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Abstract: Tryptophan is metabolized along three main metabolic pathways, namely the kynure-
nine, serotonin and indole pathways. The majority of tryptophan is transformed via the kynure-
nine pathway, catalyzed by tryptophan-2,3-dioxygenase or indoleamine-2,3-dioxygenase, lead-
ing to neuroprotective kynurenic acid or neurotoxic quinolinic acid. Serotonin synthesized by
tryptophan hydroxylase, and aromatic L-amino acid decarboxylase enters the metabolic cycle:
serotonin → N-acetylserotonin → melatonin → 5-methoxytryptamine→serotonin. Recent studies
indicate that serotonin can also be synthesized by cytochrome P450 (CYP), via the CYP2D6-mediated
5-methoxytryptamine O-demethylation, while melatonin is catabolized by CYP1A2, CYP1A1 and
CYP1B1 via aromatic 6-hydroxylation and by CYP2C19 and CYP1A2 via O-demethylation. In gut
microbes, tryptophan is metabolized to indole and indole derivatives. Some of those metabolites
act as activators or inhibitors of the aryl hydrocarbon receptor, thus regulating the expression of
CYP1 family enzymes, xenobiotic metabolism and tumorigenesis. The indole formed in this way
is further oxidized to indoxyl and indigoid pigments by CYP2A6, CYP2C19 and CYP2E1. The
products of gut-microbial tryptophan metabolism can also inhibit the steroid-hormone-synthesizing
CYP11A1. In plants, CYP79B2 and CYP79B3 were found to catalyze N-hydroxylation of trypto-
phan to form indole-3-acetaldoxime while CYP83B1 was reported to form indole-3-acetaldoxime
N-oxide in the biosynthetic pathway of indole glucosinolates, considered to be defense compounds
and intermediates in the biosynthesis of phytohormones. Thus, cytochrome P450 is engaged in
the metabolism of tryptophan and its indole derivatives in humans, animals, plants and microbes,
producing biologically active metabolites which exert positive or negative actions on living organisms.
Some tryptophan-derived metabolites may influence cytochrome P450 expression, affecting cellular
homeostasis and xenobiotic metabolism.

Keywords: cytochrome P450; tryptophan metabolism; serotonin; melatonin; indole metabolites; liver;
brain; microbiota; plants

1. Introduction

Cytochrome P450 (CYP) is a heme-containing enzyme, the terminal component of the
mixed-function oxidase system, catalyzing the oxidative metabolism of endogenous sub-
strates (e.g., steroid hormones) and xenobiotics including drugs, toxins and environmental
pollutants [1–3]. The cytochrome P450 superfamily is grouped into families and subfamilies
according to the evolution process and amino acid sequence identity [4]. Cytochrome P450
is present in humans, animals, plants, fungi, bacteria and viruses [2,5–7]. In contrast to
eukaryotic organisms whose cytochrome P450 is membrane-bound, bacterial CYP enzymes
are soluble in the cytoplasm. The highest amount of cytochrome P450 in humans and
animals is found in the liver, but its individual enzymes are present in almost all organs
and tissues excluding striated muscle [8].
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Tryptophan, an essential amino acid and a component of different proteins, is metabo-
lized through three main metabolic pathways, namely the kynurenine, serotonin and indole
pathways [9] (Figure 1). Tryptophan is not a direct substrate of cytochrome P450 in animals
and humans, but it serves as a CYP substrate in plants. However, tryptophan-derived
indole metabolites interact with different cytochrome P450 enzymes, yielding biologically
active compounds. In addition, in some cytochrome P450 enzyme proteins, tryptophan
plays a key role in enzyme survival, as shown for cytochrome P450BM3 (CYP102A1), a
bacterial enzyme from Bacillus megaterium [10].
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The majority of tryptophan is processed via the kynurenine pathway, which is cat-
alyzed by tryptophan-2,3-dioxygenase (TDO, mainly hepatic enzyme) or indoleamine-2,3-
dioxygenase (IDO, ubiquitous enzyme), which mediate the formation of kynurenine. Then
kynurenine is metabolized in two directions: to the neuroprotective kynurenic acid (an
antagonist of α7 nicotinic acetylcholine receptor and of a glycine site in NMDA receptor)
and to the neurotoxic NMDA receptor agonist quinolinic acid. Peripheral kynurenine can
cross the blood–brain barrier to reach the brain, where, together with locally synthesized
kynurenine, it participates in the production of those neuroactive metabolites [11,12]. A
potential contribution of cytochrome P450 (CYP) to the kynurenine pathway has not been
studied so far.

