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Abstract: Pereskia aculeata Miller, is an unconventional food plant native to South America. This
study aimed to investigate the influence of different ultrasonic extraction times (10, 20, 30, and
40 min) on the phytochemical profile, antioxidant and antibacterial activities of ethanolic extracts
obtained from lyophilized Pereskia aculeate Miller (ora-pro-nobis) leaves, an under-researched plant.
Morphological structure and chemical group evaluations were also conducted for the lyophilized
P. aculeate leaves. The different extraction times resulted in distinct phenolic content and Antioxidant
Activity (ATT) values. Different extraction time conditions resulted in phenolic compound contents
ranging from 2.07 to 2.60 mg EAG.g−1 of extract and different ATT values. The ATT evaluated by
DPPH was significantly higher (from 61.20 to 70.20 µM of TE.g−1 of extract) in extraction times of
30 and 40 min, respectively. For ABTS, it varied between 6.38 and 10.24 µM of TE.g−1 of extract and
24.34 and 32.12 µM ferrous sulp.g−1 of extract. All of the obtained extracts inhibited the growth of
Staphylococcus aureus, particularly the treatment employing 20 min of extraction at the highest dilution
(1.56 mg.mL−1). Although liquid chromatography analyses showed that chlorogenic acid was the
primary compound detected for all extracts, Paper Spray Mass Spectrometry (PS-MS) suggested
the extracts contained 53 substances, such as organic, fatty, and phenolic acids, sugars, flavonoids,
terpenes, phytosterols, and other components. The PS-MS proved to be a valuable technique to obtain
the P. aculeate leaves extract chemical profile. It was observed that the freeze-drying process enhanced
the conservation of morphological structures of P. aculeate leaves, as evidenced by scanning electron
microscopy (SEM). Fourier transform infrared spectroscopy (FTIR) identified carboxyl functional
groups and proteins between the 1000 and 1500 cm−1 bands in the P. aculeate leaves, thus favoring
water interaction and contributing to gel formation. To the best of our knowledge, this is the first
study to evaluate different times (10, 20, 30 and 40 min) for ultrasound extraction of P. aculeate leaves.
The polyphenols improved extraction, and high antioxidant activity demonstrates the potential for
applying P. aculeate leaves and their extract as functional ingredients or additives in the food and
pharmaceutical industries.
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1. Introduction

Plant materials are natural sources of phytochemicals. In the human body, these com-
pounds perform crucial roles such as protection, antioxidant, anti-inflammatory, antifungal,
and anti-bacterial activities. On top of that, phytochemicals act in the immune system
stimulation [1,2]. A Pereskia aculeate Miller, known worldwide as ora-pro-nobis, is a repre-
sentative of phytochemical-rich plants. P. aculeate is a South American plant species, known
by the acronym UFP(Unconventional Food Plant) (PANC, in Portuguese), belonging to
the Cactaceae family and Pereskioideae subfamily. The plant’s leaves, its non-toxic edible
portion, are used in traditional medicine and cooking [1,2].

The P. aculeate leaves are a nutritional complement primarily because of their high
protein, fiber, calcium, and iron contents. Furthermore, P. aculeate extracts and leaves were
also found to be rich in carotenoids and phenolic compounds, valuable phytochemicals
which provide healing, anti-inflammatory, antifungal, and antioxidant activities, as well as
analgesic potential [3–7].

While Cruz et al. [8] reported significant antioxidant and anti-hemolytic activities for
ora-pro-nobis leaves, Torres et al. [9] identified anti-inflammatory and anticholinergics
activities. The extracts obtained by Massocatto et al. [10] from P. aculeate leaves and fruit
presented anticholinesterasic, cytotoxic, and antiproliferative effects. Pinto et al. [11,12]
observed that ora-pro-nobis methanolic extract and hexanic fractios containing gels en-
hanced the excisional wound healing in mice, as well as analgesic effect of hydromethanolic
fractions. These publications indicated the P. aculeate extract’s potential for applications
in the pharmaceutical industry. According to Souza et al. [7], the essential oil obtained
from P. aculeate leaves presented antioxidant, antimicrobial, and antifungical activities in
in vitro assays. Considering this vast literature, one may infer that the ora-pro-nobis has a
considerable potential to be used as a valuable raw-material, ingredient, or additive in the
food/pharmaceutical industries.

Currently, the consumption of nutraceuticals and food supplements has increased,
as the consumers have become more aware of the benefits of consuming products rich in
bioactive compounds, which represent health benefits to the human body (e.g., disease
prevention) [13]. Bioactive compounds with antioxidant capacity can be found in complex
vegetable matrices. Hence, to obtain such compounds, it is necessary to employ more
efficient and selective extraction techniques to the analyte of interest.

The most known traditional extraction methods are maceration, Soxhlet, and mechan-
ical agitation. These methods are based on high temperature, long process times, and
high solvent consuming techniques [14]. Moreover, in general, the solvents used in these
methods are toxic and harmful to health and the environment.

Specific extraction conditions such as temperature, may directly affect the antioxidant
and biological potential of compounds obtained from natural extracts [15]. Thus, more
efficient extraction techniques providing satisfactory yields at mild temperatures such as
the ultrasound-assisted extraction are promising alternatives. Compared to conventional
methods for bioactive compound extraction, Ultrasound-Assisted Extraction (UAE) offers
significant benefits regarding extraction time and process security [16,17].

