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Abstract: The assessment, management, and prognostication of spinal cord injury (SCI) mainly rely
upon observer-based ordinal scales measures. 1H nuclear magnetic resonance (NMR) spectroscopy
provides an effective approach for the discovery of objective biomarkers from biofluids. These
biomarkers have the potential to aid in understanding recovery following SCI. This proof-of-principle
study determined: (a) If temporal changes in blood metabolites reflect the extent of recovery fol-
lowing SCI; (b) whether changes in blood-derived metabolites serve as prognostic indicators of
patient outcomes based on the spinal cord independence measure (SCIM); and (c) whether metabolic
pathways involved in recovery processes may provide insights into mechanisms that mediate neural
damage and repair. Morning blood samples were collected from male complete and incomplete SCI
patients (n = 7) following injury and at 6 months post-injury. Multivariate analyses were used to
identify changes in serum metabolic profiles and were correlated to clinical outcomes. Specifically,
acetyl phosphate, 1,3,7-trimethyluric acid, 1,9-dimethyluric acid, and acetic acid significantly related
to SCIM scores. These preliminary findings suggest that specific metabolites may serve as proxy
measures of the SCI phenotype and prognostic markers of recovery. Thus, serum metabolite analysis
combined with machine learning holds promise in understanding the physiology of SCI and aiding
in prognosticating outcomes following injury.

Keywords: metabolomics; blood; nuclear magnetic resonance (NMR) spectroscopy; neurorehabilitation;
functional recovery; traumatic spinal cord injury; therapy

1. Introduction

Spinal cord injury (SCI) is a devastating neurological condition that occurs when spinal
pathways are transected or crushed, leading to disrupted motor, sensory, and autonomic
function. Depending on the level and severity of the injury, a SCI patient will experience
loss of functional independence to varying degrees, and lesion extent and location are the
main determinants of recovery [1,2]. Further, there is a greater potential for functional
recovery following incomplete compared to complete injury [3,4]. After complete injury,
functional restoration is limited by the presence of inhibitory growth factors controlling
nervous system myelination [5], and lasting paralysis may lead to whole-body changes in
metabolism. Effective rehabilitation therapy is crucial to regain or compensate for reduced
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motor function and to minimize the secondary damage that occurs in the weeks to months
following injury [6]. The current methods for prognosticating SCI outcomes and long-term
SCI management, such as the American spinal cord injury association (ASIA) impairment
scale [7] and the spinal cord independence measure (SCIM) [8], are challenged by a lack
of precise and cost-effective approaches, creating growing demand for a high-throughput
method that can rapidly predict patient outcomes, and therefore, inform optimal therapies
for promoting recovery.

SCI patients endure an array of significant metabolic disturbances, including glucose
intolerance, insulin resistance, and decreased lean body mass [9,10]. A key pathological
hallmark evident in the weeks to months following a SCI is the increase in adipose tissue,
particularly surrounding the abdominal regions [11]. Bone marrow adipose tissue accu-
mulation shows an inverse relationship with bone mineral density, which underlies the
susceptibility to osteoporosis that frequently afflicts SCI patients [12]. Furthermore, in-
creased adiposity amongst SCI patients adversely affects the liver. Liver adiposity has been
shown to be positively related to inflammation, and the release of inflammatory mediators
TNF-alpha and interleukin-6, which propagate metabolic stress [13]. In addition, when
autonomic innervation to the liver is disrupted following SCI, it raises the risk of adiposity
and glucose intolerance, as the liver is a key regulator of glucose homeostasis [14]. The
latter can potentially increase the risk of disorders in carbohydrate and lipid metabolism in
SCI patients [15].

Previous research from our group revealed potential urinary metabolomics biomarkers
for SCI and traumatic brain injury [16–18]. While more metabolites are detectible in urine
through nuclear magnetic resonance (NMR) spectroscopy, it is advantageous to investigate
similarities and differences to blood-based biomarkers. Blood as a biofluid is especially
amenable to detecting glucose intolerance as by-products of the liver’s metabolism directly
enter the bloodstream via the hepatic portal vein. NMR spectroscopy can detect 49 different
compounds in blood serum, 20 of which are unique to NMR and cannot be detected by
gas chromatography-mass spectrometry [19]. An informative panel of biomarkers that
indicates patient prognosis could be used to inform clinical practice.