Serotonin (5-hydroxytryptamine), one of the main monoaminergic neurotransmitters,
is synthesized from tryptophan via the classical pathway involving two enzymatic steps:
the hydroxylation of tryptophan by tryptophan hydroxylase to 5-hydroxytryptophan and
the decarboxylation of 5-hydroxytryptophan by aromatic L-amino acid decarboxylase to
serotonin. Serotonin formed in this pathway enters the metabolic cycle: serotonin → N-
acetylserotonin → melatonin → 5-methoxytryptamine → serotonin. Recent studies indicate
that serotonin can also be synthesized via the alternative pathway involving cytochrome
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P450, i.e., the CYP2D6-mediated 5-methoxytryptamine O-demethylation in the brain and
periphery [13–15]. The reaction protects the endogenous indole system, ensuring that
its regeneration in the body is maintained in the closed metabolic cycle. However, other
cytochrome P450 enzymes (CYP1A1/2, CYP1B1, CYP2C19) are engaged in the catabolism
of melatonin [16].

In the gut, approx. 1–2% of dietary tryptophan is metabolized via the tryptophan
hydroxylase 1 (TPH1) serotonin pathway, while about 95% of ingested tryptophan is
metabolized through the kynurenine pathway. The kynurenine pathway of tryptophan
metabolism takes place mainly in the intestinal epithelial cells and antigen-presenting
cells. Serotonin can partly enter the kynurenine pathway via biotransformation to 5-
hydroxykynuramine by IDO1. 5-Hydroxytryptophan (5-HTP) can also be converted to
5-hydroxykynurenine by IDO1, and then to 5-hydroxykynuramine (reviewed by [17]).

In gut microbes expressing different enzymes, tryptophan is metabolized to indole
and indole derivatives. Several bacteria directly convert tryptophan to indole by expressing
the enzyme tryptophanase, while other microbes engage various enzymes to produce
indole metabolites (indole-3-acetate, tryptamine, indole-3-propionic acid). Some of those
metabolites act as activators or inhibitors of the hydrocarbon receptor (AhR), regulating
immunity and affecting CYP-catalyzed xenobiotic metabolism [9,18]. The indole formed in
this way is further oxidized to form indoxyl and indigoid pigments by CYP2A6, CYP2C19
and CYP2E1 [19,20]. Other products of gut-microbial tryptophan metabolism can inhibit the
mitochondrial steroid hormone-synthesizing cytochrome P450 CYP11A1 [21]. Interestingly,
aetokthonotoxin, a cyanobacterial neurotoxin that causes vacuolar myelinopathy, consists of
a pentabrominated biindole and nitrile group. Recently, the discovery of a productive, five-
enzyme biosynthetic pathway was reported, in which two functionalized indole monomers
are reunited by biaryl coupling catalyzed by the cytochrome P450 AetB [22].

Apart from the abovementioned indole derivatives, another tryptophan derivative,
6-formylindolo[3,2-b]carbazole (FICZ), has been found as an endogenous ligand medi-
ating AhR signaling and thus regulating homeostatic processes [23]. Being a ligand of
an aryl hydrocarbon receptor (AhR) and a substrate of CYP1A1, FICZ is engaged in
the FICZ/AhR/CYP1A1 transcriptional–translational feedback loop regulating CYP1A1,
CYP1A2, CYP1B1, IL-22 expression and AhR responses, which play a role in immunity,
xenobiotic metabolism and tumorigenesis. Cytochrome P450 is also engaged in tryptophan
metabolism in plants. CYP79B2 and CYP79B3 were found to catalyze N-hydroxylation of
tryptophan to form indole-3-acetaldoxime and CYP83B1 to form indole-3-acetaldoxime
N-oxide in the biosynthesis of indole glucosinolates, which are considered to be defense
compounds and possibly intermediates in the biosynthesis of phytohormones [24]. On the
other hand, thaxtomin phytotoxins (inhibiting cellulose biosynthesis) produced by plant-
pathogenic Streptomyces species incorporate a nitro group that is essential for phytotoxicity.
It was reported that TxtE is a unique new enzyme of the CYP superfamily that catalyzes
regiospecific 4-nitration of L-tryptophan utilizing NO and O2 [25]. The available literature
data indicate that cytochrome P450 is engaged in the metabolism of tryptophan and its
indole derivatives in humans, animals, plants and microbes, producing biologically active
metabolites of physiological, pharmacological or toxicological importance.

2. The Contribution of Cytochrome P450 to the Synthesis of Serotonin

In the brain, serotonin routes originate from neurons of the raphe nuclei, which are
located in the brain stem. The dorsal raphe nuclei (DRN) and median raphe nuclei (MRN)
neurons project to the forebrain, including the cortex, hippocampus, striatum and hypotha-
lamus, and account for about 80% of forebrain serotonergic endings [26]. Serotonergic
projections from the raphe nuclei innervate almost all the brain structures that are involved
in controlling important physiological functions, i.e., the cortex (mood and sleep), hip-
pocampus (stress, learning and memory), basal ganglia (motor functions), thalamus (sleep
and epilepsy) and hypothalamus (neuroendocrine functions, food intake, circadian rhythm
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and thermoregulation) [27–29]. Thus, serotonin is engaged in the physiology and pathology
of various psychiatric disorders and the action of neurological and psychotropic drugs.