The UAE technique is based on the formation of mechanical waves that form small
bubbles. These bubbles grow and implode, resulting in the cavitation phenomenon. Then,
the disruption of the vegetable material cell wall takes place, increasing its surface contact
and allowing the entrance of the solvent in the matrix, consequently intensifying the mass
transfer. UAE is a rapid technique which produces extracts with high yields. Furthermore,
it is considered to be an environmentally friendly method because of its shorter extraction
time and solvent consumption compared to conventional techniques [15,16]. Furthermore, the
UAE enhances the phytomolecules yields and extracts/isolated biological efficiency [16,18].
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Recent studies have shown that UAE is efficient for recovering different compounds
(e.g., anthocyanins, phenolic compounds, flavonoids, carotenoids, and antioxidants) from
various vegetal matrices [15,17]. Nevertheless, we could not find publications using UAE
to obtain bioactive compounds from P. aculeate leaves and there are just few publications in
the literature identifying chemical compounds found in P. aculeate leaves [19]. Moreover, it
is crucial to understand the impact of extraction techniques on the proportion of bioactive
compounds found in the extracts and leaves. It is also important to mention that natural
extracts such as those obtained from ora-pro-nobis leaves may act as food preservatives,
besides their health-beneficial effects, when applied in food production. These extracts can
be substitutes for broadly used synthetic preservatives in food products [20,21].

In this context, the present paper aims to investigate the influence of different ul-
trasonic extraction times on the phytochemical profile and antioxidant and antibacterial
activities of ethanolic extracts obtained from lyophilized P. aculeate leaves. In addition, a
characterization of the morphological structure and presence of chemical groups was con-
ducted. This study is intended to contribute to the scientific advance of the area by allowing
the obtaining of optimized ultrasound-assisted extraction time of bioactive compounds
form ora-pro-nobis leaves. The obtained extracts may be used as potential additives in
food and pharmaceutical products.

2. Materials and Methods
2.1. Chemical Reagents and Bacterial Strains

The Folin–Ciocalteu, 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diamonic
salt (ABTS), 2,4,6-Tris(2-pyridyl)-s-triazine (TPTZ), 2,2-diphenyl-1-picrylhydrazyl (DPPH),
6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), catechin, caffeic acid,
ellagic acid, quercetin, and chlorogenic acid reagents were supplied by from Sigma-Aldrich
(San Luis, MO, USA). All reagents were of analytical grade.

The reference strains of the Staphylococcus aureus ATCC 29213, Escherichia coli (ATCC 35218;
beta-lactamase producer) and methicillin resistant Staphylococcus aureus Staphylococcus aureus
resistant to methicillin (MRSA; ATCC 43300) bacteria were gently provided by the Clinical
Microbiology Laboratory from the Faculty of Pharmacy at UFMG.

2.2. Plant Sampling

The P. aculeate leaves were collected from a crop at the Federal University of São João
del-Rei (UFSJ, Sete Lagoas, Brazil) in March 2019.

2.3. Lyophilization

The P. aculeate leaves were selected according to their visual appearance (typical green
color and integrity). After selection, the leaves were sanitized with flowing water and dried
with paper towels. Thus, the material was submitted to freeze in an Ultra Low-Temperature
Freezer at −55 ◦C for 24 h.

The lyophilization was carried out by a lyophilizer (LS-6000-A model, Terroni Equipa-
mentos Científicos, São Carlos, Brazil) for 12 h. The leaves were conditioned in plastic bags
at −18 ◦C until further analyses when the material was unfrozen, crushed in a blender
(Philips Walita, São Paulo, Brazil), and sifted in a 16-mesh sieve.

2.4. Extracts Preparation

For the extract preparation, 5 g of the sample was mixed with 50 mL of a 50% ethyl
alcohol solution. The mixture was weighed in an Erlenmeyer wrapped with aluminum foil
and covered with plastic paraffin film (Parafilm®, São Paulo, Brazil) and aluminum foil to
avoid alcohol evaporation during extraction.

The extracts were prepared using a digital ultrasonic washer (SoniClean 2, Sanders
Medical, Santa Rita do Sapucaí, Brazil) at room temperature (20 ◦C), frequency 42 kHz, and
power 160 W. Four different extraction times were evaluated, namely, 10, 20, 30, and 40 min.
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After extractions, filtration was carried out with qualitative filter paper. The obtained
extracts were vaporized in a rotary evaporator (R-215, Büchi, Valinhos, Brazil) at 45 ◦C
until the alcohol removal, resulting in aqueous extracts, named EO10, EO20, EO30 and
EO40 corresponding to 10, 20, 30 and 40 min ultrasound treatment, respectively.

2.5. Total Phenolic Compounds and Antioxidant Activity

Following the Folin–Ciocalteu method [22], the total phenolic compounds content
was determined, with results expressed in equivalents of gallic acid (mg EAG.g−1 of the
extract). The Antioxidant Activity (ATT) was evaluated using three distinct methodologies:
(1) reaction with 2,2-diphenyl-1-picrylhydrazyl (DPPH) [23]; (2) free radical capture
2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) [24]; (3) Ferric Reducing
Antioxidant Power (FRAP) [24]. The analyses were carried out in a dark room and triplicate.

2.6. Phenolic Compounds Identification and Quantification

High-Performance Liquid Chromatography (HPLC) analyses were conducted ac-
cording to the method described by Eça et al. [25]. The four extracts were filtered in a
0.22 µm nylon filter syringe and injected in HPLC equipment (Acquity UPLC®Class, Mil-
ford, Waters, MA, USA), equipped with a UV detector by diode array, quarternary bomb,
degasser, autosampler, and column (Acquity UPLC ®BEH C18—2.1 × 100 mm; 1.7 µm,
Waters, Milford, MA, USA). The flow was kept constant at 0.3 mL.min−1, with two mobile
phases (A = acetonitrile and B = water : formic acid, 99.75:0.25).