The present longitudinal proof-of-principle study used NMR spectroscopy and both
univariate statistics and multivariate machine learning to identify a metabolic fingerprint
in the serum of SCI patients. The design of the study assessed a metabolomic profile of
SCI patients initially following injury and at 6 months post injury to determine which
metabolites lead to observed differences and which biochemical pathways contribute to
these metabolomic alterations. We hypothesize that differences in metabolic profiles will
emerge at the two different time points, reflecting differences in patient SCIM scores.
The findings demonstrate the potential for NMR spectroscopy to identify metabolites as
prognostic SCI biomarkers.

2. Materials and Methods
2.1. Patient Characteristics and Sample Collection

This research was part of the understanding neurological recovery study: the role of
resting state fMRI, biomarkers, and robotics after traumatic brain injury, stroke, and SCI
(UCAN), conducted at the University of Calgary, which followed SCI patients throughout
their recovery from initial injury to 6 months post injury. The inpatient spinal cord ward
at the Foothills Medical Centre was aware of the study criteria. If identified as a potential
study participant, patients were then approached by their circle of care to participate. If
agreeable consent to contact was completed, a researcher from the UCAN team approached
the patient to provide informed consent. A total of eleven patients were recruited for the
study through the Foothills Medical Centre, University of Calgary, of which 7 were male
patients with incomplete (n = 5) and complete SCI (n = 2) who provided two blood samples.
Specifically, the analyses included n = 2 patients with central cord injury, n = 2 patients
with thoracic level injury, and n = 3 patients with cervical level injury. Pairs of fasting
morning blood samples (acquired between 6 am and 9 am) were collected at two different
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time points: within 21–90 days (median = 38 and interquartile range = 43) following SCI,
known as the initial collection throughout this paper, and again at 6 months post injury. The
pairwise analyses in this within-subject control study reduced the impact of confounding
individual lifestyle factors.

2.2. Clinical Assessment

The SCIM was completed by a physician specialist in spinal cord injury rehabilitation
(CH) for each participant within 22–99 days (median = 72 and interquartile range = 38.5),
otherwise known as the initial assessment, and 6 months following SCI. The SCIM, based on
participant self-reports, includes the following areas of function: self-care (subscore 0–20),
respiration and sphincter management (0–40), and mobility (0–40) [8], where 0 indicates
high disability and 100 indicates low disability.

2.3. NMR Sample Preparation, Data Acquisition, and Processing

Whole blood samples were centrifuged to isolate the serum and stored at −80 ◦C.
A dibasic potassium phosphate (K2HPO4) to monobasic potassium phosphate (KH2PO4)
buffer (4:1) was prepared with a combined concentration of 0.625 M in dH2O (pH 7.4 ± 0.05),
containing 3.75 mM sodium azide (NaN3) as an anti-microbial agent and 0.375M potassium
fluoride (KF) [20,21]. Amicon 0.5 mL 3 kDa centrifuge filters were used to isolate water-
soluble components from the protein-rich components. All filters were rinsed ten times
to ensure that there was no residual glycerol in the filter [22]. Reverse pipetting was used
to add 300 µL of metabolomics buffer into each of the Amicon centrifuge filters. Then,
200 µL of serum was pipetted and centrifuged at 14,000× g for 30 min at 4 ◦C. For NMR
sample preparation, 380 µL of serum filtrate, 100 µL of phosphate buffer and 120 µL of
0.02709% weight/volume D2O with trimethylsilyl propanoic acid (TSP) were centrifuged
at 12,000 rpm for 5 min at 4 ◦C. 550 µL of buffered sample was transferred to an NMR tube
to be loaded into the spectrometer. Samples were vortexed prior to loading to ensure that
the serum was mixed prior to spectral acquisition.

A 700 MHz Bruker Avance III HD NMR spectrometer and a room-temperature triple
resonance broad band observe (TBO) probe were used, with three-dimensional and one-
dimensional shimming experiments prior to NMR data acquisition. The data were acquired
using a one-dimensional 1H Nuclear Overhauser Effect Spectroscopy experiment with
water suppression, 128 k points, and 128 scans. The data were processed using zero filling
to 256 k points, line broadening to 0.3 Hz, and automatic phase and baseline correction. The
spectra obtained from the NMR experiment were then imported into MATLAB, where they
underwent dynamic adaptive binning [23], followed by manual inspection and correction
of the bins [24,25]. In total, 287 bins were created for this analysis.

