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Abstract: Mass spectrometry imaging (MSI) has been a key driver of groundbreaking discoveries in a
number of fields since its inception more than 50 years ago. Recently, MSI development trends have
shifted towards ambient MSI (AMSI) as the removal of sample-preparation steps and the possibility
of analysing biological specimens in their natural state have drawn the attention of multiple groups
across the world. Nevertheless, the lack of spatial resolution has been cited as one of the main
limitations of AMSI. While significant research effort has presented hardware solutions for improving
the resolution, software solutions are often overlooked, although they can usually be applied in a
cost-effective manner after image acquisition. In this vein, we present two computational methods
that we have developed to directly enhance the image resolution post-acquisition. Robust and
quantitative resolution improvement is demonstrated for 12 cases of openly accessible datasets across
laboratories around the globe. Using the same universally applicable Fourier imaging model, we
discuss the possibility of true super-resolution by software for future studies.

Keywords: ambient mass spectrometry imaging; image restoration; single-image super-resolution

1. Introduction

Mass spectrometry imaging (MSI), has played an indispensable role in the field of
metabolic imaging in the last decade. Since its inception in the last century [1], MSI now
comprises a wide array of techniques that all grant the ability to map the distribution of
biochemical species by taking spatially resolved mass spectra, i.e., hyperspectral imaging.
In comparison to more traditional imaging modalities, MSI is especially attractive in its
intrinsic chemical richness that can be attributed to thousands of m/z channels acquired
in a parallel fashion in certain types of mass spectrometers, which can be subsequently
identified to be molecules of interest, without the need for labelling. As such, MSI has found
an impressive number of applications, including clinical diagnostics, drug metabolism
and toxicology, oncology, etc., which have been reviewed in more depth elsewhere [2].
The most widely used MSI techniques are often cited to be matrix-assisted laser desorption
ionisation (MALDI) and secondary ion mass spectrometry (SIMS). Their desirability stems
from the excellent sensitivity and spatial resolution that can be achieved, as MALDI is
fundamentally governed by the imaging optics assuming optimised matrix quality and
SIMS only by the ionic spacing used in the primary beam and the guiding optics, which
theoretically can be on the order of 10 nm [3].

There has been, however, significant effort in the development of ambient MSI (AMSI)
methods which are capable of imaging samples in their native form without the need
for sample preparation or high-vacuum conditions. With a clear advantage in terms of
direct analysis, AMSI was first demonstrated [4] in the form of desorption electrospray
ionisation (DESI) mass spectrometry, first introduced in 2004 [5]. Since then, AMSI has seen
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a multitude of applications in the analysis of animal, human, and plant tissues; microbes;
and even forensic analysis [6–9], employing a variety of novel ionisation techniques. Despite
promising results, AMSI is still limited by the lack of spatial resolution, which lies mostly
within the 10 s–100 s µm range [2]. This is further exacerbated by the well-documented
trade-off in hyperspectral imaging between spatial resolution and imaging speed, which is
also a major hindrance for the wider applicability of MSI for clinical applications, where
reasonably fast and cost-effective operation is needed. Furthermore, sacrificing imaging
speed for resolution may be counterproductive, since slower runs also involve issues such
as diminished sensitivity and the emergence of artefacts, both of which have been shown to
decrease the effective resolution of the AMSI data [10]. A major concurrent research effort
has focused on achieving superior spatial resolution. For instance, hardware solutions
based on laser desorption have demonstrated notable improvement, bringing the sampling
pixel size down to the ≤10 µm range [11]. Given the multiple different ionisation methods,
each with different intrinsic limitations, the measure of spatial resolution itself has yet to be
rigorously standardised and quantified as there is a lack of consensus in the field [12]. While
the systematic comparison of different AMSI modalities and setups remains a challenge,
the ongoing pursuit for higher resolution will likely reach the (sub)cellular level in the near
future [13]. Such high resolution will be achieved, however, at the cost of imaging speed.