Calibration curves used to identify the compounds were prepared with the following
external standards: gallic acid, catechin, and chlorogenic acid (diluted in water for complete
dissolution); caffeic acid, ellagic acid, and quercetin (diluted in methanol for complete
dissolution). While the water diluted standards were run for 10 min in an isocratic elution
mode of 5:95 v/v (A : B), a linear gradient was applied to the other standards: 0 min,
8% (A); 8 min, 15% (A); 14 min, 25% (A); 20 min, 8% (A). The UV spectra were obtained
between 200 and 400 nm. Chromatograms were processed at 253, 271, 320, and 372 nm.
The calibration curves were built within the following ranges: gallic acid and quercetin
(21.2 to 212 µg.g−1), catechin (24.4 to 244 µg.g−1), chlorogenic acid (18.4 to 184 µg.g−1), and
ellagic acid and caffeic acid (20 to 200 µg.g−1). All data acquired from these analyses were
processed in the Empower®software, and the results were expressed in µg.g−1 of extract.

2.7. Antibacterial Activity

Antibacterial activity of the four extracts (E10, E20, E30 and E40) was assessed by the
broth microdilution method in 96-well microplates, according to the Clinical and Laboratory
Standards Institute [26]. First, 200 µL of each extract was added to 100 µL of Mueller Hinton
broth (MHB). Serial dilutions (100 µL) were made in order to reach concentrations from
50 to 1.56%, that is, 50 to 1.56 mg.mL−1, after adding each bacterial suspension (100 µL)
containing 1.5 × 105 colony forming units per milliliter (CFU.mL−1). A growth inhibition
controls (0.1 µg.mL−1 of penicillin for S. aureus, 2.5 µg.mL−1 of gentamicin for E. coli
and 2.5 µg.mL−1 of streptomycin for MRSA), a cell viability control (bacteria only), and a
sterility control (MHB only) were used in triplicate in each assay. After incubation at 37 ◦C
for 24 h, microplates were inspected visually for inhibition of bacterial growth, and wells
with no visible growth were considered as the minimal inhibitory concentration (MIC), that
is, the lowest concentration (mg.mL−1) of the extracts in which no visible bacterial growth
was evidenced. All conditions were tested in triplicate in at least two independent assays.

2.8. Fourier-Transform Infrared (FTIR) Spectroscopy

The lyophilized P. aculeate leaves spectrum was acquired in the 4000 range at 500 cm−1,

with 20 scannings by experiment (resolution of 4 cm−1). The FTIR spectroscopy was
performed in a spectrometer (Shimadzu IRAffinity—1) with DLaTGS detector (Deuterated
Triglycine Sulfate and Doped with L-alanine) and total attenuated reflectance accessory
(ATR) with zinc crystal.
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2.9. Scanning Electron Microscopy (SEM)

The microstructure of the lyophilized P. aculeate leaves fragments was evaluated using
a scanning electron microscope with X-rays dispersive energy detector (Leo 440i, EDS: 6070,
LEO Electron Microscopy/Oxford, Cambridge, UK). Before the analyses, the lyophilized
fragments were dried and kept for 24 h in a vacuum. Subsequently, they were coated
with a gold layer of 200 A◦ in a Sputter Coater EMITECH spray applicator (Model: K450,
Kent, UK). The sample surfaces were assessed under vacuum, using an acceleration tension
of 10 kV and 500×, 800×, 2000×, and 3000×magnification.

2.10. Chemical Profile Determination by Paper Spray Mass Spectrometry (PS—MS)

The extract presenting the best results for antioxidant and antimicrobial activities was
evaluated in terms of chemical profile using an LCQ Fleet mass spectrometer (Thermo Scien-
tific, Waltham, MA, USA), equipped with a paper spray ionization source, according to the
methodology reported by Silva et al. [27]. The positive and negative ionization modes were
used in triplicate. The equipment was used with source voltage equal to +5.0 kV (positive ion-
ization mode) and −3.0 kV (negative ionization mode); capilar voltage of 4.0 V; transference
tube temperature of 275 ◦C; tube lens voltage of 115 V; mass range from 100 to 1000 m/z.

An equilateral triangle-shaped chromatography paper (1.5 cm) was positioned in front
of the mass spectrometer entrance to carry out the analyses. The paper was supported by a
metallic connection and placed at a distance of 0.5 cm with a mobile platform (XYZ). This
device was connected to a high-tension mass spectrometer source by a copper wire. Then,
2.0 µL of the extract was applied to the tip of the equilateral triangle-shaped chromatog-
raphy paper, 40 µL of methanol was transferred to the paper, and the voltage source was
switched on for data acquisition. The m/z was compared with the literature data and the
subsequent fragmentation by sequential mass spectrometry for compound identification.
Collision energies for compound fragmentation varied from 15 to 30 eV. The obtained mass
spectra were processed with the Xcalibur software (Thermo Scientific, Waltham, MA, USA).

2.11. Statistical Analysis

The results were expressed with the replica means and their respective standard
deviations. Results normalization, variance homogeneity, analysis of variance, and the
mean comparison by Tukey test at 5% were carried out by the SPSS 15.0 program (SPSS Inc.,
Chicago, IL, USA).