2.4. Statistical Analysis

Multivariate and univariate statistical analyses were used to determine if blood-
derived metabolite profiles could be used to distinguish between the initial and 6-month
post-injury samples. Analysis and corresponding figures were created using Metaboan-
alystR version 2.0.4 package running inside R version 3.5.3 [26]. Prior to modelling, the
data were normalized to the total metabolome, excluding the region corresponding to
water, log-transformed, and pareto-scaled [27–30]. Bins containing significant metabolites
were sorted according to the F-ranked and best subset results from variable importance
analysis based on random variable combination (VIAVC) analysis [31] based on the receiver
operator characteristic (ROC) test and the subsequent area-under-the-curve (AUC) anal-
ysis [32]. VIAVC is a MATLAB-based machine learning algorithm that employs a binary
matrix resampling method and uses double ten-fold cross-validation to randomly select
an independent test set and validate the model repeatedly until each sample has been
included in the test set once [33]. The F-ranked and best subset variables are determined
utilizing ten-fold and double ten-fold cross-validation, respectively. Univariate statistical
tests included paired t-tests or paired Wilcoxon-Mann–Whitney tests, depending on the
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normality of the data. A Shapiro–Wilk test was used to test the parametricity of each
bin [34].

First, unsupervised principal component analysis (PCA) was carried out using both all
variables and only variables identified as significantly altered by paired T-test or VIAVC best
subset. Subsequently, supervised orthogonal projection to latent structures discriminant
analysis (OPLS-DA) was carried out using the same two subsets of variables to visualize
between-group separation as a function of within-group variation [28]. This approach
was complemented by hierarchical clustering analysis using the same subset of variables,
which is illustrated by the heat map and demonstrates the degree of separation between
the groups in an unsupervised fashion.

Significantly altered bins corresponding to metabolites were identified using a com-
bination of resources: Chenomx 8.2 NMR Suite (Chenomx Inc., Edmonton, AB, Canada),
the Human Metabolome Database (HMBD) [35], and the Human Serum Metabolome [36]
containing a list of NMR-derived serum metabolites and their concentrations. Pathway
topology analysis was conducted in Metaboanalyst [37] using the list of significantly altered
metabolites as determined by univariate testing and the VIAVC best subset. For pathway
analysis, the hypergeometric test was used for over-representation analysis, the relative
betweenness was selected for topology analysis, and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database for humans was utilized to identify metabolite pathways.

Pearson R correlations were computed between concentrations of significantly altered
blood-derived metabolites, as determined by the VIAVC F-ranked variables, and participant
SCIM scores. The significance was assessed based on the Bonferroni corrected p-value,
obtained by dividing alpha <0.05 by the number of VIAVC F-ranked bins tested for this
analysis (n = 13), to obtain a more rigorous set of clinically relevant metabolites [34]. The
change in concentration, or delta, was computed by taking the concentration at 6 months
and subtracting the initial concentration. The percent difference for scores at the two
different time points were computed as follows:

(6 Months Score − Initial Score)/((6 Months Score + Initial Score)/2) × 100% (1)

3. Results
3.1. Participant Characteristics

Clinical improvement was evident amongst most of the male SCI participants (average
age 54 ± 18 years) at 6 months post-injury with respect to the initial scores for the SCIM
with an average improvement of 13.71 ± 12.16 points, in which a higher “post” score
indicates greater recovery (Table 1). Here, recovery can be defined as the change the initial
sample collection and clinical assessment to the 6-month post-injury follow-up.