Complementary to hardware optimisation, software solutions can also be implemented
post-acquisition with virtually zero cost. While some existing work have proposed the
enhancement of effective contrast and resolution by means of image fusion [14], the majority
of recent efforts have been devoted to implementing state-of-the-art algorithms to maximise
the retrieval of information and its interpretability, in terms of e.g., ion identification [15].
To our knowledge, there has been no documented image restoration method employed
that can be applied to AMSI data on a single-image level without any prior information.
To fill this gap, here we propose and demonstrate the development and application of two
fully-automated algorithms for the enhancement of ambient MS images. The first method
builds on our previous work that has aimed to provide a modality-agnostic measure of
resolution [16], which is used here to automate a Richardson–Lucy (RL)-type deconvolution
routine that requires no other user input. The second pipeline demonstrates the application
of deep learning (DL) networks to AMSI, starting from pre-trained weights that were trained
on a set of natural images. The resulting trained weights are directly applied on unseen
AMSI data to provide image denoising, artefact removal, as well as resolution up-scaling.
The performance of our image enhancement methods are then demonstrated on 12 openly
available datasets from Metaspace [17]. The results allow us to have a global image
resolution and quality comparison across different groups and instrumental parameters,
thus shedding light on some under-discussed subtleties and imaging characteristics of
different ambient modalities.

2. Materials and Methods
2.1. Laser Desorption Rapid Evaporation Ionisation Mass Spectrometry (LD-REIMS) Imaging

LD-REIMS is a relatively new AMSI modality that provides an optically induced laser-
based desorption process enhanced by collision surface post-ionisation, whose resolution
can be controlled by the corresponding optics while retaining its preparation-free nature
and sensitivity [18]. Mouse brain samples were imaged using an in-house setup consisting
of a Opolette HE2731 (Opotek, Carlsbad, CA, USA) optical parametric oscillator (OPO)
operated at 20 Hz and 2.94 µm tuned for mass spectrometry imaging and a distal optical
system constructed of optomechanical components (Thorlabs Inc., Ely, UK) and an aspheric
lens (C028TME-E, Thorlabs Inc., Newton, NJ, USA) to correct for aberrations. The beam
diameter was measured to be approximately 30 µm at the sample plane, where microscope
slides can be mounted on an in-house built stage (Thorlabs Inc., Newton, NJ, USA) and
coupled to a Xevo G2-XS QTOF mass spectrometer (Waters Corporation, Milford, MA,
USA) controlled by MassLynx 4.1 software (Waters Corporation, Milford, MA, USA). The
mass spectrometer was equipped with a prototype REIMS source described by Jones et al.
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in detail [19]. For general imaging analysis, the acquisition rate was set to 2 scans/s with a
stage speed of 100 µm/s and a pixel size of 100 µm. For high-resolution (10 µm pixel/s), a
prototype optical parametric (OPA) system operating in the picosecond regime [20] was
used in place of the OPO while keeping the remaining components identical. All mass
spectrometric analysis was performed in the negative ion mode with a spectral range of
50–1200 m/z.

2.2. Data

The datasets utilised in this study are all openly available from Metaspace [17] and
are summarised in Table 1. The choice of data has been determined to cover concurrent
AMSI techniques, namely DESI data from Sheffield Hallam University (SHU), University of
Copenhagen (U Copenhagen), University of Texas at Austin (UT Austin), and Imperial Col-
lege London (ICL); laser-ablation electrospray ionisation (LAESI) and nanoDESI imaging
data were obtained by the Pacific Northwest National Laboratory (PNNL); infrared-matrix-
assisted laser desorption DESI (IR-MALDESI) data from North Carolina State University
(NCSU); and LD-REIMS data were obtained in-house by our group at ICL.

Table 1. Summary of datasets used.