The biosynthesis of serotonin in the brain starts from the essential amino acid tryp-
tophan and proceeds via hydroxylation to L-5-hydroxytryptophan and subsequent de-
carboxylation (Figure 2). The activity of tryptophan hydroxylase 2 (TPH2) is considered
a concentration-limiting step in the biosynthesis of the neurotransmitter. Serotonin is
then inactivated by monoamine oxidase (MAO-A) and aldehyde dehydrogenase to 5-
hydroxyindole acetic acid (5-HIAA). Serotonin can also be formed in the gut by tryptophan
hydroxylase 1 (TPH1) in enterochromaffin cells and stored in blood platelets. Peripheral
serotonin plays an important role in gastrointestinal motility [30,31] and liver regener-
ation [32–34]. It is vitally important that serotonin produced in the periphery cannot
penetrate the blood–brain barrier.

Metabolites 2023, 13, x FOR PEER REVIEW 4 of 16 
 

 

pathology of various psychiatric disorders and the action of neurological and psycho-
tropic drugs. 

The biosynthesis of serotonin in the brain starts from the essential amino acid tryp-
tophan and proceeds via hydroxylation to L-5-hydroxytryptophan and subsequent decar-
boxylation (Figure 2). The activity of tryptophan hydroxylase 2 (TPH2) is considered a 
concentration-limiting step in the biosynthesis of the neurotransmitter. Serotonin is then 
inactivated by monoamine oxidase (MAO-A) and aldehyde dehydrogenase to 5-hydrox-
yindole acetic acid (5-HIAA). Serotonin can also be formed in the gut by tryptophan hy-
droxylase 1 (TPH1) in enterochromaffin cells and stored in blood platelets. Peripheral ser-
otonin plays an important role in gastrointestinal motility [30,31] and liver regeneration 
[32–34]. It is vitally important that serotonin produced in the periphery cannot penetrate 
the blood–brain barrier. 

 
Figure 2. The engagement of cytochrome P450 in the synthesis of serotonin. AD = aldehyde dehy-
drogenase; MAO-A = monoamine oxidase A; TPH1/2 = tryptophan hydroxylase 1/2. 

Apart from the main (classical) pathway of serotonin synthesis, a possibility of the 
alternative pathway, i.e., cytochrome P450 2D (CYP2D)-catalyzed O-demethylation of 5-
methoxytryptamine to serotonin, has been shown in vitro for human and rat cDNA-ex-
pressed CYP2D enzymes and liver microsomes [13,14] as well as for rat brain microsomes 
[14]. Serotonin formed in this pathway enters the metabolic cycle: serotonin → N-acetyl-
serotonin → melatonin → 5-methoxytryptamine → serotonin (Figure 2). Both melatonin 
and 5-methoxytryptamine are synthesized in the pineal gland, from which they are re-
leased into circulation or to the third brain ventricle. They can also be formed in the pe-
riphery (in the gut or the liver, respectively), and then cross the blood–brain barrier. Both 
brain-derived and liver-derived 5-methoxytryptamine supply a direct substrate for 
CYP2D enzymes to produce serotonin [35]. 
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Apart from the main (classical) pathway of serotonin synthesis, a possibility of the
alternative pathway, i.e., cytochrome P450 2D (CYP2D)-catalyzed O-demethylation
of 5-methoxytryptamine to serotonin, has been shown in vitro for human and rat
cDNA-expressed CYP2D enzymes and liver microsomes [13,14] as well as for rat brain
microsomes [14]. Serotonin formed in this pathway enters the metabolic cycle:
serotonin → N-acetylserotonin → melatonin → 5-methoxytryptamine → serotonin (Figure 2).
Both melatonin and 5-methoxytryptamine are synthesized in the pineal gland, from which
they are released into circulation or to the third brain ventricle. They can also be formed in
the periphery (in the gut or the liver, respectively), and then cross the blood–brain barrier.
Both brain-derived and liver-derived 5-methoxytryptamine supply a direct substrate for
CYP2D enzymes to produce serotonin [35].
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Using liver microsomes and cDNA-expressed enzymes, Yu et al. (2003) [13] demon-
strated that exclusively human CYP2D6 can catalyze O-demethylation of 5-methoxytryptamine
to serotonin. The physiological importance of this reaction in peripheral organs was also
shown in vivo by measuring serotonin concentration in the blood plasma of wild-type and
CYP2D6-transgenic mice after intravenous injection of 5-methoxytryptamine. CYP2D6-
transgenic mice showed a higher plasma concentration of serotonin than CYP2D6-wt mice.