3. Results and Discussion
3.1. Total Phenolic Compounds and Antioxidant Activity

Table 1 shows the P. aculeate leaves total phenolic compounds content and antioxidant activities.

Table 1. Total phenolic compounds (TPC) and antioxidant activity (ATT) of P. aculeate leaves hydroal-
coholic extracts.

Method EO10 * EO20 * EO30 * EO40 *

TPC
mg EAG.g−1 of extract 2.35 ± 0.03 ab 2.14 ± 0.04 bc 2.07 ± 0.07 c 2.60 ± 0.06 a

AAT by ABTS *+

(µM de TE.g−1 of extract) 10.24 ± 0.40 a 9.00 ± 0.08 b 6.38 ± 0.17 c 7.14 ± 0.17 c

AAT by FRAP
(µM ferrous sulp.g−1 of extract) 30.00 ± 0.27 ab 24.34 ± 0.87 c 32.13 ± 0.60 a 27.37 ± 0.83 bc

AAT by DPPH
(µM of TE.g−1 of extract) 24.48 ± 0.15 b 28.22 ± 0.99 b 70.20 ± 1.05 a 61.20 ± 1.12 a

* Means value ± standard deviation; n = 3. Equal letters on the same line do not differ significantly from each
other at 5%, by Tukey’s test (p < 0.05). Aqueous extracts, named EO10, EO20, EO30 and EO40 corresponding to 10,
20, 30 and 40 min ultrasound treatment, respectively; AAT: total antioxidant activity; TE: Trolox equivalent; EAG:
equivalents acid gallic.
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It is essential to mention that the protocols employed in the antioxidant activity
assessment were chosen because of their complementary features. Hence, it was possible
to identify a multitude of bioactive compounds performing this activity in the samples.

In this study, the total phenolic compounds contents ranged from 2.07 to 2.60 mg EAG.g−1

of extract. Overall, it was possible to observe that different extraction times led to differ-
ent phenolic content and antioxidant activity values. On the other hand, Sim et al. [28]
examined the phenolic content of Pereskia grandifolia leaves extracts. The authors reported
results of 19.08 mg EAG.g−1 using hexane as a solvent. Souza et al. [7], who also evaluated
P. aculeate leaves chemical composition and biological activity, detected 5.17 mg EAG.g−1,
11.78 mg EAG.g−1, and 15.04 mg EAG.g−1 of phenolic compounds in the extracts, using
chloroform, petroleum ether, and methanol as solvents. Additionally, different technologies
of pressurized fluids were used by Torres et al. [9] to obtain antioxidante-rich extracts
from P. aculeate leaves. The highest yields were obtained using Soxhlet extraction with
ethanol (38.18 mg EAG.g−1) and Pressurized Liquid Extraction (PLE) (60.09 mg EAG.g−1)
using ethanol as solvent at 110 ◦C. Cruz et al. [8] achieved high total phenolic values
(64–65 mg EAG.g−1) using mechanical agitation conventional extraction and various mix-
ture proportions of water, acetone, and ethanol.

Those variations of total phenolic compounds might result from diverse factors such
as climate, cultivar, maturation stage and plant genetics. Moreover, the samples preparation
techniques such as drying methods and type/condition of extraction also affect the recovery
yield of phenolic compounds [14,15]. Solvents such as hexane, chloroform, petroleum
ether, and methanol provide high extraction yields, but are toxic and restricted to food
applications, as well as generate environmentally dangerous waste.

In the extraction aided by ultrasound, the bubbles formed during the process are
responsible for the matrix cavitation. When in contact with the vegetal cell structure, they
can disrupt the polymers by mechanical effect, creating microspores and allowing the
extraction of polyphenols [29,30]. Therefore, it can be inferred that shorter ultrasound
extraction times are also effective for disrupting the vegetal membrane, thus, releasing
bioactive compounds.

P. aculeate leaves antioxidant activities are assigned mainly to secondary metabolites
and some primary metabolites, particularly phenolic compounds and flavonoids [31].
Table 1 shows that AAT by DPPH was significantly higher for longer extraction times. This
result may be explained by the higher extraction of bioactive compounds that have the
ability to scavenge free radicals (DPPH), which was not possible in the shorter exposure
times for this same sample. Souza et al. [7], when evaluating the P. aculeate leaves chemical
composition and biological activity, also found higher antioxidant activity using DPPH
in the extracts presenting higher phenolic compound content, similar to extract EO40.
Cruz et al. [8] demonstrated that mixtures between water + ethanol and water + acetone
provided high antioxidant capacities, measured by FRAP and DPPH. Torres et al. [9,32]
evaluated PLE with pure water and ethanol at 80 ◦C, reporting antioxidant capacity of
0.25 mmol of TE.g−1 of extract (FRAP) and 1315 µmol of TE.g−1 of extract (ABTS), respec-
tively. The authors reported that the highest ora-pro-nobis extracts antioxidant activities,
measured with FRAP, were obtained using polar solvents, demonstrating the efficacy of
solvents such as water and ethanol for extracting bioactive compounds. According to
Mustafa and Turner [33], binary systems may favor the recovery of bioactive compounds
because they promote the solute release while increase their solubility, thus, enhancing
the extraction yield. This phenomenon was also observed by Cruz et al. [8] during the
extraction of bioactive compounds from P. aculeate leaves using different solvent mixtures.
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The results show that innovative e technologies, such as UAE, are feasible for obtaining
bioactive compounds with antioxidant properties from vegetal matrices [34]. In addition,
antioxidants obtained from P. aculeate leaves are natural and can be utilized as an alternative
to synthetic antioxidants. It is also important to mention that previous studies regarding the
evaluation of Pereskia spp. antioxidant activity presented in the literature did not employ a
set of different antioxidant methods, as used in this research, emphasizing the importance
of this work since antioxidant compounds can act by distinct mechanisms.