Dataset Origin Sample Type Ionisation
Source

Ionisation
Polarity Pixel Size

1 SHU human lung DESI negative 30 µm

2 U Copenhagen Galleria mellonella DESI positive 150 µm

3 UT Austin human endometriosis tissue DESI negative 100 µm

4 ICL human colon DESI negative 100 µm

5 NCSU rat liver IR-MALDESI positive 200 µm

6 NCSU mouse pancreas IR-MALDESI negative 100 µm

7 PNNL rat brain nanoDESI positive 150 µm

8 PNNL human kidney nanoDESI positive 50 µm

9 PNNL mouse kidney LAESI positive 250 µm

10 PNNL plant leaf LAESI positive 300 µm

11 ICL mouse brain LD-REIMS negative 100 µm

12 ICL mouse brain LD-REIMS negative 10 µm

2.3. Auto-Deconvolution by PSF Estimation

While the term deconvolution has generally been used in the field of mass spectrometry
in the context of separation and extraction of spectral information [21], it is used here and
in imaging theory in quite a different sense. Despite the aforementioned inconsistency
in the quantification of spatial resolution, we have previously discussed the validity and
applicability of a linear imaging model in MSI [16]:

I = O⊗ h + N (1)

where the final image I can be treated as a convolution of the object O and a function h
which is the so-called point spread function (PSF) of the MSI system, N is an additive
noise term experienced by realistic systems. The PSF is also equivalently the image of
a point object that has experienced the effective ‘blurring’ due to the imperfection of a
finite imaging system. The PSF is hence usually taken as a measure for spatial resolution,
and the deconvolution of the image by the PSF is referred to as deblurring. In the case
of a frequently assumed Gaussian PSF, this same parameter has been used in MSI as the
‘86–14% criterion’ obtained from an edge intensity profile [22].
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While extensive work exists for deconvolution in bioimaging in general [23], none to
our knowledge has been applied to MSI. This is due in part to the two main challenges
faced by any deconvolution problem—(1) the accurate estimate of an initial guess PSF,
and (2) the termination criterion of the iterative algorithm used to deduce the PSF. Building
on our previous work that provided an empirical method of estimating a 1D PSF (or
line spread function), we have tackled both challenges by automating Richardson–Lucy
blind deconvolution [24]—a commonly utilised Bayesian iterative method by means of
object detection.

To automate the blind Richardson–Lucy deconvolution algorithm, both the initial
guess and the termination criterion are facilitated by the evaluation of a 1D PSF with
the method previously discussed in [16]. A flow chart of the algorithm can be found
in Supplementary Materials. In summary, the line spread function (1D PSF) of a given
image is estimated by first detecting the sharp edges by means of Canny detection and
Hough transformation [25,26]. The intensity profiles perpendicular to the detected edges
are then differentiated and Gaussian fitted to produce the corresponding PSFs. Successful
fits (R2 > 0.5) are then combined into an initial guess PSF to start the RL deconvolution
by assuming a 2D Gaussian profile whose width (2σ) is the mean from all included fitting
results, which is considered a direct measure of blur. To determine when the deconvolution
needs to be terminated, the width of the 2D PSF for the deconvolved version of the image
at each iteration is calculated again, and the algorithm stops if |∆2σ| < 0.01 or ∆2σ > 0,
which indicate that either the change in resolution is plateauing or having an adverse effect
(increasing blur). To cater for stabilisation effect, a minimum of 5 iterations is set before
the termination criterion is effective. Both the final image and estimated PSF are returned
as outputs.

2.4. Training and Inference with GANUNET
2.4.1. Model Architecture

The overall model architecture used in this work can be found in the Supplementary
Materials. In summary, two different kinds of deep neural networks have been specif-
ically trained, optimised, and used in conjunction for image restoration of AMSI data.
The first is enhanced SRGAN (ESRGAN) [27], a type of generative adversarial network
(GAN) [28]. GANs are based on an adversarial system between two separate neural net-
works: the generator and the discriminator. In the context of imaging, the generator
network constructs ‘fake’ samples while the discriminator evaluates whether the fake
samples generated by the generator are distinguishable from the ground truth images. The
back-propagation allows the output of the discriminator to train the generator. The training
purpose for the generator is to generate samples that fool the discriminator, which is also
learning constantly. The learning process for the discriminator is to classify whether the
input (the generated images) is real or fake according to the ground truth images. ESRGAN
builds on its predecessor, SRGAN [29], a pioneering technique that can generate realistic
upsampled textures based on a single-image input (i.e., single image super-resolution
(SISR)) but suffers from unwanted hallucination artefacts. To overcome this limitation,
ESRGAN introduced residual-in- residual dense blocks (RRDBs) as the basic building
block, a probabilistic adversarial loss, and a perceptual loss that is more related to naturally
perceived image quality.