Later studies carried out on rats demonstrated that, of the cDNA-expressed CYP
enzymes studied (rat CYP1A1/2, 2A1/2, 2B1, 2C6/11/13, 2D1/2/4/18, 2E1, 3A2), the
CYP2D isoforms (CYP2D1, CYP2D2, CYP2D4) were most efficient in catalyzing the O-
demethylation of 5-methoxytryptamine to serotonin, though less productive than the
human enzyme CYP2D6 [14]. Microsomes obtained from different brain areas (frontal
cortex, cortex, hippocampus, thalamus, hypothalamus, brain stem, cerebellum) were able
to metabolize 5-methoxytryptamine to serotonin. The highest rate of 5-methoxytryptamine
O-demethylation was observed in the brain stem and cerebellum, which are relatively abun-
dant in CYP2D enzyme proteins. The reaction was inhibited by the two specific inhibitors of
CYP2D, quinine and fluoxetine [36,37], which proved the selective engagement of CYP2D
enzymes in this reaction. The latter studies demonstrated that CYP2D-mediated synthesis
of serotonin occurred in the brains of rats and CYP2D6-transgenic mice in vivo [15,38].

The occurrence of 5-methoxytryptamine in concomitance with CYP2D subfamily
enzymes in the raphe nuclei pointed to the existence of an additional/alternative path-
way of serotonin synthesis [39,40]. Therefore, the exogenous 5-methoxytryptamine was
injected into the rostral raphe nuclei (dorsal raphe nuclei, DRN; median raphe nuclei,
MRN) comprising serotonin neurons which send their projections to the forebrain [15]. The
results obtained after intracerebral administration of 5-methoxytryptamine to male Wistar
rats indicated that the formation of serotonin from 5-methoxytryptamine catalyzed by
cytochrome P450 might take place in the brain in vivo. The CYP2D-mediated biosynthesis
of serotonin was observed by measuring the tissue content of serotonin in different brain
regions after 5-methoxytryptamine injection into the rostral raphe nuclei DRN and MRN.
The measurements were carried out in naive rats and the tryptophan hydroxylase inhibitor
p-chlorphenylalanine (PCPA)-pretreated animals. 5-Methoxytryptamine injected into the
rostral raphe nuclei of PCPA-treated rats elevated the tissue concentration of serotonin,
while quinine diminished the serotonin level in the cortex and hippocampus of those ani-
mals under conditions of partial inhibition of the classical pathway of serotonin synthesis,
catalyzed by tryptophan hydroxylase [41].

Serotonin produced by CYP2D enzymes in raphe neurons may move via axonal
transport to nerve endings, where it is released into the synaptic cleft. In parallel, neuronal
5-methoxytryptamine may also be transported along axons, being a CYP2D substrate for
serotonin synthesis in nerve terminals. Cytochrome P450 is widely distributed within
neuronal and glial cells, not only in the endoplasmic reticulum, which is characteristic
of the liver, but also in mitochondrial and other cell membrane compartments, in both
cell bodies and cell projections [42–44]. Considering the above findings, in the next step,
the functional extracellular serotonin released from nerve terminals (produced in classical
or alternative pathways) was measured by executing the study both in physiological
conditions and under the extreme inhibition of tryptophan hydroxylase by PCPA [45].
The functional extracellular neurotransmitter concentration was measured in the frontal
cortex and striatum after local intracerebral injection of serotonin, using an in vivo brain
microdialysis in male Wistar rats [15]. The probes were implanted in the frontal cortex or
striatum, i.e., the brain structures expressing active CYP2D enzymes [42,46] and receiving
neuronal projections from serotonin neurons of the rostral raphe nuclei [27]. It is worth
noticing that the frontal cortex and striatum are principal brain areas engaged in mood
disorders and motor functions, respectively [28]. 5-Methoxytryptamine given locally
through a microdialysis probe markedly increased extracellular serotonin levels in the
frontal cortex and striatum. Quinine injected jointly with 5-methoxytryptamine prevented
the 5-methoxytryptamine-induced increase in cortical serotonin in naive rats and in striatal
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serotonin in PCPA-treated animals, which testified to the engagement of CYP2D in the
serotonin synthesis from 5-methoxytryptamine in vivo [15].

The above-described results obtained in vitro and in vivo in rats [14,15] remain in
agreement with those of Cheng et al. (2013) [38], who found a higher level of serotonin
and its metabolite 5-HIAA in the brains of CYP2D6-transgenic mice than in wild-type
animals. Behavioral tests revealed that CYP2D6-transgenic mice were also less susceptible
to anxiety and depression, which is in line with an important role of serotonin in those
mental disorders [47–49]. Thus, parallel studies carried out on rats and mice deliver
convincing proof that in rodents, serotonin may be synthesized from 5-methoxytryptamine
in a CYP2D-catalyzed reaction.

