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Abstract: Computational modeling and simulation of biological systems have become valuable tools
for understanding and predicting cellular performance and phenotype generation. This work aimed
to construct, model, and dynamically simulate the virulence factor pyoverdine (PVD) biosynthesis
in Pseudomonas aeruginosa through a systemic approach, considering that the metabolic pathway
of PVD synthesis is regulated by the quorum-sensing (QS) phenomenon. The methodology comprised
three main stages: (i) Construction, modeling, and validation of the QS gene regulatory network
that controls PVD synthesis in P. aeruginosa strain PAO1; (ii) construction, curating, and modeling
of the metabolic network of P. aeruginosa using the flux balance analysis (FBA) approach; (iii) in-
tegration and modeling of these two networks into an integrative model using the dynamic flux
balance analysis (DFBA) approximation, followed, finally, by an in vitro validation of the integrated
model for PVD synthesis in P. aeruginosa as a function of QS signaling. The QS gene network, con-
structed using the standard System Biology Markup Language, comprised 114 chemical species
and 103 reactions and was modeled as a deterministic system following the kinetic based on mass
action law. This model showed that the higher the bacterial growth, the higher the extracellular
concentration of QS signal molecules, thus emulating the natural behavior of P. aeruginosa PAO1.
The P. aeruginosa metabolic network model was constructed based on the iMO1056 model, the
P. aeruginosa PAO1 strain genomic annotation, and the metabolic pathway of PVD synthesis. The
metabolic network model included the PVD synthesis, transport, exchange reactions, and the QS
signal molecules. This metabolic network model was curated and then modeled under the FBA
approximation, using biomass maximization as the objective function (optimization problem, a term
borrowed from the engineering field). Next, chemical reactions shared by both network models
were chosen to combine them into an integrative model. To this end, the fluxes of these reactions,
obtained from the QS network model, were fixed in the metabolic network model as constraints of
the optimization problem using the DFBA approximation. Finally, simulations of the integrative
model (CCBM1146, comprising 1123 reactions and 880 metabolites) were run using the DFBA approx-
imation to get (i) the flux profile for each reaction, (ii) the bacterial growth profile, (iii) the biomass
profile, and (iv) the concentration profiles of metabolites of interest such as glucose, PVD, and QS
signal molecules. The CCBM1146 model showed that the QS phenomenon directly influences the
P. aeruginosa metabolism to PVD biosynthesis as a function of the change in QS signal intensity. The
CCBM1146 model made it possible to characterize and explain the complex and emergent behavior
generated by the interactions between the two networks, which would have been impossible to do by
studying each system’s individual components or scales separately. This work is the first in silico
report of an integrative model comprising the QS gene regulatory network and the metabolic network
of P. aeruginosa.
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1. Introduction

In recent years, computational modeling of biological systems has acquired a signifi-
cant role in understanding and predicting cellular performance. Computational modeling
for explaining cell behavior has been accomplished by numerous discrete, continuous,
and spatially explicit models describing subcellular systems and processes that biological
systems need to survive [1]. Indeed, all biological systems are complex and dynamic and
can be modeled as clusters of various functional networks. Metabolic, cell signaling, gene
regulation, and intercellular communication networks are interconnected, regulate each
other, and operate in diverse temporal and spatial domains to maintain living organisms’
growth, development, and reproductive potential [2]. The functional networks of biolog-
ical systems can operate on characteristic and specific temporal and spatial scales. For
instance, intracellular biochemical reactions can ensue on time scales of seconds or less,
involving gradients exceeding microns in length. Functional phenotypes at the cellular
and cell-to-cell levels unfold in tens of seconds to minutes and on spatial scales of tens of
microns [3]. Therefore, biological systems are inherently considered as hierarchical and
multiscale in time and space. Most traditional computational models focus on studying
biological systems at single biological scales. However, systemic approaches facilitate the
designing of multiscale computational models, to bridge those scales, so that the effects of
perturbations at one scale can be predicted at other scales. Thus, multiscale computational
models are exceptionally positioned to capture the relationship between different scales
of biological function; they can bridge the gap between isolated in vitro experiments and
whole-organism in vivo models [1–3].

Following the development of next-generation sequencing techniques, a key objec-
tive has been to relate annotated genome sequences to cellular physiological functions.
Therefore, systems biology has been designing new computational strategies to reconstruct
biological networks (genomic and metabolic) and to model and dynamically simulate
biological systems in order to study, from a holistic perspective, the regulation of mech-
anisms leading to the expression of diverse phenotypes. Thus, the extensive dataset of
measurements of all biomolecules at the system level favors integration from the molec-
ular to the whole organism level. In recent decades, several computational studies have
made developing multiscale models of some biological systems possible. For example,
Thiele et al. and Biggs and Papin have shown the advantages of multiscale models for
understanding metabolic and macromolecular synthesis in Escherichia coli and biofilm
formation by Pseudomonas aeruginosa, respectively [4,5].

Following a holistic approach, this work aimed to explain the synthesis of the siderophore
pyoverdine (PVD), a virulence factor in P. aeruginosa [6]. The PVD synthesis requires two bi-
ological processes. The first is the expression of pvd genes, which encode enzymes involved
in PVD synthesis and which are regulated by the quorum-sensing (QS) phenomenon [7] (a
mechanism of cell communication mediated by signaling molecules -in this case, induced
under conditions of iron deficiency, and responsible for synchronizing phenotype expression
in a bacterial community—in this case, the factor virulence PVD expression) [8]. The second
process corresponds to the metabolic pathway involved in PVD synthesis. Therefore, to
understand how these two biological processes work and how they regulate each other,
it was necessary to design a methodology to develop a model capable of describing their
interactions.

P. aeruginosa has two QS systems, LasI/LasR and RhlI/RhIR. The signaling molecule
of the LasI/LasR system is N-(3-Oxododecanoyl)-L-homoserine lactone (3O-C12-HSL),
which is synthesized by LasI and detected by the LasR receptor. The RhlI/RhIR system
is regulated by N-butanoyl-L-homoserine lactone (C4-HSL), synthesized by RhII, and
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detected by the RhIR receptor. Both QS systems are hierarchically organized, such that
the LasI/LasR system regulates the function of the RhlI/RhIR system, allowing further
fine-tuning of the QS feedback on specific genes [9]. These QS systems are linked through
regulatory connections involving regulatory proteins (RsaL, PqsR, RclA, vfR, and GacA)
and the Pseudomonas Quinolone Signal (PQS) system. This system encodes the synthesis of 2-
heptyl-3-hydroxy-4-quinolone (2C7-3OH-4(1H)Q) that forms a complex with the available
ferric ion (Fe3+) and plays an essential role in the pvd genes expression. At the cellular level,
the quinolone complex positively controls the expression of the Pvd-type proteins, which
is responsible for PVD maturation, synthesis, and exportation [10].

Most PVD biosynthesis is carried out in the bacterial cytosol by four non-ribosomal
peptide synthase (NRPS) proteins encoded by the pvdL, pvdI, pvdJ, and pvdD genes [6].
Together, these genes encode ferribactin synthase, responsible for synthesizing ferribactin,
the precursor of PVD. PVD biosynthesis also requires the expression of the pvdA, pvdF,
and pvdH genes. According to the model proposed by Visca et al. [8], the PvdE protein
(an ABC-type transporter), located in the inner membrane, transports ferribactin to the
periplasmic space where PVD chromophore maturation occurs by an oxidation-reduction
mechanism driven by the PvdM, PvdP, PvdQ, PvdO, and PvdN proteins [7,11,12] through
a mechanism not fully elucidated. Finally, mature PVD is secreted into the extracellular
space by an unclear process that chelates iron and forms the PVD-Fe3+ complex, which
is transported back into the intracellular space by the FpvA carrier. Iron is then released
from PVD to the periplasm by a mechanism involving iron reduction (Fe3+ to Fe2+), and
PVD is then transported out of the cell via a specialized carrier of the siderophore recycling
process [13–16].

An integrative (multiscale) model that combines the QS gene regulatory network and
the metabolic network of P. aeruginosa is proposed here for the first time to describe and
understand the influence of the QS phenomenon on PVD biosynthesis in P. aeruginosa
from a systemic perspective. That model involves the process of bacterial communication
mediated by the QS phenomenon for synthesizing signal molecules that regulate the
expression of pvd genes to generate enzymes that metabolically catalyze the production of
the virulence factor. Furthermore, this integrative model combined two biological network
models: (i) The QS gene regulatory network model, based on deterministic approaches
and whose simulation results were the concentration of chemical species and the fluxes
of chemical reactions; and (ii) the model of the P. aeruginosa metabolic network based on
the flux balance analysis (FBA) approximation. This approximation addressed the biomass
maximization problem constrained by mass balance and thermodynamic conditions to
obtain the optimal distributions of reaction fluxes through the metabolic network [17–21].
The methodological strategy first identified reactions shared by the QS and the P. aeruginosa
metabolic networks. Then, the fluxes of these shared reactions, obtained from the QS
network, were used as a constraint system to model the P. aeruginosa metabolic network by
dynamic flux balance analysis (DFBA) [22,23]. The proposed multiscale model showed a
capability to infer the influence of QS on the P. aeruginosa strain PAO1 metabolism to PVD
biosynthesis as a function of variations in QS signal intensity.