While the trained weights from ESRGAN provide perceptually better upsampled
images in general (Supplementary Materials), we observe that when applied to unseen data
of different tissue types, they tend to suffer from the checkerboard artifact [30] as the one-
to-many mapping requested from the upsampling process causes ambiguities. This artifact
can potentially be remedied by training with a much larger amount and variety of training
data as well as (re-)introducing normalisation blocks [30]. In the interest of a low-cost
model and training routine that can be easily replicated across laboratories, we have trained
a second network that serves as both a de-artifacting and denoising block. This network is
based on the U-Net, a deep learning network with an encoder-decoder architecture [31].
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While a similar network has been previously used for image restoration of fluorescence
microscopy images [32], we note that neither the network depth nor the synthetic data
training strategy are directly applicable to AMSI as high level of hallucination was observed.
As such, we have trained a 5-level model that is referred to as ‘UNET5’ henceforth.

Both trained weights from ESRGAN and UNET5 can be sequentially applied to raw mass
spectrometry images that have been pre-selected accordingly (Supplementary Materials) to
carry out image restoration, hence giving the workflow its name of GANUNET.

2.4.2. Model Training and Optimisation

Considering the small number of AMSI images compared to the vast numbers of
natural images available for training, optimised weights for routine AMSI applications
were obtained by transfer learning. The training process for ESRGAN consists of three
main steps: (1) First, an SNR-oriented model with mean absolute error loss is trained
on natural images, which is then used to initialise the generator. (2) The generator and
discriminator are then trained with perceptual loss and adversarial loss until the network
converges. (3) The weights of the pre-trained model are fine-tuned using the same strategy
using mass spectrometry images generated from pork liver samples (3757 images), which
are widely available at minimal cost, thereby providing spectral and spatial features typical
of biological tissues. UNET5 was also trained with the same liver data used for training
ESRGAN with a synthetic noise adding strategy. Details on the training strategy are
also included in the Supplementary Materials document. The hyper-parameters used for
training have been optimised empirically and summarised below in Table 2:

Table 2. Summary of optimised hyper-parameters.

Network Loss Optimiser Learning Rate Patch Size Epochs

ESRGAN Mean Absolute Error Adam 0.0004 (64,128) 100/100
UNET5 Mean Absolute Error Adam 0.0004 (64,128) 30

2.4.3. Measuring Resolution with Fourier Ring Correlation

Fourier ring correlation (FRC) is another approach to measure the image resolution
which has recently gained traction in fluorescence microscopy [33]. While MSI resolution
has traditionally been measured using a PSF without the consideration of noise, recent
works have recognised that noise can also limit spatial resolution [34–36]. FRC also com-
putes an effective PSF while a noise level is also estimated adaptively. Therefore, while it is
schematically similar to our approach [16] and also modality agnostic, in practice it is easier
to implement and more robust as it removes the need of a step edge ROI. Fundamentally
based on the same imaging model that we have adopted here, a cut-off frequency is com-
puted in FRC beyond which there is insufficient details to be identified in the frequency
domain due to noise to determine the image resolution. This cut-off frequency is selected
based on a manually defined threshold, generally chosen with prior knowledge of the
relative SNR. While FRC traditionally needed two images to be correlated against each
other, we adopt a modified form of the single-image correlation method proposed by
Koho et al. [33]. The selection of the most appropriate threshold nevertheless remains the
most important task in producing accurate FRC. In the scope of information theory, we
adopt the ‘1/2-bit’ threshold that is proposed by Van Heel et al. [37], which is robust across
different types of images due to its direct correlation with the amount of information ob-
tainable while retaining convergence even when the sampling is low (i.e., not many pixels
in the images correlated). After obtaining the frequency cut-off ( fthresh), the corresponding
resolution (δx) can be calculated by:

δx =
2

fthresh
× ∆x (2)

where ∆x is the pixel size used.
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3. Results
3.1. Auto-Deconvolution of Ambient Mass Spectrometry Images

To demonstrate the effectiveness of our approach, non-background peaks from Dataset
11 and their corresponding ion images have been deconvolved using our algorithm, as
described in Section 2.3. An example of the results is presented in Figure 1.