3.2. Identification and Quantification of Phenolic Compounds

The phenolic compounds identified and quantified by liquid chromatography corre-
sponded to phenolic acids (chlorogenic acid, gallic acid, caffeic acid, and ellagic acid) and
flavonoid (quercetin) groups. Table 2 shows the obtained results.

Table 2. Phenolics profile (µg.g−1 of extract) in P. aculeate leaves hydroalcoholic extracts.

Compound EO10 * EO20 * EO30 * EO40 *

Chlorogenic acid 350.93 ± 0.01 d 524.54 ± 0.00 a 459.38 ±1.00 b 364.48 ±0.03 c

Gallic acid 0.49 ± 0.17 d 0.31± 0.09 c 12.01 ± 0.20 b 14.66 ± 0.11 a

Caffeic acid ND ND 29.03 ± 0.04 b 31.23 ± 0.02 a

Ellagic acid 1.00 ± 0.25 d 1.35 ± 0.02 c 6.32 ± 0.00 b 10.01 ± 0.01 a

Quercetin 0.05 ± 0.03 d 0.10 ± 0.05 a 0.08 ±0.01 c 0.09 ± 0.08 b

Catechin ND ND ND ND
* Mean value ± standard deviation; n = 3. Equal letters on the same line do not differ significantly from each other
at 5%, by Tukey’s test (p < 0.05). Aqueous extracts, named EO10, EO20, EO30 and EO40 corresponding to 10, 20,
30 and 40 min ultrasound treatment, respectively; ND: not detected.

Figure 1 shows the chromatograms of identified phenolic compounds extracted from
the lyophilized material with ethanol solution (50%) and UAE for 20 min. This treatment
presented the highest concentrations of chlorogenic acid and the lowest antibacterial activity
result value.

The results showed that phenolic acids are found at high concentrations in the
P. aculeate leaves extracts. The chlorogenic acid, in particular, is the main compound identi-
fied in all extracts. High levels of chlorogenic acid were also verified in Pereskia aculeate by
Agostini-Costa [35] for several genus of Cactoideae and Pereskioideae subfamilies.

On the other hand, extracts EOR30 and EOR40 presented the highest contents of gallic
and ellagic acids. In addition, caffeic acid was detected only in these treatments. Therefore,
the longer exposure time to ultrasound positively contributed to the gallic, caffeic, and
ellagic acids extraction efficiency.

Compared to other compounds, the low content of quercetin found in the extracts may
be explained by its high instability [36]. This result was also verified by publications in the
literature where P. aculeate and Pereskia bleo (Kunth) leaves extracts were evaluated [19,37].
Finally, catechin was the only compound not detected in any of the P. aculeate leaves
extracts assessed in this study. Nevertheless, it is important to mention that previous
publications described the identification and quantification of this component (9.18 mg.g−1)
for P. bleo ethanolic extract [37]. The absence of catechin in the extracts evaluated here
may be explained by factors such as the geographical location of plant cultivation, species,
harvest condition, leaves drying, and extraction methods. Moreover, the type of solvent
used in the extraction process may directly affect the extraction efficiency because of the
solvent polarity and sample profile [38].
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Figure 1. Identified phenolic compounds chromatograms in the lyophilized P. aculeate leaves extracted
with ethanol (50%) and ultrasound for 20 min (EO20). (A): spectrum of standard pattern diluted
in water; 1: gallic acid; 2: chlorogenic acid; (B): spectrum of standard pattern diluted in methanol;
3: ellagic acid; 4: quercetin.

3.3. Antibacterial Activity Evaluation

Table 3 shows the Minimal Inhibitory Concentration (MIC) of P. aculeate leaves extracts
against S. aureus, E. coli, and MRSA bacterial strains. Extracts were evaluated in six different
dilutions (50 to 1.56% v/v), i.e., from 50 to 1.56 mg.mL−1.
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Table 3. Minimal inhibitory concentration (mg.mL−1) of the P. aculeate leaves hydroalcoholic extracts
against Staphylococcus aureus, Escherichia coli and methicillin resistant Staphylococcus aureus (MRSA).

Staphylococcus aureus
(ATCC 29213)

MRSA
(ATCC 43300)

Escherichia coli
(ATCC 35218)

EO10 EO20 EO30 EO40 EO10 EO20 EO30 EO40 EO10 EO20 EO30 EO40

6.25 1.56 3.13 6.25 25 12.5 50 NA NA NA NA NA
NA: Not active. EO10, EO20, EO30 and EO40 correspond to 10, 20, 30 and 40 min ultrasound treatment, respectively.

As one may notice from Table 3, the extracts presented divergent behaviors for bacterial
growth inhibition against Gram-positive bacteria, S. aureus, and MRSA. On the other hand,
none of them showed antibacterial activity against E. coli. Although all the extracts were
elaborated using the same raw material and solvent, differences in inhibitory activity
between S. aureus and MRSA might be related to the resistant phenotype of MRSA and
the extraction method used. This result may be associated with the influence of different
ultrasound-assisted extraction times as they appear to determine the type and content of
P. aculeate leaves extracts compounds [39].