2. Materials and Methods

Computational modeling followed three steps: (i) construction of a deterministic
model of the P. aeruginosa QS network as a gene regulatory network for the expression of
pvd genes encoding enzymes for PVD synthesis and maturation; (ii) construction of the
P. aeruginosa genome-scale metabolic network, including PVD biosynthetic reactions using
the FBA approximation; and (iii) integration of these two network models into a multiscale
model using the DFBA approximation (Figure 1).
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Figure 1. Methodological workflow for designing a computational model to infer the influence of
the quorum-sensing phenomenon on the PVD metabolic synthesis in Pseudomonas aeruginosa
from a systemic perspective. Stage 1. Construction of the QS gene regulatory network under a
deterministic approach using a kinetics based on the mass action law. Stage 2. Construction of the
P. aeruginosa metabolic network using the flux balance analysis approach. Stage 3. Integration of
the QS network and the P. aeruginosa metabolic network into a multiscale model to be proposed and
modeled under a dynamic flux balance analysis approach.

2.1. Construction and Modeling of the Quorum-Sensing Gene Regulatory Network

The following elements were used to construct and model the QS gene regulatory
network, (i) bibliomic information about the genes involved in the QS process, (ii) a
language/platform for the biological representation of the retrieved bibliomic data, and
(iii) a language/platform for the mathematical modeling of the biological representation.

Bibliomic information was retrieved from generic and specialized databases, such
as the Scopus and Web of Science bibliographic indexes and specific biological databases.
In addition, several search queries were used to find relevant documents and database
entries that provided the maximum number of chemical species for modeling the biological
process.
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The QS network model was built using the standard System Biology Markup Lan-
guage (SBML) format. The CellDesigner 4.4 software [24] was used to model the bio-
logical processes by applying the Systems Biology Graphical Notation (SBGN) and to
create the mathematical representation of the biological model with a MathML layer.
The resulting model was based on bibliomic analysis and information stored in the
GenomeNet (https://www.genome.jp, accessed on 5 March 2016), KEGG [25,26], Bio-
Cyc [27,28], UniProtKB/Swiss-Prot [29] and PubChem [30,31] databases, as well as on
the search of annotated genes and their corresponding mRNAs and proteins to manually
curate the model. Based on the biological model, a system of 114 ordinary differential
equations (ODEs) representing the interactions between chemical species was established
in a manually curated QS network model (Figure 2).

For QS modeling, the initial concentrations of genes, QS regulatory proteins, and
available cytosolic Fe3+ were fixed (data available in Mendeley Data, https://doi.org/10
.17632/2xzzkmnpfx.1). In addition, each reaction incorporated the kinetic constant (k)
values (a total of 103 kinetic parameters data are available in Mendeley Data, https://doi.
org/10.17632/2xzzkmnpfx.1) and the links of each interaction between related molecules.
The corresponding ODEs for mRNAs and proteins in the transcription and translation
processes are exemplified in Equations (1) and (2), respectively [32].

dYmRNA
dt

= ka [Ygene]− kb [YmRNA]− kc [YmRNA] (1)

dYProtein
dt

= k1 [YmRNA]− k2 [YProtein]− k3[YProtein] (2)

where Y represents the chemical species, ka the transcription rate constant, kb and k1 the
translation rate constants, kc and k3 the degradation rate constants, and k2 the consumption
rate constant of each reaction in the system.

To construct the deterministic QS model, elementary kinetics, based on the law of
mass action for all chemical species, was assumed for all reactions in the system. QS
model simulations were run using SOSlib [33] in the CellDesigner software, which solves
the rigidity problem of the ODEs and initiates numerical integration using the backward
differentiation formula (BDF) or the Adams-Moulton (AM) method to calculate x(t) for a
series of time points [34].

Simulation Scenario Conditions for the Quorum-Sensing Network

After testing the stability of the QS network by the behavior of signal molecules, intra-
cellular ferribactin production, and intracellular and extracellular PVD production, a single
condition was set for the different simulation scenarios, namely, the initial concentration
of the extracellular signal molecule PQS (E-PQS). This ranged from 0.01 µM to 0.1 µM
with 0.01-unit intervals and from 0.01 µM to 0.1 µM with 0.1-unit intervals for a total of
20 simulation scenarios (Table 1). These simulation scenarios were performed to emulate
the behavior of in vitro cultures of P. aeruginosa. When the microbial population density
increases in these cultures, the concentration of QS signal molecules that regulate the
expression of bacterial phenotypes, such as PVD, also increases [9,35,36]. In addition, the
simulations gave results for changing metabolite concentrations and reaction fluxes in time
(µmol s−1L−1). The latter ones were used in the subsequent modeling of the P. aeruginosa
metabolic network.

https://www.genome.jp
https://doi.org/10.17632/2xzzkmnpfx.1
https://doi.org/10.17632/2xzzkmnpfx.1
https://doi.org/10.17632/2xzzkmnpfx.1
https://doi.org/10.17632/2xzzkmnpfx.1
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Table 1. Simulation scenario conditions for the quorum-sensing network model.

Simulation
Scenario E-PQS [µM]

ID
Simulation

Scenario

Simulation
Scenario E-PQS [µM]

ID
Simulation

Scenario

Sc1 0.00 Initial
conditions Sc11 0.1 PQSE01

Sc2 0.01 PQSE001 Sc12 0.2 PQSE02

Sc3 0.02 PQSE002 Sc13 0.3 PQSE03

Sc4 0.03 PQSE003 Sc14 0.4 PQSE04

Sc5 0.04 PQSE004 Sc15 0.5 PQSE05

Sc6 0.05 PQSE005 Sc16 0.6 PQSE06

Sc7 0.06 PQSE006 Sc17 0.7 PQSE07

Sc8 0.07 PQSE007 Sc18 0.8 PQSE08

Sc9 0.08 PQSE008 Sc19 0.9 PQSE09

Sc10 0.09 PQSE009 Sc20 1.0 PQSE10

2.2. Construction of the Pseudomonas aeruginosa Metabolic Network

The in silico construction of the P. aeruginosa metabolic network required a previously
published generic cell model of the bacterium, the specific metabolic pathway of PVD
synthesis, and software for modeling the hundreds of reaction equations representing the
metabolic pathways.

The computational modeling was based on three data sources: (i) The genome-scale
metabolic network model iMO1056 [37], which was to be used as a template, because it
was the first genome-scale metabolic network construction of P. aeruginosa published in the
literature; (ii) the P. aeruginosa genome annotation in the PseudoCAP database; and (iii) the
metabolic pathway of PVD synthesis in the MetaCyc database (PseudoCyc), which was
extended by bibliomics. As in the IMO1056 model, each reaction was manually mapped
against data in biological databases (KEGG, BioCyc [27], ModelSEED [38], MetanetX [39],
TransportDB [40], TCDB [41]) for preliminary curation. This process updated and com-
plemented the network regarding stoichiometry, directionality, biological evidence, and
subcellular location of each reaction, as well as in the gene-protein-reaction (GPR) asso-
ciations. Furthermore, specific reactions involved in the PVD metabolic synthesis, some
exchange reactions involving QS signal molecules, reactions for PVD transport, and reac-
tions in bacterial culture (Luria-Bertani, LB) medium, were considered for computational
modeling (data available in Mendeley Data, https://doi.org/10.17632/y9htx3fcjm.1).

2.2.1. Curation of the Pseudomonas aeruginosa Metabolic Network

Curing a metabolic process refers to making the network mathematically feasible
by removing pathologies such as metabolites that are not produced or consumed by any
reaction in the model, eliminating thermodynamically infeasible cycles, and validating the
production of metabolites in the biomass reaction.

Before curating the P. aeruginosa metabolic network, the list of reactions in the network
was represented as a stoichiometric matrix (Sij) containing the ratio of the stoichiometric co-
efficient of each metabolite (i) in the reaction (j). Next, this network was curated according
to the following steps: (i) validation of the production of the biomass precursors by reverse
engineering [42], (ii) addition of the PVD metabolite to the biomass reaction by increasing
the value of the PVD coefficient until the metabolic pathway of PVD synthesis was activated,
(iii) detection and solution of network pathologies such as root no-production and root
no-consumption metabolites [43,44], and (iv) search and solution of thermodynamically
infeasible cycles (TICs) in the network [45]. In this work, the proposal to add PVD to the
biomass reaction was inspired by the work of Amara et al. [46], Prigent et al. [47], and

https://doi.org/10.17632/y9htx3fcjm.1
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Kim et al. [48], in which efforts have been made to optimize the production of secondary
metabolites, such as virulence factors, in genome-scale metabolic models.