Figure 1. Demonstrating a region of interest from a mouse brain indicated in (a) the corresponding
bright-field optical image, imaged in high-resolution by LD-REIMS; the effect of applying the auto-
deconvolution algorithm is highlighted by comparing the (b) image of the highest intensity, tissue-
specific ion (m/z = 600.5) before & (c) after 5 iterations of deblurring. A specific spatial feature is
further zoomed-in on and compared with the same region from the optical image.

By inspection, effective denoising is achieved and some features become visibly more
pronounced, as confirmed in the corresponding optical image. To quantify this deblurring
effect, the resolution of the image before and after the iterative deconvolution process can
be evaluated using our PSF estimation method along naturally ‘sharp’ edges in the field
of view, which is automated by edge detection algorithms (Section 2.3) and visualised as
green lines in Figure 1. As a result, the width (2σ) of the estimated PSFs indicate that the
resolution has indeed improved by about 40% as it decreased from 2σ = 3.63 pixels to
2σ = 2.15 pixels.

By repeating the same process for all 102 images, a more statistically relevant com-
parison can be made. Figure 2 shows the relative distributions of PSF width before and
after deconvolution. It can be seen that the effective blur in the images have generally
been restored to approach the information theoretic limit of a single pixel with the aid of
deconvolution, as the waist of the distribution settles around 1. To confirm this observation
statistically, a single-sided Wilcoxon signed-rank test has been performed on the obtained
resolution parameters, which produced a test statistics of 1860 and a corresponding p-value
of 9.7 × 10−3, which allows the rejection of the null hypothesis that the deconvolution
algorithm has no effect on the blurring parameters.

While it is possible to perform deconvolution on every image in any MSI dataset,
the time needed per image varies radically as it largely scales with the initial estimation of
the PSF and hence the number of iterations needed to reach the pre-defined termination
criterion. To give some context, this ranges from 2 s to 22.5 s for the images experimented
on in this case with a standard workstation. As MSI datasets can easily comprise 103–104

images, dataset-level deconvolution should only be attempted with the consideration of
computational intensity. Additionally, not every image can be adequately deconvolved—
some subtle considerations and some general rules in selecting the deconvolvable images
are discussed in the next section.
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Figure 2. A violin plot that approximates the distributions of effective blur (2σ) in the top 100 tissue
images from Dataset 11 in its raw form and after the application of auto-deconvolution. Clear outliers
have been removed before visualisation.

3.2. Image Restoration by GANUNET

By using the trained weights obtained via the strategy outlined in Section 2.4, all
12 open-access AMSI datasets have been upsampled (4X on both axes) and enhanced.
To study the effective resolution change achieved, FRC analysis [33] adapted for AMSI
has been used to investigate the noise-limited cut-off in the spatial frequency domain,
which also allows the calculation of an effective PSF and hence resolution. The resolutions
calculated for the 12 datasets are presented in Figure 3. It is evident that a clear improvement
in resolution is observed across majority of the cases, where the rejection of the no-change
null hypothesis have been statistically tested (one-sided Wilcoxon) and marked by an
asterisk where applicable. No significant improvement was observed for the nanoDESI
datasets (7 and 8). As the resolution improvement measured by FRC predominantly comes
from a denoising effect, the outcome depends on the intrinsic noise level of the data.
Interestingly, Datasets 7 and 8 registered the lowest images SNRs overall (Supplementary
Materials), which most likely led to the limited performance of GANUNET in this case. It
should also be noted that the performance of both the FRC metric and GANUNET will
suffer from low number of pixels, i.e., under-sampling, which is discussed in more detail
below. For example, Dataset 10 has pixel dimensions of 35 × 70, meaning that the FRC
algorithm is estimating resolution using two sub-sampled images (∼17× 35 pixels) derived
from the original image, limiting the accuracy and hence comparability with those from
larger images.

To visually illustrate the generalisability of the trained GANUNET models, selected
ion images are shown in Figure 4. Images have been chosen from five different datasets so
as to represent the five different AMSI modalities covered in the study.
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Figure 3. Comparison of the FRC-calculated spatial resolutions of 12 AMSI datasets before & after the
application of GANUNET. The datasets are obtained from different laboratories across the globe with
varying modalities and parameters, specified in Section 2.2. Datasets where a statistically significant
improvement in resolution has been observed are marked by an asterisk.