It seems of great interest that the contribution of the alternative pathway of sero-
tonin synthesis is likely to be higher in humans than in rodents since an in vitro study
demonstrated that a human CYP2D6 enzyme was appreciably more effective in catalyzing
5-methoxytryptamine O-demethylation to serotonin than rat CYP2D enzymes CYP2D1,
CYP2D2 and CYP2D4 [14]. Hence, it may be expected that in the human brain, CYP2D6
has a beneficial effect on the physiological level of active indoleamines, such as serotonin,
melatonin and 5-methoxytryptamine. The role of CYP2D6 in the brain may be signifi-
cant when the classical route of serotonin synthesis governed by tryptophan hydroxylase
2 (TPH2) is impaired [50,51] and/or when the CYP2D gene is duplicated or amplified
(CYP2D6*2 gene variant) or when CYP2D activity is modified by such inducers as alcohol
or nicotine [43,52–55] or by psychotropic drugs, such as antidepressants [56–60] or neu-
roleptics [56,61–64]. The brain serotoninergic system has been shown to be involved in
the pathophysiology of psychiatric disorders (depression, anxiety, schizophrenia) as well
as in the mechanism of action of psychotropics, including antidepressants, anxiolytics or
antipsychotics, respectively. Moreover, it has been observed that individuals with an absent
or defective CYP2D6 gene who express a poor metabolizer phenotype are more associable
and anxiety-prone [65–67], which may be ascribed to a low serotonin level in the brain
limbic system [68].

3. Melatonin Metabolism by Cytochrome P450

Melatonin is applied in the treatment of sleep disorders, including sleep disturbances
accompanying psychiatric diseases such as schizophrenia, depression or seasonal affective
disorders [69–72]. Moreover, its high doses are recommended for neuroprotection [73,74].

The biosynthesis of melatonin in the pineal gland is regulated by the light/dark cycle
regulating circadian and circannual rhythms. Moreover, melatonin is also synthesized in a
considerable amount in extrapineal organs, in particular in the gastrointestinal tract, where
it is synthesized in enterochromaffin cells of the intestinal mucosa and is not controlled
by photoperiod [73–75]. The synthesis of melatonin from tryptophan through serotonin is
catalyzed by N-acetyltransferase and hydroxyindole-O-methyltransferase (Figure 2). The
abovementioned two enzymes are expressed in different organs and tissues, including the
liver and brain (e.g., in the cortex and striatum), which implies a possibility of melatonin
synthesis therein. Extrapineal melatonin is not involved in the regulation of photoperiod,
but jointly with pineal melatonin protects cells against the harmful action of oxidative stress
due to its antioxidant and anti-inflammatory properties [74]. In addition, melatonin shows
anti-excitotoxic activity in the brain by reducing glutamate activity and enhancing that of
GABA. Melatonin also stimulates neurogenesis [72,74,75]. As an amphiphilic compound,
peripheral melatonin easily penetrates the blood–brain barrier [76].