3.2. Metabolomic Profiles Show Alterations during Recovery Following SCI

The bins found to be significant in male SCI patients by either paired T-test/Wilcoxon
Mann–Whitney test (17 bins) or the VIAVC best subset (five bins) were used for the
analysis (Table 2). The VIAVC best subset consists of the following metabolites: citric acid,
1,3,7-trimethyluric acid, and acetyl phosphate. The heat map illustration demonstrated a
partial degree of unsupervised group separation (Figure 1). The numbering on the heatmap
corresponds to the numbers provided in Table 2. Initial unsupervised PCA modelling using
both all variables and only variables identified as significantly altered by paired T-test or
VIAVC resulted in no clear separation of the groups (data not shown). Subsequent OPLS-
DA modelling using all variables also showed no clear group separation (data not shown).
The OPLS-DA score plot (Figure 2) created using the bins was identified as significant by
the paired-t test, or the VIAVC best subset testing illustrated significant group separation
initially and at 6 months (R2Y = 0.921, p < 0.01; Q2 = 0.687, p < 0.01). This supervised
model indicated a change in the metabolic profiles over the course of participant recovery
in repeated samples. The metabolites that contributed the most to the group separation
are shown in Table 2, ranked in order of significance, based on the paired T-test/Wilcoxon
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Mann–Whitney test. The five bins determined to be significantly altered based on the
VIAVC best subset were used to create an ROC curve and where the corresponding area
under the curve (AUC) was equal to 1, with a 95% confidence interval of 1–1 (Figure 3),
and a predictive accuracy of 99%.

Metabolites 2023, 13, x FOR PEER REVIEW 6 of 15 
 

 

Table 2. Statistically significant blood-derived metabolites amongst a male population of SCI pa-
tients, according to the paired T-test/Wilcoxon Mann–Whitney tests and VIAVC F-ranked analysis. 
Metabolites and their corresponding chemical shift value are ranked in order of significance (p < 
0.05) according to the paired T-test/Wilcoxon Mann–Whitney test; those with associated p-values 
for the VIAVC F-ranked test are also reported. Direction of regulation and percent difference are 
provided for each of the metabolites. Heat map numbers indicate metabolites that correspond to 
labelling on the heat map (Figure 1). Single dagger indicates the metabolite is part of the VIAVC F-
ranked set; double dagger indicates the metabolite is part of both the VIAVC best-subset and F-
ranked. Metabolites for which more than one NMR resonance peak was identified as significant are 
represented as Metabolite.1, Metabolite.2, … Metabolite.n. 

Metabolite Chemical Shift (ppm) Paired t/Wilcoxon p-Value 
Regulation 

(% Difference) 
Heat Map Number 

Acetic Acid.1 † 1.925 0.0022 Up (22.77%) 13 
Dimethyl Sulfone 3.162 0.0156 (W) Up (64.73%) 16 

Citric Acid.1 † 2.518 0.0187 Up (24.88%) 9 
Citric Acid.2 †† 2.540 0.0192 Up (26.01%) 8 
Citric Acid.3 †† 1.654 0.0202 Up (28.15%) 7 
Acetic Acid.2 † 1.931 0.0247 Up (15.15%) 14 

1,9-Dimethyluric Acid.1 3.301 0.027 Up (11.47%) 18 
Citric Acid.4 †† 2.675 0.028 Up (23.59%) 6 

1,9-Dimethyluric Acid.2 † 3.294 0.0306 Up (13.31%) 19 
1,5-Anhydrosorbitol.1 3.973 0.0361 Up (15.18%) 12 

Succinic Acid 2.407 0.0361 Up (8.03%) 11 
Methanol 3.367 0.04 Up (21.37%) 17 

1,3,7-Trimethyluric Acid.1 3.222 0.0435 Down (−6.36%) 3 
D-Glucose 5.239 0.0445 Down (−9.26%) 4 

D-Mannose 5.197 0.0469 (W) Down (−43.00%) 5 
Undefined doublet 1.141 0.0469 (W) Up (60.96%) 15 

Lactate 4.145 0.0484 Up (18.57%) 10 
1,3,7-Trimethyluric Acid.2 †† 3.385 >0.05 Down (−5.30%) 2 

Acetylphosphate.1 †† 2.115 >0.05 Down (−4.83%) 1 
Pantothenic Acid † 3.376 >0.05 Up (0.95%)  

Acetylphosphate.2 † 2.122 >0.05 Down (−1.56%)  
Acetylphosphate.3 † 2.110 >0.05 Down (−2.39%)  

1,5-Anhydrosorbitol.2 † 3.276 >0.05 Up (15.24%)  
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the metabolite corresponding to each of the numbers provided to the right of the heat map. 