2.2.2. Modeling of the Pseudomonas aeruginosa Metabolic Network Using a Steady-State
FBA Approximation

The P. aeruginosa metabolic network modeling using a steady-state FBA approxima-
tion [17] comprised the representation of a system of differential equations coupled to
an objective function, i.e., the biomass maximization (an optimization problem, a term
borrowed from engineering). The optimization problem was formulated as described in
Equation (3) and solved as a linear programming (LP) problem using the CPLEX solver
in the GAMS software (General Algebraic Modeling System: https://www.gams.com/,
accessed on 20 March 2023).

Maximize µ = vj(Biomass)

subject to: J

∑
j=1

Sij ∗ vj = 0, ∀ i = 1, . . . , I

LBj ≤ vj ≤ UBj, ∀ j = 1, . . . , J jR jIR ∈ J (3)

vO2 = K1

vGlc = K2

vATP = K3

where µ is the objective function, I and J represent the total number of metabolites
and reactions, respectively; Sij is the stoichiometric matrix for each metabolite i in the
reaction j; and vj is the flux of the reaction j expressed in mmol gDW−1h−1; and LBj and
UBj are the minimum and maximum fluxes that can adopt every reaction j given by the
thermodynamic feasibility of reactions. The fluxes for oxygen (vO2) and glucose (vGlc)
uptake, and ATP (vATP) production were limited at the rates of −10 mmol gDW−1h−1 (K1
and K2), and 10 mmol gDW−1h−1 (K3) [37].

2.3. Combining the QS Gene Regulatory Network and the Pseudomonas aeruginosa Metabolic
Network Models into an Integrative Model

The QS gene regulatory network and the P. aeruginosa metabolic network represent
two types of biological processes; both are part of a living cell but differ in time scale,
spatial location, control mechanisms, and chemical species that usually work separately.
However, both networks share chemical species, such as the enzymes encoded by the
QS network genes that catalyze some biochemical reactions in the P. aeruginosa metabolic
network. The challenge was to combine these two networks to function as an integrated
multiscale model. The work of Mallmann and collaborators inspired the methodological
proposal to solve the challenge [49]. Thus, the challenge was solved by (i) Finding the
shared reactions between the two models: the QS gene regulatory network model and
Pseudomonas aeruginosa metabolic network model, and (ii) using the fluxes of the reactions
shared by both model as constraints in the multi-stage FBA (see Section 2.3.2) and DFBA
(see Section 2.3.3) simulations. The two networks were found to share nine reactions
involved in the synthesis and transport of QS signal molecules (PQS, 3O-C12-HSL, and
C4-HSL), ferribactin and PVD (Table 2).

https://www.gams.com/
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Table 2. Reactions shared by the Quorum-Sensing and Pseudomonas aeruginosa metabolic network models.

Quorum-Sensing
Network

Metabolic
Network EC/TC Number Reaction Equation in the Metabolic Network

Model

3O-C12-HSL production 3O-C12-HSL synthesis EC 2.3.1.184 [c]: 3oxddACP + amet <==> 5mta + ACP + h +
n3oxdd-hsl

C4-HSL production C4-HSL synthesis EC 2.3.1.184 [c]: amet + butACP <==> 5mta + ACP + h +
nb-hsl

PQS production PQS
synthesis EC 1.14.13.182 [c]: fadh2 + h + hhq + o2 –> nad + h2o + pqs

C4-HSL
diffusion C4-HSL transport - nb-hsl[c] <==> nb-hsl[e]

3O-C12-HSL
diffusion 3O-C12-HSL transport - n3oxdd-hsl[c] <==> n3oxdd-hsl[e]

PQS
diffusion PQS transport - pqs[c] <==> pqs[e]

Ferribactin
production Ferribactin synthesis EC 6.3.2. [c]: glu-L + tyr-L + (2) ser-L + arg-L + 24dab + (2)

fohorn + lys-L + (2) thr-L –> fbn + (12) h2o + (2) h

PVD
production

PVD
synthesis EC 1.14.18. [c]: fbn + o2 –> pvd1 + h2o

PVD
export

PVD
transport TC-1.B.14.1.6 pvd1[c] –> pvd1[e]

2.3.1. Design of Simulation Scenarios

The integrated model was evaluated through several simulated scenarios expecting
its results to match the known cellular behavior of an in vitro bacterial culture of P. aerugi-
nosa [50,51]. For the simulations, six scenarios were selected for subsequent simulations
using the multi-stage FBA and DFBA approximations. Scenarios Sc1, Sc2, and Sc3 included
reactions involved in the synthesis of QS signal molecules and those involved in ferribactin
synthesis (Sc1), PVD synthesis (Sc2), or PVD transport (Sc3). Scenarios Sc4, Sc5, and Sc6
included reactions involved in the transport of QS signal molecules and those involved
in ferribactin synthesis (Sc4), PVD synthesis (Sc5), or PVD transport (Sc6) (Table 3). These
simulation scenarios were performed to evaluate which combination of reactions in the
multi-stage FBA (see Section 2.3.2) and DFBA (see Section 2.3.3) simulations showed a
more significant change in the fluxes’ distribution. Scenario 6 (Sc6) was chosen.

Table 3. Biochemical reactions involved in the integrative model simulation scenarios using FBA and
DFBA approximations. Sc: Scenario number; PVD: pyoverdine.

Metabolic Reaction Sc1 Sc2 Sc3 Sc4 Sc5 Sc6
3O-C12-HSL synthesis X X X

C4-HSL synthesis X X X

PQS synthesis X X X

C4-HSL transport X X X

3O-C12-HSL transport X X X

PQS transport X X X

Ferribactin synthesis X X

PVD synthesis X X

PVD transport X X
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2.3.2. Simulation Using the Multi-Stage FBA Approximation

Under the multi-stage FBA approximation, both network models were combined by
fixing in the metabolic model, as equality constraints, the fluxes of the shared reactions, ob-
tained from the QS network simulations according to each simulation scenario where E-PQS
concentration was changed (Table 1). The units of the fluxes of the QS reactions obtained
from the QS network simulations (µmol s−1L−1) were adjusted to mmol gDW−1h−1 [52].
Simulations were run at a time scale of 2000 intervals in the six simulation scenarios
(Table 3). The flux value obtained from the QS model in each time interval of the shared
reactions, according to the reactions involved in the different scenarios (Table 3), was fixed
respectively for each time interval in the multi-stage FBA and DFBA (see Section 2.3.3)
simulations. In addition, the optimization problem (Equation (3)) was modified for the
multi-stage FBA (Equation (4)) and solved as a linear programming (LP) problem using the
CPLEX v.12.6.0.0 solver in GAMS (https://www.gams.com/latest/docs/S_CPLEX.html,
accessed on 20 March 2023).

Maximize µ = vj(Biomass)

Subject to:
J

∑
j=1

Sij ∗ vj = 0, ∀ i = 1, . . . , I

LBj ≤ vj ≤ UB, ∀ j = 1, . . . , J jR jIR ∈ J (4)

vO2 = K1

vGlc = K2

vATP = K3

vj = v ĵ ∀ ĵ ∈ QS Reactions

∀ t ∈
[
t0, t f

]
where ĵ is the subset of J-type reactions denoting the reactions shared by the QS and
P. aeruginosa metabolic networks, w is the instance to evaluate µ in ĵ-type reactions, α is
the final instance to evaluate µ in ĵ-type reactions and β is the last ĵ-type reaction to be
fixed. For this model, the fluxes of the shared reactions (v ĵ) were fixed according to each
simulation scenario (Table 3). Finally, scenario 6 (Sc6) showed a more significant change in
the fluxes’ distribution.

2.3.3. Simulation Using the DFBA Approximation

The behavior of the integrated model over time was observed by dynamic simulation
using the DFBA approximation. Thus, observing the influence of the QS network on the P.
aeruginosa metabolic network and the interaction between both networks over time was
possible. Furthermore, the DFBA approximation proposed by Mahadevan et al. [22] was
used to solve the optimization problem shown in Equation (5).