Compared to serotonin, other cytochrome P450 enzymes are engaged in the catabolism of
melatonin: CYP1A2, CYP1A1 and CYP1B1 catalyze aromatic 6-hydroxylation to 6-hydroxymelatonin,
while CYP2C19 and CYP1A2 govern O-demethylation to N-acetylserotonin [16,77] (Figure 3).
Circulating melatonin is metabolized mainly in the liver by cytochrome P450 enzymes
of the CYP1A subfamily (CYP1A1/A2) and CYP2B1 to form 6-hydroxymelatonin, and
then conjugate it to 6-sulfatoxymelatonin [16,78,79], but it can also be deacetylated to
5-methoxytryptamine [74,80,81]. In the brain, melatonin and 5-methoxytryptamine are
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formed mainly in the pineal gland and are then released into circulation or to the third
ventricle. On the other hand, 5-methoxytryptamine formed from gut-derived melatonin in
the liver penetrates the blood–brain barrier [74,81] and, together with the brain-derived 5-
methoxytryptamine, may undergo O-demethylation by brain cytochrome P450 2D (CYP2D)
to form serotonin therein. Thus, both endogenous melatonin and exogenously supplied
melatonin provide 5-methoxytryptamine in vivo, which may support serotonin formation
by the CYP2D-mediated biosynthesis pathway in vivo.
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Importantly, Haduch et al. (2016) [82] provided further evidence for the engagement
of CYP2D subfamily enzymes in serotonin synthesis in the brain in vivo by demonstrating
that exogenous melatonin administered intraperitoneally supported serotonin formation
by cytochrome P450 after its deacetylation to 5-methoxytryptamine. Serotonin tissue
content in different brain areas (cortex, hippocampus, striatum, nucleus accumbens, thala-
mus, hypothalamus, brain stem, cerebellum and medulla oblongata) and its extracellular
concentration in the striatum were measured (using an in vivo brain microdialysis) af-
ter intraperitoneal injection of melatonin to male Wistar rats. Melatonin elevated the
tissue concentration of serotonin in the brain areas studied, while the CYP2D inhibitor
quinine [36,37] prevented the melatonin-induced increase in serotonin concentration [82].
Melatonin also significantly increased extracellular serotonin levels in the striatum in
pargyline-pretreated animals. Pargyline, a monoamine oxidase (MAO) inhibitor, was ap-
plied to prevent 5-methoxytryptamine and serotonin oxidation by MAO. In contrast to
melatonin, both 5-methoxytryptamine and serotonin are rapidly metabolized by MAO,
an enzyme which is abundant in the liver and brain [79,83–85]. The CYP2D-inhibitor
propafenone injected into the striatum prevented the melatonin-produced rise in striatal
serotonin in those animals [82], which testified to the involvement of CYP2D in serotonin
elevation observed after melatonin. The above observations confirmed that melatonin sup-
ported the CYP2D-catalyzed synthesis of serotonin from 5-methoxytryptamine in the brain
in vivo, which closed the serotonin → melatonin → 5-methoxytryptamine → serotonin
biochemical cycle. Therefore, it seems that the therapeutic effect of melatonin may result not
only from its affinity to melatonin receptors and from its antioxidant properties [72,86] but
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also from its biotransformation to the neurotransmitter serotonin. The biotransformation
of exogenous melatonin to serotonin may be regarded as an additional mechanism of its
pharmacological action. These findings are of both physiological and pharmacological
importance since melatonin can be synthesized endogenously or administered as a drug
for the treatment of sleep and mood disorders as well as a neuroprotective agent [87,88].

4. Gut Microbiota Indole Products and Their Interaction with Cytochrome P450

In gut microbes expressing different enzymes, tryptophan is metabolized to indole and
indole derivatives [89] (Figure 4). Several bacterial species (e.g., Clostridinum species and
Bacteroides species) directly convert tryptophan to indole by expressing the enzyme trypto-
phanase, while other microbes engage various enzymes to produce a number of tryptophan
indole metabolites (e.g., Clostridium species, Peptostreptococcus species, Lactobacillus species,
Bifidobacterium species). Some of those indole metabolites (tryptamine, skatole, indoleacetic
acid, indolealdehyde, indoleacrylic acid, indolelactic acid) act as activators or inhibitors
of aryl hydrocarbon receptor (AhR), a cytoplasmic transcription factor that was found in
intestinal immune cells, in this way affecting CYP1A/1B subfamily expression and thus
xenobiotic metabolism and regulating the IL-22 expression and immune responses [9,18,89].
Indole, indolepropionic acid and indoleacrylic acid influence mucosal homeostasis by
decreasing intestinal permeability, possibly mediated by the pregnane X receptor (PXR, a
nuclear transcription factor). PXR is one of the nuclear transcription factors engaged in the
regulation of cytochrome P450 enzymes’ expression belonging to the subfamilies CYP2C,
CYP2B and CYP3A [90]. Tryptophan metabolites migrate through the intestinal epithelium
to the blood, where some (indolepropionic acid, indoleethanol, indoleacrylic acid) have
antioxidant and anti-inflammatory properties.
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The indole formed in the gut microbiota, after being absorbed into the body in sub-
stantial amounts, undergoes biotransformation by CYP2E1 in the liver and sulfotrans-
ferases to indoxyl-sulfate, which has cytotoxic effects in high concentrations. Indoxyl
(3-hydroxyindole) accumulates in patients with chronic kidney disease as a uremic toxin.
Further oxidation and dimerization of indoxyl lead to the generation of indigoid pigments
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indigo and indirubin by CYP2A6, CYP2C19 and CYP2E1 [19,20]. Additional products of
indole metabolism by those enzymes were identified as oxindole, isatin, 6-hydroxyindole
and dioxindole. The products of gut-microbial tryptophan metabolism, such as indole
or skatole, can inhibit the mitochondrial steroid hormone-synthesizing cytochrome P450
CYP11A1 [21], decreasing in this way the synthesis of pregnenolone, which is the pre-
cursor of all mineralocorticoids, glucocorticoids and sex steroids. Thus, an excessively
tryptophan-rich diet may lead to disrupted steroidogenesis and, in turn, to a decrease in in-
testinal steroid hormone formation, which negatively influences the course of inflammatory
bowel diseases.