Figure 4. Selected ion image comparisons to demonstrate the effect of GANUNET; both the raw
and GANUNET-restored and upscaled images are displayed in pairs, and a 2-fold difference in
size is adopted for easier visual comparison while retaining the aspect ratios. The ion images
with the highest spectral intensity and discernible sample-specific features have been chosen to
represent different modalities and sample types. Specifically, (a) (m/z = 806.57) a mouse kidney
imaged by LAESI (Dataset 9), (b) (m/z = 255.23) a rat liver section imaged by IR-MALDESI (Dataset 5),
(c) (m/z = 617.50) sections of a whole Galleria mellonella imaged by DESI (Dataset 2), (d) (m/z = 862.65)
a mouse brain section imaged by LD-REIMS (Dataset 11), and (e) (m/z = 820.52) a rat brain section
imaged by nanoDESI (Dataset 7).
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In addition to the perceptually observable denoising effect, the four-fold upsampling
effect of GANUNET also interpolates intensity values based on the machine learned
understanding gained from the liver samples used in training. Notably, the performance of
this inference is palpable when there is a high level of missing or incomplete information
in the raw data, which is no uncommon in AMSI datasets due to the low detectability of
certain ions, which may be of biological interest. Figure 5 presents such an example from
Dataset 3, where GANUNET successfully fills the ‘missing pixels’ in the raw data without
observable hallucination or artifact. This is then further compared to the 4X upsampled
image obtained from standard bicubic interpolation, which is seen to have little effect on
the overall quality of the image as well as inducing some blur.

Figure 5. An example ion image (m/z = 213.87) from Dataset 3 where the raw data (LEFT) suffers
from low SNR and hence missing values. The results of upsampling operations on the same image
from standard bicubic interpolation (CENTRE) and GANUNET (RIGHT) are also compared.

Additionally, to demonstrate the effect of GANUNET on common downstream anal-
ysis workflows that are widely used in MSI, image segmentation by means of principal
component analysis (PCA) has been performed on Dataset 4 after applying variance sta-
bilising transforms [38]. The relative abundance for the first three PCs of the analysis are
then reshaped and combined into false-colour images for visual comparison. The results
are found in Figure 6, where once again discernible denoising and sharper distinction of
spatial features are evident. When compared to the histological image of the same sample,
it can be seen that certain pathological features that were previously distorted by noise
and artifact have been restored. In conjunction with the 16-fold increase in total number
of pixels available, subsequent spatial investigation by, e.g., correlating selected region(s)
of interest with pathological annotations should become considerably simpler and more
accurate. To this end, GANUNET is an important addition to the emerging computa-
tional tools and their wider adoption in terms of multimodal integration and correlative
imaging, highlighted to be a concurrent trend in MSI [10]. The alignment of optical and
other imaging data in general, e.g., MRI can be facilitated by the simple implementation of
GANUNET as a single pre-processing step. The precise overlap of multi-modalities can
then be further exploited to potentially enable multi-omic analysis on a single-cell level.
Similar to the approach proposed by Rappez et al. [39], GANUNET can in principle bypass
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some hardware limitations of AMSI and facilitate the spatial investigation of new and even
existing datasets at a cellular level.

Figure 6. The bright-field (BF) optical image with staining is compared to false-colour images
composed of the mapping of scores for the first three principal components obtained from Dataset
4 before & after applying GANUNET. The associated pathological tissue features [38] have also
been indicated in representative regions in the BF image, namely red = colorectal cancer (CRC),
green = blood vessels, blue = muscle.