Maximize
N

∑
j=1

cj·vj(t)

Subject to:

zi(t + ∆t) = zi(t)−
J

∑
j=1

Sij·vj(t)·X(t)·∆t ∀ i ε 1, . . . , Iextracellular

https://www.gams.com/latest/docs/S_CPLEX.html
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X(t + ∆t) = X(t) + µ·X(t)·∆t (5)

J

∑
j=1

Sij·vj = 0 ∀ i ε 1, . . . , Iextracellular

vmin
j < vj(t) < vmax

j ∀ j ε 1, . . . , J

ĉ
(
zi(t), vj(t)

)
≤ 0

zi(t) ≥ 0 zi(t0) = zi,0 ∀ i ε 1, . . . , Iextracellular

X(t) ≥ 0 X(t0) = X0

∆t =
t f − t0

G
∀ G ε 0 . . . G

vj = v ĵ ∀ ĵ ε Qs Reactions

∀ t ε
[
t0, t f

]
where zi is the extracellular metabolite concentration, zi,0 and X0 are the initial condi-
tions for each metabolite and biomass concentration, respectively, µ is the specific cell
growth rate, cj is the reaction weight, ĉ(z, v) is the vector of nonlinear constraints (sub-
strate consumption kinetics), t0 and t f correspond to the initial and final times (0 and
19 h, respectively, at 0.0095-h intervals), G is the number of intervals used to discretize
the time and ĵ is the subset of J-type reactions denoting the reactions shared by the QS
and P. aeruginosa metabolic networks. Simulations were run to obtain (i) the flux pro-
file of each reaction, (ii) the growth rate profile, (iii) the biomass concentration profile,
and (iv) the concentration profiles over time of the metabolites of interest, i.e., the QS
signal molecules, glucose, and PVD. The optimization problem was solved as a nonlin-
ear programming problem (NLP) using the CONOPT v3.15N solver in GAMS software
(https://www.gams.com/latest/docs/S_CONOPT.html, accessed on 20 March 2023). This
model includes the equality and inequality constraints of the system (thermodynamics) and
the fluxes of the QS network reactions fixed in the P. aeruginosa metabolic network (accord-
ing to scenarios Table 3) as equality constraints according to the results of each simulation
scenario where E-PQS concentration was changed (Table 1). The following conditions were
set for the simulation: 0.0095-time step size and three orthogonal placement points for a
Legendre polynomial; also, initial source concentrations of carbon (glucose = 55.5 mM),
nitrogen (NH4

+ = 104.127 mM), phosphate (Pi = 3.88 mM), sulfate (SO4
2− = 0.286 mM),

biomass (X = 0.1 g/L) and oxygen (O2 = 1 mM). The initial concentrations of glucose,
nitrogen, phosphate, and sulfate were calculated according to the approximate composition
of the Luria Broth (LB) culture medium reported in the technical specifications of the
commercial culture medium.

2.4. Cultures of Pseudomonas aeruginosa Strain PAO1

The integrated model, named CCBM1146, was evaluated qualitatively by comparing
the behavior pattern of PVD production and biomass production between data obtained
from in silico simulations and those obtained from in vitro cultures of P. aeruginosa strain
PAO1 (collection of the research group Comunicación y comunidades bacterianas, Department
of Biology, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá) was grown in
Luria Broth medium (10 g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl) in a 1-L BioStat®A
bioreactor (Sartorius Stedim Biotech, Goettingen, Germany), equipped with a disc-type
impeller, a ring-type diffused bubble aeration system, pH and pO2 probes, a chiller for
temperature control, and an aeration system for continuous and automatic control of the
laboratory airflow. Cultures were grown in triplicate batches under controlled pH = 7,

https://www.gams.com/latest/docs/S_CONOPT.html
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Tº = 37 ◦C, agitation = 200 rpm, oxygen saturation = 20%, and air flow = 2 L*min−1 (2 vvm).
Cultures were incubated for 24 h, and aliquots were collected at 1-h intervals.

2.4.1. Evaluation of Bacterial Growth

Aliquots of 1 mL of the P. aeruginosa cultures were taken to measure the absorbance
at 600 nm by spectrophotometry. The mean values were analyzed by logistic regression
using the StatSoft statistical software to fit the data according to Equation (6) and obtain
the following specific growth equation for strain PAO1.

v2 = Exp (
(−a + b) ∗ v1

1 + Exp(−a + (b) ∗ v1)
) (6)

where v2 corresponds to absorbance and v1 to time. Values calculated for a (1.950216) and
b (0.234159), showed an adequate adjustment of the data with R = 0.9915 and explained
variance = 98.316% .

2.4.2. Evaluation of Biomass Production

After incubation was complete, three aliquots (1 mL) of the in vitro cultures of
P. aeruginosa were taken and centrifuged at 14,000 rpm for 5 m at 4 ◦C. The pellets were
discarded, and the supernatants were stored at −80 ◦C for subsequent determination of
the PVD profile following the protocol of Meyer and Abdallah [53–55]. Total biomass
was measured as dry weight. Briefly, at the end of the culture incubation, three aliquots
(50 mL) of the cultures were collected and centrifuged at 14,000 rpm for 5 m. The pellets
were washed with sterile water, centrifuged again at 14,000 rpm for 5 m, dried at 50 ◦C,
transferred to a drying chamber, and weighed.

3. Results
3.1. The Quorum-Sensing Gene Regulatory Network for Pyoverdine Expression in Pseudomonas
aeruginosa: A Deterministic Model

The QS network model described here consists of 114 subcellular chemical species,
including proteins, small molecules, genes and their corresponding mRNAs, and nine com-
plexes containing different molecules (data available in Mendeley Data, https://doi.org/
10.17632/2xzzkmnpfx.1). In addition, this QS network model comprised 103 biochemical
reactions, including DNA transcription, mRNA translation, protein complex formation,
inhibition reactions, and molecule-to-molecule interactions with positive, negative, or
unknown effects (Figure 2). All reactions and interactions between them had the kinetic
rate constant (k) values reported in the literature. The values of k not reported in the
literature were assumed to be within the range of published k values for similar reactions
(data available in Mendeley Data, https://doi.org/10.17632/2xzzkmnpfx.1). For model
construction, a system of 114 ODE was generated using a total of 103 kinetic parameters
and represented using the SBGN graphical notation of the SBML models.

The QS network was modeled in the twenty simulation scenarios described in Table 1.
The system was set up in all of these scenarios with an initial concentration of 1.0 µM of all
QS genes and super-regulator proteins. In addition, extracellular Fe3+ availability and PVD
transport system proteins were fixed to a starting concentration of 2.0 µM (data available
in Mendeley Data, https://doi.org/10.17632/2xzzkmnpfx.1). In all simulation scenarios,
the concentration of the E-PQS signal molecule was modified to emulate the behavior of
in vitro cultures of P. aeruginosa, where population growth increases as a function of time
(more cells per unit volume) (Table 1). The performance of the QS network model was
understood as synthesis of the chemical species of interest, i.e., intracellular production of
the QS signal molecules (homoserine-lactones 3O-C12-HSL and C4-HSL, and quinolone
PQS), cytosolic production of ferribactin, and periplasmic production of PVD (Figure 3).

https://doi.org/10.17632/2xzzkmnpfx.1
https://doi.org/10.17632/2xzzkmnpfx.1
https://doi.org/10.17632/2xzzkmnpfx.1
https://doi.org/10.17632/2xzzkmnpfx.1


Metabolites 2023, 13, 659 12 of 31
Metabolites 2023, 13, x FOR PEER REVIEW 13 of 37 
 

 

 

Figure 2. The quorum-sensing network regulates the expression of pyoverdine in Pseudomonas
aeruginosa. The QS network was constructed by analysis of bibliomic information, schematized
in CellDesigner 4.4, and modeled with the SBML ODE Solver Library (SOSlib). The chemical
species are represented in SBML format: Genes by straight yellow squares; mRNAs by dark green
diagonal squares; proteins by light green and brown oval squares; single molecules by bright green
and pink ovals; and O2, Fe2+, and Fe3+ ions by blue circles. Gray and white squares represent
complexes of simple molecules and macromolecular complexes, respectively. Red circles represent
the degradation processes of all proteins included in the model. Arrow colors represent the following
interactions between chemical species: Purple for transcription and translation processes; black for
complex formation processes; yellow for complex cleavage; pink and green for the diffusion of signal
molecules; red and blue for negative and positive regulatory processes, respectively; and orange for
protein interactions in specific reactions. (Each symbol and its meaning are available in Mendeley
Data, https://doi.org/10.17632/2xzzkmnpfx.1).

The first simulation was run under the “initial conditions” scenario (Table 1). This
simulation tested the intracellular production of the chemical species of interest (data
available in Mendeley Data, https://doi.org/10.17632/2xzzkmnpfx.1). In this simulation,
increasing concentrations of QS signal molecules were not considered because the purpose
was to assess the basal capacity of the model to reproduce the QS circuits and produce QS
signal molecules intracellularly. In silico intracellular production of the chemical species of
interest corresponded to simulated concentrations of 0.0234 µM for 3O-C12-HSL, 0.0102
µM for C4-HSL, 0.00099 µM for PQS; 0.0158 µM for ferribactin, and 0.0635 µM for PVD
(Figure 3). These values are relevant because they test whether the model behaves in
agreement with data reported in the literature [56–58].
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Figure 3. Simulation of the quorum sensing gene regulatory network model of Pseudomonas
aeruginosa. Intracellular production of QS signal molecules (3O-C12-HSL, C4-HSL, PQS), ferribactin,
and PVD under the “initial conditions” scenario (Table 1).

The low concentration of these chemical species showed that the system on its own
produced a basal amount of signal molecules, ferribactin, and PVD in response to the
concentration of Fe3+ available in the extracellular medium (simulated at an initial con-
centration of 2.0 µM). Subsequently, simulations run according to the scenarios in Table 1
showed that the higher the concentration of E-PQS, the higher the intracellular PVD pro-
duction. The experimentation performed allowed the evaluation of the sensitivity of the
output variable [intracellular PVD] to marginal changes in the input parameter [E-PQS]
(Appendix A).