The cyanobacterium Aetokthonos hydrillicola is expanding on the invasive plant Hydrilla
verticillata, growing in freshwater lakes. Aetokthonotoxin is a cyanobacterial neurotoxin
that causes a fatal neurological disease called vacuolar myelinopathy in birds [91]. The
neurotoxin is a structurally configured biindole alkaloid composed of a pentabrominated
biindole and nitrile functional group. Recently, an efficient five-enzyme biosynthetic
pathway of aetokthonotoxin was described, in which two functionalized tryptophan-
derived indole monomers are connected by biaryl coupling catalyzed by the cytochrome
P450 AetB [22].

Apart from the abovementioned indole derivatives, another tryptophan derivative,
6-formylindolo[3,2-b] carbazole (FICZ), has been found as an endogenous ligand mediating
AhR signaling and thus regulating homeostatic processes [23]. FICZ can be formed either
directly from tryptophan (under exposure to light or H2O2) or from tryptophan metabo-
lites tryptamine (by monoamine oxidase) and indolo-3-pyruvic acid (by indolepyruvate
decarboxylase) in microbiota and mammals. Being a high-affinity ligand (Kd = 0.07 nM)
of an aryl hydrocarbon receptor (AhR) and a substrate for CYP1A1, FICZ is engaged in
the FICZ/AhR/CYP1A1 transcriptional–translational feedback loop regulating CYP1A1,
CYP1A2, CYP1B1 and IL-22 expression as well as AhR responses [92,93], which play a
role in xenobiotic metabolism, immunity and tumorigenesis. FICZ can influence immune
responses depending on its concentration. Low levels of FICZ are pro-inflammatory, de-
veloping resistance to pathogenic agents and stimulating antitumor processes, while high
FICZ concentrations exert toxicity, cause immune suppression and promote cancer pro-
gression. The characterization of tryptophan metabolism and its dysregulation in fibroids
revealed an increased expression of CYP1B1 mRNA, a marker of AhR activation [88,94].
ZNF165 (a member of the Kruppel family of zinc-finger-containing transcription factors),
which is overexpressed in liver cancer tissues and the immune microenvironment, pro-
motes the proliferation and migration of hepatocellular carcinoma by activating the trypto-
phan/kynurenine/AhR/CYP1A1 axis and by boosting the expression of CYP1A1 [95].

Indole Metabolites of Tryptophan-Toxicological Aspects

Several tryptophan metabolites produced by gut microbiota can activate AhR signaling
and thus influence different cellular processes. For many of them, biological effects and
molecular mechanisms have been proven in in vitro or in vivo tests, including human
studies [18–21,23]. Those active tryptophan-derived AhR agonists can be formed via the
kynurenine pathway (kynurenine) or indole pathway (indole, indole sulfate, indole-3-
acetic acid, indole-3-aldehyde, tryptamine). Their abnormal activities have been shown
in multiple diseases, such as chronic kidney disease, cardiovascular disease, cancer and
inflammation (reviewed by [18]). It has been shown that activation of AhR evokes damage
to glomerular and tubular cells, which leads to kidney fibrosis. Moreover, activation of
AhR stimulates CYP1A1/2 expression, an enzyme engaged in the metabolism of exogenous
substrates, including precancerous substances, which results in the production of DNA
adducts, causing genotoxicity or induction of oxidative stress and inflammation. Activation
of AhR also increases the risk of cardiovascular diseases because of increased expression of
cyclooxygenase-2 and, in turn, the accelerated synthesis of prostaglandin and thrombin.
This may result in platelet aggregation and vascular dysfunction. Therefore, a tryptophan-
balanced diet, controlling gut microbiota composition and providing normal levels of AhR
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activation and CYP1A1/2 expression are important factors for maintaining homeostasis
in health and diseases. Modifying AhR and CYP1A1/2 expression/activity in particular
pathological states may be a useful therapeutic strategy.

5. The Involvement of Cytochrome P450 in Tryptophan Metabolism in Plants

Cytochrome P450 is also engaged in the oxidative metabolism of endogenous and
exogenous substrates in plants and plant microorganisms, where CYP enzymes are present
in several organs and organelles, including the endoplasmic reticulum, mitochondria and
chloroplasts [96,97]. Plant cytochrome P450 is engaged not only in the metabolism of
tryptophan itself but also in the metabolism of tryptophan derivatives. The enzymes
CYP79B2 and CYP79B3 were found to catalyze N-hydroxylation of tryptophan to form
indole-3-acetaldoxime, while CYP83B1 and CYP83A1 were documented to form indole-
3-acetaldoxime N-oxide in the biosynthesis of indole glucosinolates [98]. Glucosinolates
are biologically active compounds, possessing anti-insect and anti-plant pathogen defense
properties. They are also considered to be possible intermediates in the biosynthesis of
the phytohormone indole-3-acetic acid [24,99–102]. Glucosinolates can be further modified
via 4-hydroxylation catalyzed by CYP81F1-F3 or 1-hydroxylation catalyzed by CYP81F4,
and the formed hydroxy products undergo O-methylation by O-methyltransferase 5 or 4,
respectively [103] (Figure 5). Disruption of the function of the latter enzyme increases the
ability to defend against plant pathogens.
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IAOx = indole-3-acetaldoxime; I3G = indol-3-ylmethyl glucosinolate; 1-OH-I3G = 1-hydroxy I3G;
4-OH-I3G = 4-hydroxy-I3G; 1-MO-I3G = 1-methoxy-I3G; 4-MO-I3G = 4-methoxy-I3G; IGMT = indole
glucosinolate O-methyltransferase.