All extracts inhibited the S. aureus growth, particularly the EO20 treatment that in-
hibited the growth even at the highest dilution assessed (1.56 mg.mL−1). It is impor-
tant to observe that EO20 treatment produced extracts with higher concentrations of
chlorogenic acid (524.54 ± 0.00 ug.g−1), in comparison to E30 (459.38 ± 1.00 ug.g−1),
E40 (364.48 ± 0.03 ug.g−1), and E10 (350.93 ± 0.01 ug.g−1). Promising results regarding
the chlorogenic acid anti-bacterial activity were also obtained in the literature against
S. aureus and Streptococcus mutans [40,41]. These results suggest that chlorogenic acid
had an essential role in anti-bacterial activity against S. aureus (E20 showed lower MIC
values compared to E10). Furthermore, other bioactive compounds such as caffeic acid (not
identified for E10 and E20 treatments) and gallic acid could also benefit MIC values.

The mechanisms that confer MRSA resistance to penicillin, methicillin, and oxacillin
(structural alterations of the penicillin-binding proteins—PBP) possibly reduced the com-
pounds’ interaction affinity with the anti-bacterial activity present in the extracts, as ob-
served by MIC values (12.5 to 50 mg.mL−1). Gram-negative bacteria, on the other hand,
are known because of their high resistance to natural and conventional antibiotics (outer
membranes), decreasing the penetration of antibacterial agents [42]. These results are
also corroborated by publications in the literature using different types of plant extracts,
including P. aculeate leaves, where better results for extracts of anti-bacterial activity were
registered against Gram-positive bacteria, in comparison with those obtained against
Gram-negative ones such as E. coli [7,19,43–46].

Souza et al. [7] also verified the antibacterial activity of P. aculeate leaves extracts using
disk-diffusion assays. In this publication, the authors found that petroleum ether extract
exhibited potent antibacterial activity against E. coli, while the chloroformic extract showed
inhibitory activity against Bacillus cereus and S. aureus. The inhibition of E. coli growth
presented by P. aculeate leaves petroleum ether extracts might be related to this solvent’s
higher capacity of extracting low molecular weight phenolic compounds with antibacterial
activity. However, it is essential to mention that although presenting better performance,
those two solvents are toxic and environmental pollutants [47].

Recent studies approaching MIC analysis of P. aculeate leaves are scarce. Thus, this
study shows that P. aculeate leaves extracts present anti-bacterial activity against Gram-
positive bacteria. However, the inhibition of microbial growth may be linked to different
factors such as the microorganism characteristics, the strains used, extraction conditions,
and extracts composition.

3.4. Fourier-Transform Infrared (FTIR) Spectroscopy

The FTIR spectroscopy is a diagnostic analysis that provides evidence regarding the
presence of functional groups in substances’ chemical structures. FTIR spectroscopy has
been widely used for fast multicomponent analyses such as compound identification and



Metabolites 2023, 13, 691 10 of 19

structural determination. Thus, the infrared spectrum was obtained for functional groups
verification in the lyophilized P. aculeate leaves (Figure 2). Similarly, Amaral et al. [48] used
this technique to evaluate activated carbon-based structures on P. aculeate residue.
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As one may notice in Figure 2, N-H bonds (amino group) can be observed at 1646 cm−1.
The same pattern was observed by Reinas et al. [49] in chitosan infrared spectrograms.
Bands at 1440 and 1320 cm−1 can be related to CH3, CH2, flavonoids, and aromatic groups,
with C-H vibration and the enlargement of aromatic compounds vibration [50]. The band at
2916 cm−1 was characterized as C-H stretch vibrations in cellulose and hemicellulose [51,52].
The bands at 1000 cm−1 and 1050 cm−1 indicate the gallic acid structural conformation [53],
as identified and quantified by chromatography in this study.

The peak observed within the band of 3267 cm−1 is characterized by the OH- bond.
A similar result has been found in the literature [54], where lyophilized P. aculeate fruit
mucilage infrared spectrum was evaluated. The presence of OH- bond conferred affinity
for polymers in P. aculeate leaves mucilage with water molecules, a typical property of
hydrophilic compounds [55]. The peak at 1234 cm−1 shows lignin’s C-O stretch bond [56].

The peak at the 890 cm−1 wave number was identified as characteristic of polysaccha-
ride structures that originated from β-glycosidic bonds between the sugar units. Further-
more, 518 and 942 cm−1 bands can be associated with pectins and lignins [57,58]. Finally,
the presence of functional carboxyl groups and proteins in the region the between 1000 and
1500 cm−1 bands [54,58,59] in P. aculeate leaves is evidence of the favoring interaction with
water, contributing to crucial characteristics for colloid obtaining, such as gel formation.

3.5. Scanning Electron Microscopy (SEM) Analysis

Figure 3 shows SEM images of lyophilized P. aculeate leaf’s morphological structure
(FOPN). One may notice that the leaves presented an irregular and porous surface, giving
the material a broader contact area and contributing to water retention in the product [60,61].
This characteristic is particularly desirable for food production and emulsion formation,
as observed by Sato et al. [62] and Conceição et al. [59]. As reported by the authors, this
material feature is specifically beneficial for pasta production and obtaining emulsions
from P. aculeate leaves. The FOPN microscopic analysis showed the presence of para-
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cytic and anomocytic stomata (represented by arrows in Figure 3A,B). The publication
by Squena et al. [63] which performed a morpho-anatomical analysis of P. aculeate aerial
vegetative parts, also showed these structures.
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Figure 3. Lyophilized P. aculeate leaves SEM images. * sign for changed multiplication. The legend is
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Strong attraction and adhesion of minor and significant particles also indicate an
excellent ordination obtained by the lyophilization process. This structure is characteristic
of hygroscopic materials such as chitosan and guar gum [64,65]. The FOPN microstruc-
tures, such as porous and irregular surfaces, revealed characteristics similar to those of
Monteiro et al. [66] in lyophilized P. aculeate leaves. The obtained microstructure is typical
of ice sublimation formed in intracellular spaces. These microstructures are responsible for
maintaining the leaf cellular structure, leading to particles with irregular surfaces formed
by large pores [66].