The highest PVD yield (0.122 µM) was achieved with 0.6 µM E-PQS (Sc16; ID = PQSE06
in Table 1). On the other hand, the highest concentrations of E-PQS (Sc17 to Sc20) were
related to a decrease in PVD production (Figure 4A), indicating that the saturation point of
the system was reached at 0.6 µM E-PQS. At the saturation point in the cell, in the partic-
ular case of the signaling molecule PQS, when there is a PQS “maximum” concentration
inside the cell—which depends directly on the QS phenomenon [7,8]—no new extracellular PQS
molecules can enter the cell, thus decreasing the virulence factors such as QS-regulated
PVD production over time [13–16].

A dynamic equilibrium was reached in each simulation scenario, meaning that all
chemical species in the model reached a constant value after some time interval. Con-
trary to the effect of the initial E-PQS concentration on intracellular PVD production, the
final extracellular PVD concentration was not affected in any of the simulated scenarios
(Figure 4B). However, the system evidenced a change in the trajectory of extracellular PVD
production.
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Figure 4. Simulated (A) intracellular and (B) extracellular pyoverdine production in Pseu-
domonas aeruginosa cultures varied as a function of initial E-PQS concentration. Simulations
were run in 20 scenarios at varying initial concentrations of extracellular PQS (from 0.01 µM to 0.1 µM
with 0.01-unit intervals and from 0.1 µM to 1.0 µM with 0.1-unit intervals (Table 1).
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3.2. Pseudomonas aeruginosa Metabolic Network Model CCBM1146: An Improved Version of the
Genome-Scale Metabolic Model iMO1056

The iMO1056 model, including its biomass reaction [37], was the starting point. First,
the data associated with all reactions in the model were reviewed, followed by a reverse-
engineering curation process. Next, 90 genes, 120 metabolites, and 41 reactions, including
those in the metabolic pathway of PVD synthesis, were selected to fill the gaps in the model.
Finally, PVD was added to the biomass reaction as a metabolite to obtain the improved
model CCBM1146 (Table 4).

Table 4. Comparison of Pseudomonas aeruginosa metabolic network models iMO1056 and CCBM1146
(data available in Mendeley Data, https://doi.org/10.17632/y9htx3fcjm.1).

Model
Reactions and Components

iMO1056 CCBM1146
Metabolic reactions 728 774
Transport reactions 150 146

Biomass reaction 1 1
Maintenance reaction 1 1

Exchange reactions 118 120
Reactions for metabolite input

from the culture medium 84 81

Total reactions 1082 1123
Total metabolites 760 880

Total genes 1056 1146

The curation process was complemented by (i) evaluation of metabolite production
and consumption in the biomass reaction by reverse engineering; (ii) detection and resolu-
tion of pathologies in the 880 metabolites of the network: 29.51% had pathologies, 17.25%
were resolved and 12.26% with unresolved pathologies remained in the model; (iii) detec-
tion and resolution of TICs: 23 TICs were identified and entirely resolved in the network.
Finally, the proposed model, CCBM1146, comprised 1123 reactions, 880 metabolites, 136 pro-
tein complexes and transport proteins, and 1146 genes coding for 826 enzymes. Each reac-
tion was manually assigned a metabolic system and its corresponding labeled subsystems
according to the ontology pathway (https://biocyc.org/searchhelp.shtml#ontology_search,
accessed on 15 October 2018) established by the BioCyc database (Figure 5). Analysis of the
BioCyc metabolic system labels revealed that the CCBM1146 model consisted mainly of
reactions of central metabolism, such as biosynthesis of cofactors, prosthetic groups, and
electron transporters, followed by transport and exchange reactions involved in amino acid
biosynthesis and degradation, lipopolysaccharide biosynthesis, and reactions involved
in the biosynthesis of lipid molecules for cell wall formation (data available in Mendeley
Data,https://doi.org/10.17632/y9htx3fcjm.1).

The definitive CCBM1146 model and the steady-state FBA approximation were used
to obtain the flux distribution of reactions in the P. aeruginosa metabolic network. The
flux value (the rate at which a metabolite is formed as a function of the available biomass
[mmol/gWD*h−1]) obtained for the objective function of the model was 0.55 h−1 (data
available in Mendeley Data, https://doi.org/10.17632/y9htx3fcjm.1). After simulation,
352 reactions with active fluxes were obtained, including those for synthesis, transport,
and exchange of the QS signal molecules (PQS, 3O-C12-HSL, and C4-HSL) and PVD. This
relatively small number of reactions is principally due to the structure of the biomass
equation. Also, it could be related to the addition of PVD to the biomass reaction, which
triggers the activation of a small set of essential reactions of the central metabolism (in-
cluding biomass metabolites and PVD synthesis reactions). Furthermore, since PVD is a
secondary metabolite, these reactions result in PVD production upon activating necessary
intermediary metabolism and secondary metabolism reactions in the model.

https://doi.org/10.17632/y9htx3fcjm.1
https://biocyc.org/searchhelp.shtml#ontology_search
https://doi.org/10.17632/y9htx3fcjm.1
https://doi.org/10.17632/y9htx3fcjm.1
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Figure 5. Pseudomonas aeruginosa metabolic network model CCBM1146 for pyoverdine biosyn-
thesis involves reactions of the central metabolism and secondary metabolism. The most repre-
sentative metabolic systems corresponded to the biosynthesis of cofactors, prosthetic groups, and
electron transporters, followed by reactions responsible for metabolite transport and exchange, and
then amino acid biosynthesis and degradation. Another group of reactions was involved in the
synthesis of lipopolysaccharides and other lipid molecules for cell wall formation. The reactions in
the model were classified according to the metabolic system to which they are ascribed in the BioCyc
database (data available in Mendeley Data, https://doi.org/10.17632/y9htx3fcjm.1).

3.3. Integrative Model Simulations Evidenced the Influence of Quorum-Sensing Signaling on
Pyoverdine Biosynthesis in Pseudomonas aeruginosa Cultures

As described in materials and methods, the design of the integrative model required
the combination of the QS regulatory gene network model and the P. aeruginosa metabolic
network model. Since these networks have different types of biological language, the
flux values of nine reactions shared by both networks were considered to be useful for
merging the behavior of chemical species in both types of network models. These nine
shared reactions were involved in the synthesis and transport of QS signal molecules,
ferribactin synthesis, and PVD synthesis and transport. After applying the multi-stage
FBA approximation in six simulation scenarios of the integrated model (Table 3), the Sc3

https://doi.org/10.17632/y9htx3fcjm.1
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scenario was chosen for subsequent simulations. This scenario evidenced the highest
sensitivity of the CCBM1146 model to changes in the fluxes of reactions involved in the
metabolic synthesis of the three QS signal molecules and transport of PVD. Subsequently,
twenty simulations were run under the multi-stage FBA approximation in scenarios with
varying initial E-PQS concentration (Table 1) and fixing the flux values of four of the
reactions shared by the QS and the P. aeruginosa metabolic network models included in
the Sc3 scenario (Table 3). Figure 6A shows a dynamic response of the integrative model
objective function in the first four hours of in silico simulations; this response was related
to changes in signal intensity derived from the QS model (deterministic model). This
response was evident in all simulation conditions of the CCBM1146 model. Therefore, the
sensitivity of the CCBM1146 model can be biologically interpreted as follows: the higher the
E-PQS concentration at the beginning of bacterial growth, the higher the bacterial metabolic
demand, and the greater the deceleration of the objective function (biomass maximization)
(Figure 6A).

Twenty simulations run using the DFBA approximation and under conditions iden-
tical to those of the multi-stage FBA approximation showed similar results (Figure 6B),
supporting the consistency of the proposed CCBM1146 model. During the first hours
of simulation, the objective function showed a dynamic response related to changes in
the signal intensity derived from the QS network in all simulation scenarios, i.e., as the
QS signal increased, the behavior of the objective function changed. Subsequently, the
objective function reached the same value in all simulation scenarios at approximately the
14-h interval. Finally, the value of the objective function decreased to zero simultaneously
with the overall consumption of the available glucose (carbon source) in the model.

In addition, biomass profiles and concentrations of metabolites of interest were ob-
tained under the DFBA approximation. Both in silico (Figure 7A) and in vitro (Figure 7B)
data showed an exponential increase in biomass profiles up to hour 14 of culture of P. aerug-
inosa. A similar exponential increasing trend in biomass concentration was also observed
over time up to the stationary phase. Therefore, it is possible to suggest that the biomass
profile predicted (Figure 7A) by the CCBM1146 model properly represents the in vitro
behavior of P. aeruginosa (Figure 7B).