In the model plant Arabidopsis thalia, cytochrome P450 enzymes contribute to the
catabolism of tryptophan, being engaged in many metabolic pathways [104]. Tryptophan
is oxidized by CYP79B2 and CYP79B3 to indole-3-acetaldoxime (IAOx). The transcription
factors MYB34, MYB51 and MYB122 are regulators of CYP79B2 and CYP79B3 genes,
and thus tryptophan metabolism [105]. IAOx is further metabolized by CYP71A12 and
CYP1A13 to indole-3-acetonitrile (IAN), and then by CYP71B15 to camalexin. IAN can
also be transformed with the participation of CYP71B6 to indole-3-carboxylic acid. Both
CYP71A12 and CYP71A13 play an important role in the resistance of Arabidopsis thalia
against the selected filamentous pathogens Plectospharella cucumerina and Colletotrichum
tropicale; however, CYP71A12 is the major enzyme responsible for the accumulation of
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indole-3-carboxylic acid in response to pathogens [104]. On the other hand, IAOx is
oxidized by CYP83B1 to indole-3-glucosinolates, which contribute to the resistance against
Plectospharella cucumerina [105]. The abovementioned three secondary indole metabolites
of tryptophan glucosinolates, camalexin and indole-3-carboxylic acid are produced by
selected cytochromes P450 in response to microbial pathogens and are considered important
components of the natural plant immune system.

On the other hand, thaxtomin phytotoxins assembled from L-phenylalanine and L-4-
nitrotryptophan are synthesized by plant-pathogenic Streptomyces species. They possess a
nitro group in a tryptophan moiety that is essential for phytotoxicity caused by inhibiting
cellulose biosynthesis. It was reported that TxtE was a unique new member of the CYP
superfamily that catalyzed regiospecific 4-nitration of L-tryptophan utilizing NO and
O2 [25,106,107]. Further studies showed that TxtE had the potential to evolve into a useful
aromatic nitration biocatalyst [108].

6. Conclusions

The abovementioned discoveries indicate that cytochrome P450 is engaged in the
metabolism of tryptophan and its indole derivatives in humans, animals, plants and mi-
crobes, producing biologically active metabolites that exert a positive or negative impact on
living organisms. On the other hand, some tryptophan-derived metabolites may interact
with cytochrome P450 expression, affecting cellular homeostasis, immunity and xenobi-
otic metabolism. This new knowledge on cytochrome P450 involvement in tryptophan
metabolism may be applied to protect organisms against harmful tryptophan metabolites
or to develop new pharmacotherapies adopting beneficial outcomes of some tryptophan
metabolic pathways, in particular the CYP2D-mediated formation of serotonin in the brain.

It seems that the CYP2D-catalyzed biosynthesis pathway of serotonin synthesis from
5-methoxytryptamine may be recognized as an additional target for the pharmacological
action of psychotropic drugs, providing an extra constituent to the already accepted neu-
ronal mechanisms of their medicinal efficacy. The molecular regulation of CYP2D enzymes
is not well known, and recent studies indicate that brain CYP2D enzymes are differently
regulated compared to their liver counterparts. Moreover, the regulation of brain CYP2D
enzymes depends on the studied area. Therefore, the mechanisms of regulation of brain
cytochrome P450 enzymes such as human CYP2D6 in particular brain areas should be
recognized and specific inducers of enzyme expression developed to enhance serotonin
synthesis via alternative pathways in specific brain areas involved in depression.

On the other hand, modifying AhR and CYP1A1/2 expression/activity in particular
pathological states may be a useful strategy in the therapy of chronic kidney disease and
cardiovascular diseases evoked by toxic tryptophan indole metabolites.

Cytochrome P450 is characterized by genetic polymorphism (the polymorphism of
human CYP2D6 is best known). Moreover, the polymorphisms of transcription factors
involved in CYP enzyme regulation have also been found (e.g., the polymorphism of AhR
regulating CYP1A1/2 and CYP1B1 enzyme expression). Those genetic polymorphisms of
CYP proteins may have an impact on the contribution of CYP enzymes to the metabolism of
tryptophan, i.e., on the production of serotonin via alternative pathway engaging CYP2D6
or on the AhR/CYP1A/CYP1B1 pathway, toxicity and immune responses.
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