As presented in Figure 3, the lyophilized P. aculeate leaves presented a rough surface.
It was observed that more prolonged exposure to ultrasound-assisted extraction mediated
the cavitation process in the vegetal matrix [30], releasing more significant quantities of
phenolic acids. Considering these results, one may infer that the lyophilization process
promoted the conservation of morphological structures of P. aculeate leaves, granting more
versatility and stability for their components, mainly used for formulation purposes as an
additive, for instance, in pharmaceutical and food industries.

3.6. Chemical Profile by Paper Spray Mass Spectrometry (PS-MS)

The PS-MS analysis was used to obtain the chemical fingerprint of complex matrices
present at P. aculeate. This technique provides a super quick and low-cost methodology for
assessing the overall quality of the material without generating chemical residues. Thus,
the extract obtained by ethanol solution (50%) and ultrasound-assisted extraction for 20 min
was chosen for chemical profile evaluation. The chosen extract, presenting the best results
for antibacterial activity, was analyzed by PS-MS in positive and negative ionization modes,
as shown in Figure 4.
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The characterization in negative and positive ionization modes revealed 53 chemical com-
pounds present, including organic, fatty, and phenolic acids. Additionally, sugars, flavonoids,
terpenes, phytosterols, and other components were identified. Comparably, Garcia et al. [19]
identified minor compounds in the P. aculeate leaves hydroethanolic extract (10 substances).
The authors reported two phenolic acids (caffeic acid derivatives) and eight flavonoids
(quercetin, kaempferol, and isorhamnetin glycoside derivatives) were identified. Table 4
shows the 33 substances identified for EO20 treatment using the negative ionization mode.

Table 4. Identified ions in lyophilized P. aculeate leaves extract obtained from extraction with ethanol
(50%) by ultrasound for 20 min (EO20) by PS-MS in negative ionization mode.

Compound m/z MS/MS Reference

Organic acids

Fumaric acid 115 71 (Al Kadhi et al. [67])
Mallic acid 133 115 (Abu-Reidah et al. [68]; Silva et al. [27])

Cumaric acid 163 119 (Abu-Reidah et al. [68]; Sun et al. [69])
Ferulic acid 193 149 (Wang et al. [30])

Fertaric acid 325 163,193 (Aaby et al. [70];
Abu-Reidah et al. [68])

Fatty acids

Stearic acid 283 237 (Wang et al. [30])
Ricinoleic acid 297 183 (Wang et al. [30])
Eicosanoic acid 311 293 (Wang et al. [30])

Trihydroxy-octadecadienoic acid 327 291,309 (Kang et al. [71])
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Table 4. Cont.

Compound m/z MS/MS Reference

Phenolic acids

Caffeic acid 179 135 (Kang et al. [71])

Quinic acid 191 127,173 (Abu-Reidah et al. [68];
Chen et al. [72])

5-feruloylquinic acid 367 175 (Zhang et al. [73])
Apigenin-6-C-glucoside 431 431 (Kang et al. [71])

Eriodictiol 6,8 di-C-glucoside
flavonoid 611 491,593 (Simirgiotis et al. [74])

Sugars

Hexose 215 179 (Guo et al. [75]; Silva et al. [27])
Saccharide 371 113,121,231,249 (Kang et al. [71])

Flavonoids

Kaempferol–xylose 417 152,285 (Chen et al. [72])
Quercetin-3-rhamnoside 447 447,300 (Zhang et al. [73])

Verbonol 453 435 (Abu-Reidah et al. [68])
Quercetin-3-O- glucoside 463 300,301,343 (Li et al. [76]; Zhang et al. [77])

Taxifolin hexoside 465 303,447 (Kang et al. [71])
Dimethyl Ellagic acid hexoside 491 454 (Silva et al. [27])

Caffeoyl derivative hexose 499 337 (Kang et al. [71])
Kaempferol-3-O-rutinoside 593 285,447 (Silva et al. [27]; Wang et al. [30])

Rutin 609 255,271,301,463 (Chen et al. [72]; Silva et al. [27];
Wang et al. [30])

Naringin 579 271,459 (Sun et al. [69])
Isorhamnetin-3-O-rutinoside 623 315 (Souza et al. [78])

Vicenin II derivative 629 593 (Simirgiotis et al. [74])

Terpenes

Sorhamnetin-7-O-
glucopyranoside 477 243,343 (Wang et al. [30])

Metil corosolate 485 423,467 (Chen et al. [72])

Others

Spinochrome A 265 235 (Abu-Reidah et al. [56])
Plastoquinone 3 339 135,163,203 (Souza et al. [78])

Vaccihein A 377 289,347,361 (Souza et al. [78])

As one may notice from Table 4, the group of flavonoids was the major compound
group quantified in the negative ionization mode. Similar results were reported in the
publication by Silva et al. [47], where the Eriobotrya japonica Lindl chemical profile was
characterized by PS-MS. This result is in accordance with the class of secondary plant
metabolites represented by flavonoids. These substances have important health benefits,
such as antioxidant activity [79].