In silico and in vitro PVD profiles were also compared (Figure 8). In silico, the PVD
value increased in the first 8 h of simulated culture and reached a stable concentration
around 9 h (Figure 8A). The in vitro PVD profile showed an increasing trend in PVD
concentration over time. The maximum PVD concentration was reached around 10 h of
culture. It coincided roughly with the mid-exponential phase of bacterial growth in vitro
(Figure 8B) when signal molecules were produced. Bacteria responded to those signal
molecules in the stationary phase [59].

However, a variation in PVD concentration was observed in vitro, probably related
to typical PVD oxidation over time in a natural system. Moreover, the oxidation changed
the characteristic green color of PVD in vitro due to the quinoline-based cyclic fluorescent
chromophore, which is responsible for the bright fluorescence of pyoverdine [60].

In silico, glucose concentration varied over time in all simulation conditions (Figure 9A);
the initial glucose concentration (55 mM) was consumed entirely at approximately 14 h. In
addition, in silico profiles of the QS signal molecules, i.e., 3O-C12-HSL (Figure 9B), C4-HSL
(Figure 9C), and PQS (Figure 9D), also showed their concentrations increased up to hour 10.
This time roughly corresponded to the mid-exponential phase of P. aeruginosa growth
in vitro and agreed with data from the literature, according to which cells have a basal
production of signal molecules that reach a maximum concentration in the mid-exponential
phase of growth.
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Figure 6. In silico profile of the CCBM1146 model objective function under (A) the multi-stage
FBA approximation and (B) the dynamic FBA approximation. Simulation results under the multi-
stage FBA approximation were generated in GAMS for the CCBM1146 model at varying initial E-PQS
concentrations (Table 1) and fixing the flux values of four reactions shared by the QS and P. aeruginosa
metabolic network models in the Sc3 scenario (Table 3).



Metabolites 2023, 13, 659 19 of 31

Metabolites 2023, 13, x FOR PEER REVIEW 23 of 37 
 

 

stage FBA approximation were generated in GAMS for the CCBM1146 model at varying initial E-

PQS concentrations (Table 1) and fixing the flux values of four reactions shared by the QS and P. 

aeruginosa metabolic network models in the Sc3 scenario (Table 3). 

Twenty simulations run using the DFBA approximation and under conditions iden-

tical to those of the multi-stage FBA approximation showed similar results (Figure 6B), 

supporting the consistency of the proposed CCBM1146 model. During the first hours of 

simulation, the objective function showed a dynamic response related to changes in the 

signal intensity derived from the QS network in all simulation scenarios, i.e., as the QS 

signal increased, the behavior of the objective function changed. Subsequently, the objec-

tive function reached the same value in all simulation scenarios at approximately the 14-

h interval. Finally, the value of the objective function decreased to zero simultaneously 

with the overall consumption of the available glucose (carbon source) in the model. 

In addition, biomass profiles and concentrations of metabolites of interest were ob-

tained under the DFBA approximation. Both in silico (Figure 7A) and in vitro (Figure 7B) 

data showed an exponential increase in biomass profiles up to hour 14 of culture of P. 

aeruginosa. A similar exponential increasing trend in biomass concentration was also ob-

served over time up to the stationary phase. Therefore, it is possible to suggest that the 

biomass profile predicted (Figure 7A) by the CCBM1146 model properly represents the in 

vitro behavior of P. aeruginosa (Figure 7B). 

 

(A) 

Metabolites 2023, 13, x FOR PEER REVIEW 24 of 37 
 

 

 

(B) 

Figure 7. In silico and In vitro biomass profiles of Pseudomonas aeruginosa cultures. (A). In silico 

biomass profile of P. aeruginosa cultures in the CCBM1146 model under the DFBA approximation. 

Simulation results were generated in GAMS for the CCBM1146 model at varying initial E-PQS con-

centrations (Table 1) and fixed flux values of four reactions shared by the QS network and P. aeru-

ginosa metabolic network models in the Sc3 scenario (Table 3). (B). In vitro biomass profile of P. 

aeruginosa cultures. This biomass profile was generated from average dry weight data of P. aeru-

ginosa cultures grown under controlled laboratory conditions. 

In silico and in vitro PVD profiles were also compared (Figure 8). In silico, the PVD 

value increased in the first 8 h of simulated culture and reached a stable concentration 

around 9 h (Figure 8A). The in vitro PVD profile showed an increasing trend in PVD con-

centration over time. The maximum PVD concentration was reached around 10 h of cul-

ture. It coincided roughly with the mid-exponential phase of bacterial growth in vitro 

(Figure 8B) when signal molecules were produced. Bacteria responded to those signal 

molecules in the stationary phase [59]. 

Figure 7. In silico and In vitro biomass profiles of Pseudomonas aeruginosa cultures. (A). In silico
biomass profile of P. aeruginosa cultures in the CCBM1146 model under the DFBA approximation.
Simulation results were generated in GAMS for the CCBM1146 model at varying initial E-PQS
concentrations (Table 1) and fixed flux values of four reactions shared by the QS network and
P. aeruginosa metabolic network models in the Sc3 scenario (Table 3). (B). In vitro biomass profile
of P. aeruginosa cultures. This biomass profile was generated from average dry weight data of
P. aeruginosa cultures grown under controlled laboratory conditions.
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Figure 8. In silico and In vitro profiles of pyoverdine production in Pseudomonas aeruginosa
cultures. (A). In silico profile of pyoverdine production in the CCBM1146 model under the DFBA
approximation. Simulation results were generated in GAMS for the CCBM1146 model at varying
initial E-PQS concentrations (Table 1) and fixed flux values of four reactions shared by the QS network
and P. aeruginosa metabolic network models in the Sc3 scenario (Table 3). (B). In vitro profile of
pyoverdine production. This profile was generated from the average absorbance (450 nm) data [53,55]
of cultures of P. aeruginosa grown under controlled laboratory conditions.



Metabolites 2023, 13, 659 21 of 31

Metabolites 2023, 13, x FOR PEER REVIEW 26 of 37 
 

 

pyoverdine production. This profile was generated from the average absorbance (450 nm) data [53], 

[55] of cultures of P. aeruginosa grown under controlled laboratory conditions. 

However, a variation in PVD concentration was observed in vitro, probably related 

to typical PVD oxidation over time in a natural system. Moreover, the oxidation changed 

the characteristic green color of PVD in vitro due to the quinoline-based cyclic fluorescent 

chromophore, which is responsible for the bright fluorescence of pyoverdine [60]. 

In silico, glucose concentration varied over time in all simulation conditions (Figure 

9A); the initial glucose concentration (55 mM) was consumed entirely at approximately 

14 h. In addition, in silico profiles of the QS signal molecules, i.e., 3O-C12-HSL (Figure 

9B), C4-HSL (Figure 9C), and PQS (Figure 9D), also showed their concentrations increased 

up to hour 10. This time roughly corresponded to the mid-exponential phase of P. aeru-

ginosa growth in vitro and agreed with data from the literature, according to which cells 

have a basal production of signal molecules that reach a maximum concentration in the 

mid-exponential phase of growth. 

  
(A) (B) 

  

(C) (D) 

Figure 9. In silico (A) glucose profile, (B) QS signal molecule 3O-C12-HSL profile, (C) QS signal 

molecule C4-HSL profile, and (D) extracellular QS signal molecule PQS in Pseudomonas aeru-

ginosa under the DFBA approximation. Simulation results were generated in GAMS for the 

CCBM1146 model at varying initial E-PQS concentrations (Table 1) and fixed flux values of four 

Figure 9. In silico (A) glucose profile, (B) QS signal molecule 3O-C12-HSL profile, (C) QS sig-
nal molecule C4-HSL profile, and (D) extracellular QS signal molecule PQS in Pseudomonas
aeruginosa under the DFBA approximation. Simulation results were generated in GAMS for the
CCBM1146 model at varying initial E-PQS concentrations (Table 1) and fixed flux values of four re-
actions shared by the QS network and P. aeruginosa metabolic network models in the Sc3 scenario
(Table 3).

4. Discussion

A thorough understanding of complex biological systems’ behavior requires studying
and comprehending the interplay of several processes that often occur at different spatial
and temporal scales in the biological system as a whole [1,2,61]. The biological problem
addressed in this work was the synthesis of the virulence factor PVD in P. aeruginosa.
The synthesis of PVD requires bacterial communication through the QS phenomenon to
produce signal molecules that regulate the expression of pvd genes encoding enzymes that
catalyze the synthesis of the virulence factor PVD. Three types of biological processes are
involved in PVD synthesis, namely: (i) the QS signaling pathway, (ii) a regulatory pathway
for pvd gene expression, and (iii) the effect of these two processes on the P. aeruginosa
metabolic network for PVD biosynthesis. These three processes were encompassed here
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in a multiscale model to explain the influence of the QS phenomenon on the metabolic
pathway of PVD biosynthesis in P. aeruginosa.