While the pan-modality comparison of resolution is not particularly meaningful due
to the wide difference in the choice of sampling pixel size, the GANUNET workflow does
allow us to evaluate the imaging performance and characteristics in terms of the cut-off
spatial frequency, which is normalised and modality agnostic. As such, the comparison
of frequency content for all 12 datasets is plotted in Figure 7. By inspection, both the
effect of image restoration and dataset-specific characteristics may be visualised this way.
The kernel density, for example, correlates to the maximum spatial frequencies detectable
across the dataset, and it can be seen from Figure 7 that an elongation and/or shift of
which is generally observed after restoration by GANUNET, suggesting that a shift towards
higher spatial frequencies and hence better resolution. It is also interesting to note that the
distributions are representative of the imaging characteristics. For instance, the LD-REIMS
datasets and indeed other laser desorption-based modalities see a narrower spread in their
spatial frequencies in general compared to DESI. This large spread towards low frequency
cut-offs is intuitively in line when considering the nature of signal acquisition of DESI,
which relies on a ‘pool’ of ionised analytes at the sample surface, which may spread to
a different extent depending on their respective solubilities and may equate to a large
blurring effect (wide PSF). This in turn depending on the relative intensity level of the
image could translate to poor resolution. Similarly, the nanoDESI datasets studied here
generally suffer from low frequency cut-offs/resolutions and are not significantly improved
with GANUNET. Lastly, it is worth noting that both negative and frequency cut-offs > 1
predicted by the kernel estimates are physically improbable and most likely due to outlying
values in the datasets. The former is not possible within the scope of the Fourier imaging
model used here, and the latter suggests ‘true’ super-resolution surpassing the limitations
imposed by the hardware, which is not currently observed by us but is nonetheless a
promising future direction.



Metabolites 2023, 13, 669 11 of 16

Figure 7. Violin plots of the cut-off frequencies deduced by FRC for each dataset with and without
restoration by GANUNET. The relative distribution of each bin is calculated with a fixed kernel
bandwidth of 1.0 and scaled by the number of observations in that bin. The results are always
presented in pair, where LR refers to the ‘low-resolution’ raw data and HR refers to the ‘high-
resolution’ restored images.

4. Discussion
4.1. What Is Deconvolvable?

We have presented an automated blind deconvolution algorithm that was readily
applied to AMSI data and gave statistically better overall resolution as a result. As with any
good deconvolution algorithm, the key to the successful deblurring lies with the accuracy
of the estimated PSF produced by the algorithm, which is affected by a number of factors.
Firstly, the starting position of the estimate is critical, a grossly over-/under-estimated
PSF would likely lead to poor deconvolution results, which is in this case governed by the
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accuracy of our initial PSF estimate. In practice, this translates to the ability to find clearly
defined edges in the image and thereby obtaining a trustworthy Gaussian fit. By using
the goodness of fit of the latter as a thresholding metric, we have noticed that the rejected
images are generally noisy by inspection, thus placing an effective SNR requirement on the
images that can be successfully deconvolved. Furthermore, while the Richardson–Lucy
algorithm accounts for some Poisson noise (Supplementary Materials), any other noise
sources would require better understanding of the noise model and refinement to be made
specific to each AMSI modality.

Secondly, as the same estimate is used as a performance metric over iterations, spuri-
ous fitting results due to noise or otherwise can also lead to poor performance, causing,
e.g., noise to take over due to too many iterations (Figure 8). Even if the initial guess is ac-
curately fitted, it should be noted the fundamental assumptions of the PSF also play an role.
Specifically, the 2D PSF is approximated in this case by assuming a rotational symmetry
and is presumed to be isotropic across the image (i.e., the same for every pixel). Neither
are necessarily true due to adverse imaging effect such as (asymmetric) aberrations [40]
or a naturally asymmetric sampling beam. It would thus be interesting to implement 2D
estimation methods in the future, by incorporating the directional information of edges [41]
or indeed by combining with the FRC tool that we have already developed. Ultimately,
one would need to make an informed decision on whether the image contains sufficient
information for the resolution measures to be accurate.

Figure 8. Application cases where the use of auto-deconvolution and GANUNET need careful
consideration. (a,b) A case of noise amplification due to over-deconvolution from Dataset 11 where
the spatial content in the ion image is replaced with noise. (c,d) Appearance of checkerboard artifact
when a raw ion image from Dataset 9 is under-sampled.

