included in this study is reasonable,
but it is necessary to increase the sample size in various independent study cohorts for vali-
dation purposes. Also, other omics studies could be conducted to cover all the metabolic
alterations in the VLCADD condition comprehensively.

While utilizing an untargeted metabolomics LC-HRMS analysis on DBS samples offers
advantages in terms of sample logistics and preservation, it is essential to acknowledge
certain limitations; these include the complexity of DBS samples, potential extraction
inefficiencies, matrix effects influencing analyte detection, metabolite stability during the
drying process, limitations in metabolite coverage, challenges in data analysis, and the
restricted dynamic range of LC-HRMS. Researchers should consider these limitations when
interpreting results, ensuring a comprehensive understanding of the scope and implications
of their findings. By addressing these constraints, future studies can enhance the reliability
and applicability of untargeted metabolomics LC-HRMS analysis on DBS samples [57].

Since we used DBS card samples from VLCADD newborns aged less than a month,
external factors such as drugs, physical activity, and diet were excluded; thus, it would be
ideal to study the impact of these factors on the metabolic profiling of VLCADD by using
biological samples from VLCADD patients of different ages, performing various levels of
physical activities, and following up with specific treatments/therapies. Furthermore, it
would be great to use other biological samples from VLCADD patients, such as plasma,
urine, saliva, or skin biopsies, to help find biological samples that are more suitable and
reliable for the diagnosis of VLCADD. By overcoming the limitations mentioned above,
the diagnosis of VLCADD at an early stage can be improved, which helps select proper
relevant treatments for VLCADD patients, improving the health status of the VLCADD
patients.

5. Conclusions

This study highlights the significant advantages of employing untargeted metabolomics
analyses for the diagnosis of very long-chain acyl-CoA dehydrogenase deficiency (VL-
CADD). Through comprehensive untargeted metabolomics analyses, we successfully
identified distinctive metabolic profiles and biomarkers capable of distinguishing VL-
CADD newborns from their healthy counterparts. Moreover, our findings revealed
perturbed pathways, including tryptophan biosynthesis, aminoacyl-tRNA biosynthe-
sis, amino sugar and nucleotide sugar metabolism, pyrimidine metabolism, and pan-
tothenate and CoA biosynthesis in VLCADD. Notably, specific biomarkers such as 3,4-
Dihydroxytetradecanoylcarnitine, PIP (20:1)/PGF1alpha), and PIP2 (16:0/22:3) were identi-
fied as potential metabolic biomarkers for accurate VLCADD diagnosis. These discoveries
pave the way for targeted interventions and treatments that leverage the aforementioned al-
tered metabolic pathways and biomarkers, enabling early-life diagnosis and more effective
management of VLCADD. By harnessing the potential of these findings, we can signifi-
cantly improve human health outcomes by facilitating timely and precise screening and
diagnostic approaches for VLCADD, leading to appropriate interventions and personalized
care for affected individuals.
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