4.1. The QS Gene Regulatory Network Model Emulates the Natural Behavior of
Pseudomonas aeruginosa

The deterministic in silico model of the QS gene regulatory network in P. aeruginosa
proposed in this work is the first approximation that includes the three QS systems reported
for this microorganism. It also incorporates the autoregulatory mechanisms of these three
QS systems as well as the mechanisms responsible for the expression of pvd genes, the
transport of PVD to the extracellular space, and the chelation and entry of iron into the
bacterium through the PVD/Fe3+ complex. The data obtained from QS model simula-
tions are supported by the fact that any system in dynamic equilibrium tends to reach
a steady state, which translates into an equilibrium that resists external forces of change
(perturbations). When the system is perturbed, the regulatory systems—in this case, the
QS systems—respond to the signals emitted to establish a new equilibrium; this function is
executed by the QS systems themselves and is known as feedback control. All biological
processes that integrate and coordinate the functioning of living organisms are examples
of the homeostatic regulation required by the system to ensure cell survival. Thus, the
biological system is driven to the homeostatic state expected from its behavior, which is
likely to maintain stability while adapting to the optimal conditions for survival. This
argument is supported by the work of Gonzalez et al. [62], which states that the steady
state is the inherent state of biological systems in the environment. Therefore, analyses
of bacterial systems during the steady state have been the basis for most conclusions on
bacterial network modeling [62].

The proposed deterministic QS network model emulated in silico the natural behavior
of P. aeruginosa in culture, i.e., as the bacterial population increased (more cells per unit
volume), the extracellular concentration of QS signal molecules per unit volume also
increased. It was also evident that the signal molecules of all three QS systems were
synthesized intracellularly and that as their concentration decreased, PVD production
increased; that is, the QS network model reproduced known biological behavior and
worked according to the expected cellular dynamics concerning the QS systems (Figure 3).
It is important to note that a complex modeling of the internal regulation of the QS network
in P. aeruginosa was achieved, as well as the possibility to simulate extracellular conditions
that can lead to an increase in bacterial population density by modifying the concentration
of the exogenous QS signal molecules. As shown in Figure 4A, the simulated intracellular
PVD production was directly proportional to the extracellular PQS concentration (increase
in QS strength) under the simulation conditions posed for each scenario (Table 1). However,
after reaching a peak concentration, PVD production decreased, indicating that the system
reached a saturation point with the following range of dynamic equilibrium. This result
could be related to an increase in the intracellular Fe2+ concentration resulting from the
autoregulatory mechanisms of the system. In the cytosol, the ferrous ion (Fe2+) forms a
complex with the Fur protein, Fur/Fe2+, that binds to the promoter regions of pvd genes
(iron-repressible or iron-regulated genes), thus inhibiting their transcription. Under limiting
intracellular iron concentrations, the Fur-mediated repression decreases, and a positive
transcriptional regulation of pvd genes ensues [63–65]. The proposed deterministic QS
network model reproduces this regulatory phenomenon that is directly related to the
production of PVD, the formation of the PVD/Fe3+ complex at the extracellular level, its
subsequent entry into the cell via an ABC-type transport system, and finally, to the release
of Fe2+ into the cytosolic space.

On the other hand, it should be noted that the simulated extracellular PVD (Figure 4B)
behaved differently from intracellular PVD in response to the increase of extracellular
PQS levels. In the first few hours, the system showed a change in the trajectory of the
extracellular PVD concentration. This different dynamic response could be attributed to
the PVD transport mechanism involving the surface receptor FpvA, the anti-sigma factor
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FpvR [66,67], and the protein responsible for energy transduction to import molecules
through the TonB protein located in the outer membrane of the bacterium [7,8,14,15,67–69].
According to Arevalo-Ferro et al., the expression of TonB is also regulated by QS in
P. aeruginosa [70]. Thus, the results of simulations performed with the QS Network can be
supported, as mentioned previously, on the basis that any system in dynamic equilibrium
tends to reach a stable state, which translates into an equilibrium that resists external forces
of change.

In addition, the model acquired the emerging property of resilience, characteristic of
adaptive biological systems. Although this property was not modeled, it became apparent
when the model was disturbed as the QS regulatory system responded to outputs to
establish a new dynamic equilibrium that reached a steady state. The generated equilibrium
resisted disturbances, understood as external forces of change. The in silico results were
similar to those reported on the natural behavior of QS mechanisms in P. aeruginosa [67,71].

4.2. The Proposed Integrative CCBM1146 Model Helps to Infer the Influence of the QS
Phenomenon on the PVD Metabolic Biosynthesis in Pseudomonas aeruginosa

This study proposed a systemic approach to design an integrative multiscale model to
understand the influence of the QS phenomenon on the expression of the PVD metabolic
phenotype of P. aeruginosa by combining two networks with different temporal and spatial
scales, namely, the QS communication network responsible for regulating the expression of
pvd genes and the bacterial metabolic network of PVD biosynthesis.

The CCBM1146 metabolic network model is an improved version of the genome-scale
metabolic network iMO1056 developed by Oberhardt et al. [37]. The CCBM1146 model
includes reactions of the central metabolism, all reactions for the biosynthesis of PVD
and QS signal molecules, as well as those involved in their corresponding transport and
exchange. The strategy used to combine the two networks was based on obtaining from the
QS network simulations the fluxes of the reactions shared by the two networks to set them
in the corresponding metabolic reactions in the CCBM1146 model as constraints of the
optimization problem in the DFBA. The network combination strategy was evaluated by
simulations in the integrative CCBM1146 model under a multi-stage optimization approach
to obtain the values of changes in the objective function (biomass maximization) over time
without considering the changes in metabolite concentrations. Subsequently, the model was
run under a DFBA approximation to obtain the distribution of reaction fluxes over time and
the concentration profiles of biomass and metabolites of interest. As shown in Figure 6A,
the results of the multi-stage FBA modeling evidenced a different dynamic response of the
objective function related to changes in the signal strength from the QS network model
in all simulation scenarios. As the QS signal increased, there was a noticeable change in
behavior of the objective function, which decreased to a minimum and then increased to
a stable value in all simulation scenarios. The decrease in the objective function value
(Figure 6A) could be attributed to its degeneracy by one of the elements involved in the
optimization, which does not support its value to increase. Degeneracy also occurs when
the constraint in the optimization problem increases [72,73]. According to the study by
Wintermute et al., “the FBA generally cannot predict a unique rate for all fluxes. A solution
that maximizes growth rate is typically mathematically degenerate, describing a region in
flux space rather than a single point. Solution degeneracy is a well-described problem in
systems like metabolism, which are flexible, internally redundant, and underdetermined
by data” [72]. Alternatively, it may also occur because the availability of resources does
not imply that the model immediately exploits them in favor of maximizing the objective
function. Instead, it can be interpreted as a period of adjustment or adaptation of all
variables to optimize the maximization of the objective function. However, as the influence
of the constraint increases—understood as a more significant influence of the QS signal—
the point at which the value of the objective function does not vary significantly over time
(steady state) is reached in a shorter time.
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The DFBA results were similar to those from the multi-stage FBA approximation
(Figure 6B). However, under the DFBA approximation, the objective function reached a
stable value around the hour 14 and then dropped to zero in all simulation scenarios. The
point at which the objective function reached a zero value coincided with the point of
depletion of the carbon source (glucose). This fact could explain the results, considering
that once the total glucose consumption is reached, the maximization of the objective
function cannot take a value other than zero. In in vitro cultures, bacterial growth reaches
the stationary phase when the nutrients in the medium—especially the carbon source—
have been consumed, indicating that the bacteria can no longer grow. Growth curves of
Pseudomonas aeruginosa in cultures incubated under controlled conditions—intended to
validate some of the results of the CCBM1146 model—showed that the stationary phase
was reached between 14 h and 15 h of culture (Figure 10), similar to the in silico point at
which the value of the objective function dropped to zero.
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Figure 10. In vitro growth profile of Pseudomonas aeruginosa. The growth curve shows an expo-
nential phase starting at around hour 6 and a stationary phase between 19 h and 20 h, in agreement
with Kim et al. [74]. The growth curve was generated from mean OD (600 nm) data of P. aeruginosa
cultures (n = 3) that were analyzed by logistic regression. In the model equation, v2 represents the
fitted absorbance (y-axis, dependent variable), and v1 (x-axis) represents time.

The divergences observed between the in vitro and in silico results may be due to
several factors, including the growth conditions of each system. For the in silico model,
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glucose was considered the sole carbon source; its concentration, as well as those for
nitrogen, phosphate, and sulfate sources, were estimated from the composition of the LB
culture medium. The LB culture medium is a complex mixture of nutrients because its main
constituents are yeast extract and tryptone, so the concentration of each nutrient could not
be accurately determined. In contrast, in the in vitro model, the bacteria grew in cultures
prepared with LB medium. There, they could take advantage of the total concentration of
nutrients and utilize carbon sources other than glucose, which may be reflected in bacterial
growth. Furthermore, it is important to note that the in vitro growth conditions were
optimal for the microorganism, even better than those in vivo.

Finally, it should be noted that in the in vitro cultures, the bacterial population pro-
duced the QS signal by itself; i.e., the culture medium was not supplemented with syn-
thetic QS signal molecules. Nevertheless, the pattern of behavior of the biomass profile
(Figure 7B), and PVD concentration profile (Figure 8B) were adequately reproduced by
the in silico results obtained in the integrative model under the DFBA approximation
(Figures 7A and 8A).