According to Li et al. [76], the quercetin-3-O-glucoside (m/z 463 [M-162-H]-) and rutin
(m/z 609 [M-308-H]-) MS/MS fragmentation generated the m/z 301 ions, corresponding to
quercetin without the glucoside and rutinoside units, respectively. In the present study,
the main flavonoids found in P. aculeate leaves were detected by PS-MS, namely quercetin,
isorhamnetin, and kaempferol [35]. However, kaempferol-xylose is classified as a glycoside, a
common characteristic of P. aculeate in different parts, which also presents various aglycones.

Although HPLC did not detect caffeic acid and quercetin, the PS-MS analysis identified
those compounds. This result highlights the technique’s ability to evaluate compound
fingerprints, covering an extensive molecular mass range, and to identify compounds
that often are not detected by other methods. Souza et al. [78] also found caffeic acid
(m/z 179) and ferulic acid (m/z 193) in P. aculeate in natura leaves. 5-feruloylquinic acid was
characterized as an ester of ferulic acid and quinic acid.

To the best of our knowledge, this is the first study that identified substances from
each chemical class of organic acids, fatty acids, phenolic acids, sugars, flavonoids, and
terpenes in lyophilized P. aculeate leaves extract obtained by an environmentally friendly
process technology.
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Using the positive ionization mode, 20 distinct compounds were identified, including
flavonoids, phytosterols, terpenes, and sugar chemical classes. Table 5 shows the identified
compounds using positive ionization mode for EO20 samples.

Table 5. Identified ions in lyophilized P. aculeate leaves extract obtained from extraction with ethanol
(50%) by ultrasound for 20 min (EO20) by PS-MS in positive ionization mode.

Compounds m/z MS/MS Reference

Flavonoids

3-O-methylquercetin 317 121,193,245,274 (Gobbo-Neto and Lopes [80];
Silva et al. [81])

6,8-di-C-β-glicopiranosil cristine 579 495,507,543,561 (Gobbo-Neto and Lopes [80])
Lucenine-2

(6,8-di-C-β-glucopiranosilluteoline 611 527,593 (Gobbo-Neto and Lopes [80])

Rutin 633 331, 487,615 (Jia et al. [82])
Tricin di-O,O-hexosídeo 655 493 (Silva et al. [81])

Sagittatoside A 677 531 (Ren and Long [83])
3-Hidroxicariine-O-glucose-

rhamnose 693 547 (Ren and Long [83])

lolidide-β-D-glucopyranoside 711 549,651,693 (Jia et al. [82])
Chrysoeriol O,O-malonyl hexoside 797 711 (Cavaliere et al. [84])

Phytosterols

Sitosterol 397 247 (Wang et al. [30])

Terpenes

Deacetylforskolin 369 235,431 (Abu-Reidah et al. [68];
Zhang et al. [85])

Vomifoliol β-D- 409 353,391,394 (Jia et al. [71])
Dihidroisovaltrato 425 365 (Abu-Reidah et al. [68])

Ononin 431 269,431 (Ren and Long [83])

Sugars

Sacarose 365 185 (Guo et al. [75])
Morroniside 429 267 (Guo et al. [75]; Xiong et al. [86])

Phenolic Acids

Licanic acid 293 257,275 (Wang et al. [30])

Fatty Acids

Magnoflorine 342 282,342 (Ren and Long [83])

Others

L arginine 175 129 (Silva et al. [27])
Diallyl phthalate 247 187 (Ren and Long [83])

Again, the primary group identified in the samples was the group of flavonoids. Most
of these flavonoids were found to be conjugated derivatives of glycosides. As expected,
the conjugated form of these compounds is a typical characteristic of the leaves because it
provides better plant protection [81].

Pinto et al. [11] used the positive mode of HPLC-MS/MS to detect only seven different
compounds (tryptamine, abrine, mescaline, hordenine, petunidin, di-tert-butylphenol
isomers, and quercetin) in P. aculeate leaves extract samples. The authors also evaluated
the antinociceptive activity of extracts obtained by hydromethanolical solutions. The
discrepancy found in the results, using the same positive ionization mode, indicated that
the use of ultrasound-assisted extraction enhanced the bioactive compounds obtained, in
comparison to traditional extraction processes [34,87].

4. Conclusions

The present work presented a set of methods for evaluating antioxidant compounds
that have not yet been verified in studies of Pereskia aculeate Miller leaves. We were able
to verify that the content of phenolic compounds and antioxidant activity are influenced
by different extraction times in an ultrasonic bath. The ora-pro-nobis leaf extracts showed
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antibacterial activity against S. aureus and MRSA strains, also demonstrating a potential
use in formulations with against these Gram-positive bacteria. EO20 extract, for example,
inhibited S. aureus up to the last dilution evaluated (1.56 mg.mL−1) and showed the highest
content of chlorogenic acid, a substance with described antibacterial activity.

A total of 53 compounds were found in P. aculeate leaves extracts applying the PS-MS
technique, proving to be a source of organic, fatty, and phenolic acids, flavonoids, terpenes,
phytosterols, sugars among other substances with important antioxidant and antimicrobial
activities. Employing FTIR and SEM, it was possible to verify the presence of functional
groups that help the formation of colloids, which are desirable in pharmaceutical and food
formulations in industries, and that lyophilization was able to promote greater conservation
of the morphological structures of ora-pro-nobis leaves. As a perspective, extracts from the
leaves of P. aculeate Miller can be used in nutraceuticals and functional foods, due to the
high levels of polyphenols, including their antioxidant and antibacterial activities.
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