Finally, we note that deconvolution is still fundamentally limited by the imaging
hardware, which is to say that Shannon’s sampling theorem [42] should still be obeyed.
As such, there are cases where the estimated PSF for an image would have a calculated
width ≤ 1 pixel and thus cannot be used to perform further deblurring as that would
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indicate the extraction of sub-pixel detail without additional prior information and funda-
mentally violates the rules of information theory.

4.2. Success & Limitation of GANUNET

Within the 12 datasets that GANUNET has been tested on, the performance has been
demonstrated to be generally robust both qualitatively and quantitatively. Considering
that the models have been constructed with< 4000 images and at minimal material cost,
the utility of GANUNET as a single-step image restoration tool is highly attractive. While
we believe that it can be generalised to wider use of most types of imaging sample and
modality, it is of course not without limitation. Notably, the sampling employed dur-
ing image acquisition is of vital importance and perhaps somewhat under-explored in
AMSI. In imaging in general, it is considered good practice to use a sampling pixel size
that is ≤smallest feature size that is desirable to resolve, e.g., a single cell. Often in MSI
experiments, however, the pixel size is kept at a maximum to maintain the throughput.
In this scenario, if the original data is under-sampled then GANUNET would have mini-
mal or adverse effect, as illustrated by Figure 8c,d. With closer inspection, it can be seen
the checkerboard artifact re-emerges even with the suppression from UNET5. Sufficient
sampling (commonly referred to as ‘over-sampling’ in MSI terms) is thus an essential
preamble for high-performance restoration. Within the same information theoretic frame-
work discussed above, it also states that further resolution improvement is unlikely if it
is ‘pixel-limited’. As such, while GANUNET can be considered a SISR algorithm at its
core, we would regard it a highly optimised denoising and interpolation tool and do not
expect GANUNET to be able to achieve ‘true’ super-resolution where novel features can be
restored from under-sampled images. This limitation can theoretically be remedied with
the re-training with additional high-quality data or architectural changes [30]. As such,
while GANUNET achieves robust image enhancement with machine learned perception
between high and low frequency contents in the PSF, just as in auto-deconvolution, its
parameter space is much larger meaning more complex true optimisation but also much
superior tuneability to suit use cases. At the same time, as the results have demonstrated
even the ‘base’ model of GANUNET is generally capable of serving as a ‘one-stop’ solution
that provides practical image restoration functions, such as upscaling, making it an easily
implementable computational tool for MSI laboratories with minimal cost and specialist
knowledge.

In addition to being a restoration tool, GANUNET also presents a unique opportunity
in exploring the inter-laboratory comparison of resolutions and imaging characteristics
with the implementation of the FRC metric. To this end, data mining of experimental
metadata ranging from ionisation source, polarity, pixel size, etc., may lead to important
discoveries that will further aid the standardisation and applicability of AMSI techniques
in general. As the FRC metric is also intrinsically linked to the linear imaging model we
have discussed, it would be a natural next step to also incorporate the deconvolution
function into our DL algorithm. The real interest thus lies with the possibility of learning
a physics-based model that ‘understands’ the true distinction of high and low-resolution
with the knowledge of the PSF, thus holds the key to true, hardware-limitation-defying
super-resolution.

5. Conclusions

We have presented two image restoration algorithms that for the first time provide
quantifiable resolution enhancement to ambient mass spectrometry images via sofware-
only means. Both methods function on the basis of a linear imaging model that can be
considered universally in Fourier space, thus also granting us the ability to compare the
imaging performance of different modalities and experiments, across laboratories. Both the
deconvolution and DL-based tools are thus widely deployable as a single-step, open-access
resource to enhance the quality of the increasingly popular AMSI data. While the current
DL networks have been trained with the focus of robustness and low computational cost,
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we expect the modification towards a machine-learned physics-based model of this kind
would lead to software-based resolution breakthroughs in the near future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13050669/s1, Figure S1: A flow diagram outlining auto-
mated blind deconvolution algorithm developed for this study; Figure S2: A flow diagram outlining
the implementation of UNET5; Figure S3: Example images to illustrate the effect of different noise
sources on MSI data; Figure S4: Architecture of ESRGAN adopted in this study; Figure S5: A flow
diagram outlining the implementation of ESRGAN; Table S1: Other metadata of datasets used [43–45].
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