The methodological strategy employed in this study and the results indicate that the
proposed multiscale CCBM1146 model offers valuable insights into the influence of the
QS phenomenon on the metabolism and subsequent behavior of P. aeruginosa and other
microorganisms related to the synthesis of virulence factors such as PVD. In addition, the
CCBM1146 model could help to infer the metabolic behavior of P. aeruginosa that arise in
the presence of different concentrations of QS signal molecules. Therefore, the present
study also can be a starting point for comprehending the biosynthesis of other siderophores
regulated by QS in P. aeruginosa, such as Pyochelin (PCH), which, like PVD, has a high iron
affinity, and the newly discovered narrow-spectrum metallophore Pseudopaline (PSP), that
acts as a virulent factor too and is involved in nickel and zinc uptake [6,75,76]. This study
made possible the design of an original methodology based on tools from different areas
of knowledge, such as biological network reconstruction methods from systems biology,
genomics, and bibliomics, as well as engineering methods, such as optimization, from
the area of logistics and operation research; together, they provided a way to study the
hierarchies of biological systems in a unified way, according to the principles of systems
biology.

5. Conclusions

From a systemic perspective, this work presents a methodological strategy to design a
novel multi-scale and multi-class model proposal by combining two classes of models with
different scales. The CCBM1146 model helped to characterize and explain the complex
and emerging behavior derived from the interactions between these two models, which
would have been impossible by studying each model or scale separately. Moreover, the
CCBM1146 model served to understand and infer the natural influence of PQS intensity on
the metabolic PVD biosynthesis in P. aeruginosa. In the future, this integrative model could
help to infer the different metabolic phenotypes that may arise among other microorganisms
when exposed to different concentrations of the signal molecules of their own QS circuits
responsible for regulating the synthesis of their virulence factors. Furthermore, the DFBA
approximation applied to the CCBM1146 model evidenced its descriptive capability for the
profiles of biomass and PVD, showing a similar behavioral pattern of an in vitro culture
of P. aeruginosa; this makes it more valuable and suitable for evaluating, in the future and
from holistic and dynamic perspectives, how different conditions can affect the behavior of
P. aeruginosa for the synthesis of different virulence factors regulated by QS.

Moreover, the model could be used to test experimental conditions in vitro. Finally,
this work proposes, for the first time, the integration of the quorum-sensing gene regulatory
network with the P. aeruginosa metabolic network for PVD biosynthesis. Combining these
two network models was possible by fixing the fluxes of reactions shared by both models as
system constraints in the multi-stage FBA and DFBA approximation. Thus, it was possible
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to model the influence of the QS phenomenon on the P. aeruginosa metabolism to PVD
biosynthesis as a function of QS signal intensity.

However, though in this work a sensitivity analysis was performed for the QS network
model, for further modeling works under the steady-state and dynamic-state flux balance
analysis approach of the CCBM1146 integrated model, it is recommended that a sensitivity
analysis be performed.
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Table A1. Sensitivity analysis of the QS network model by subsets.

Subset Input Parameter
Value [E-PQS]

Maximum
Input Parameter
Value in Subset

[E-PQS]

Output Variable
Value [PVD]

Average Output
Variable Value

in Subset [PVD]

Sensitivity
Subset 1 = 0.68

1

1

0.120177986

0.118943557

0.9 0.120450180
0.8 0.120766334
0.7 0.121045165
0.6 0.121118254
0.5 0.120687054
0.4 0.119372306
0.3 0.116454998
0.2 0.110419737

Sensitivity
Subset 2 = 0.52

0.1

0.1

0.097173080

0.082671936

0.09 0.095075669
0.08 0.092768928
0.07 0.090219930
0.06 0.087397210
0.05 0.084268237
0.04 0.080803399
0.03 0.076979188
0.02 0.072803560
0.01 0.068338620

The value in the input parameter box corresponds to the value of the E-PQS concentration used in each experiment
in Table 1. The value in the output variable box corresponds to the value of the maximum intracellular PVD
concentration obtained in each experiment of Table 1 and is plotted in Figure 4A. The bold value in the input
parameter box indicates the value of the parameter at which the output variable acquires its maximum value
in each subset. [PVD] indicates the intracellular pyoverdine concentration and is the output variable. [E-PQS]
indicates the extracellular Pseudomona quinolone signal and is the input parameter.

The sensitivity of each subset box was calculated according to the following equation:

SensitivitySubset =

max. par−min. par
2

max. obs. par
Average variable

max.variable

where max. par is the maximum input parameter value in the subset, min. par is the
minimum input parameter value in the subset, max. obs. par is the input parameter value
with which the maximum output variable value is observed, Average variable is the average
value of the output variable in the subset, and max. variable is the maximum output
variable value in the subset. Thus, the numerator of the equation measures the parameter’s
proportion in the subset, and the denominator of the equation represents the variable’s
proportion in the subset. The sensitivity value obtained for subset 1 was 0.68, which means
that, on average, each element in subset 1 of the parameters represents 68% of the variable.
The sensitivity value obtained for subset 2 was 0.52, which means that, on average, each
element of subset 2 of parameters represents 52% of the variable.

The difference in sensitivity values between subset 1 (0.68) and subset 2 (0.52) indicates
that the [PVD] output variable is more sensitive to changes in [E-PQS] input parameter in
the range of 1.0 to 0.1 than in the range of 0.09 to 0.01. This suggests that the system may be
more susceptible to changes in the [E-PQS] input parameter in subset 1. In addition, each
element in subset 1 represents 68% of the output variable, which means that, on average,
the system may be more susceptible to changes in [E-PQS] input parameter in the range of
1.0 to 0.1, suggesting that the system might be more sensitive to changes in the [E-PQS]
input parameter in subset 1. It also means that, on average, a change in an [E-PQS] input
parameter value in subset 1 (range 1.0 to 0.1) has a more significant impact on the [PVD]
output variable compared to a change in an [E-PQS] input parameter value in subset 2
(range 0.09 to 0.01). In other words, the system is more sensitive to changes in [E-PQS]
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input parameter in the range of values in subset 1 than in the range of subset 2. Sensitivity
analysis on different subsets of data can provide information about the robustness of the
model to variations in the input parameters. For example, if the sensitivity is high in a
specific range of [E-PQS] input parameter values, this could indicate that the model is less
robust to changes in [E-PQS] input parameter in that range.

Table A2. Rate of change to each input parameter value [E-PQS].

Input Parameter Value
[E-PQS]

Output Variable Value
[PVD]

Rate of Change to Each Input
Parameter Value [E-PQS]

1 0.120177986 8.32
0.9 0.120450180 7.47
0.8 0.120766334 6.62
0.7 0.121045165 5.78
0.6 0.121118254 4.95
0.5 0.120687054 4.14
0.4 0.119372306 3.35
0.3 0.116454998 2.58
0.2 0.110419737 1.81
0.1 0.097173080 1.03

0.09 0.095075669 0.95
0.08 0.092768928 0.86
0.07 0.090219930 0.78
0.06 0.087397210 0.69
0.05 0.084268237 0.59
0.04 0.080803399 0.50
0.03 0.076979188 0.39
0.02 0.072803560 0.27
0.01 0.068338620 0.15

The value in the input parameter box corresponds to the value of the E-PQS concentration used in each experiment
in Table 1. The value in the output variable box corresponds to the value of the maximum intracellular PVD
concentration obtained in each experiment in Table 1 and is plotted in Figure 4A. [PVD] indicates the intracellular
pyoverdine concentration and is the output variable. [E-PQS] indicates the extracellular Pseudomona Quinolone
Signal and is the input parameter.

The rate of change of each input parameter box was calculated according to the
following equation:

Rate o f Change =
Ipv
Ovv

where Ipv is the adopted [E-PQS] input parameter value in each experiment, and Ovv is the
resultant value of the [PVD] output variable in each experiment; this [PVD] output variable
value depends on the [E-PQS] input parameter value assigned for each experiment. This
rate-of-change analysis provides information on how the output variable [PVD] responds
to changes in the input parameter [E-PQS] over different ranges of values. As the value of
the input parameter [E-PQS] decreases, the rate of change also decreases. This suggests that
the system response (PVD) to changes in the input parameter [E-PQS] is more pronounced
for higher values of the input parameter [E-PQS]. The relationship between the input
parameter [E-PQS] and the rate of change is not linear. In the range of input parameter
[E-PQS] from 1.0 to 0.2, the rate of change decreases faster at input parameter [E-PQS]
from 0.2 to 0.01. This indicates that the relationship between input parameter [E-PQS] and
output variable [PVD] may have nonlinear behavior at different ranges of input parameter
[E-PQS].

In summary, this rate-of-change analysis provides additional information on how the
output variable [PVD] responds to changes in the input parameter [E-PQS] at different
ranges of values.
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