Figure 1. Heat map illustrating unsupervised separation and hierarchical clustering analysis of
metabolic profiles in male SCI participants initially and at 6 months post-injury. The heat map depicts
up-regulation versus down-regulation of metabolites determined significant by the VIAVC best
subset (5 bins) and paired T-test/Wilcoxon Mann–Whitney test (17 bins). Table 2 provides the name
of the metabolite corresponding to each of the numbers provided to the right of the heat map.
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Figure 2. Orthogonal projections to latent structures discriminant analysis (OPLS-DA) score plot
showing supervised separation for male SCI participants initially (red/squares) and 6 months post-
injury (indigo/triangles). This plot was created using a list of blood-derived metabolites found to
be significantly altered by paired T-test and the VIAVC best subset. The 95% confidence interval is
indicated by the shaded ellipses. The x-axis and the y-axis show the predictive (between group) and
orthogonal (within group) variation, respectively. Cross-validation and permutation measures for the
OPLS-DA were R2Y = 0.921, p = 0.006; Q2 = 0.687, p = 0.002.
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Table 1. Participant characteristics indicating the SCI type, ASIA score, sex, age, days between SCI and baseline blood biomarker collection, days between SCI and
blood collection at the 6 month time-point, lesion location, co-morbidities, medications, ability to walk, and gait aids and ankle–foot orthoses (AFOs), as well as both
the initial and 6-month post-injury SCIM scores. Central cord syndrome is defined here as an incomplete injury to the centre of the cervical spine. The asterisk
symbol under the medications column corresponds to the following medications: Metoclopramide, Enoxaparin, Acetylsalicylic acid, Bisacodyl, Codeine, Diclofenac,
Docusate sodium, Heparin, Lactulose, Magnesium hydroxide, Cascara aromatic liquid, Ocycodone, Senokot, Zopiclone, Glycerin suppository, and Lactulose liquid.

Participant
Code SCI Type ASIA

Score Sex Age Blood Collection
(Days Post-Injury)

Neurological
Level of Injury Co-Morbidities Medications Ambulatory Gait Aids and AFOs SCIM

Initial 6 Month Initial 6 Month Initial 6 Month Initial 6 Month

SCI_01 Incomplete D Male 80 74 213 Central Cord
(C1–C2) Yes Yes No No 84 89

SCI_02 Complete A Male 29 73 203 T7 No No 70 70

SCI_03 Incomplete D Male 48 21 182 Central Cord
(C5–C6) Yes Yes Yes No 66 97

SCI_05 Incomplete D Male 38 31 199 C4 * No Yes 72 92
SCI_06 Complete A Male 50 30 177 T6 (Dislocation) No No 49 66
SCI_08 Incomplete D Male 59 90 188 C6–C7 Yes Yes No No 100 100

SCI_11 Incomplete B Male 73 38 201 C2–C4
UTI, C2-C3

spinal artery
infarct

Yes Yes No No 77 100
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Table 2. Statistically significant blood-derived metabolites amongst a male population of SCI pa-
tients, according to the paired T-test/Wilcoxon Mann–Whitney tests and VIAVC F-ranked analy-
sis. Metabolites and their corresponding chemical shift value are ranked in order of significance
(p < 0.05) according to the paired T-test/Wilcoxon Mann–Whitney test; those with associated p-values
for the VIAVC F-ranked test are also reported. Direction of regulation and percent difference are
provided for each of the metabolites. Heat map numbers indicate metabolites that correspond to
labelling on the heat map (Figure 1). Single dagger indicates the metabolite is part of the VIAVC
F-ranked set; double dagger indicates the metabolite is part of both the VIAVC best-subset and
F-ranked. Metabolites for which more than one NMR resonance peak was identified as significant
are represented as Metabolite.1, Metabolite.2, . . . Metabolite.n.

Metabolite Chemical Shift
(ppm)

Paired t/Wilcoxon
p-Value

Regulation
(% Difference) Heat Map Number

Acetic Acid.1 † 1.925 0.0022 Up (22.77%) 13
Dimethyl Sulfone 3.162 0.0156 (W) Up (64.73%) 16

Citric Acid.1 † 2.518 0.0187 Up (24.88%) 9
Citric Acid.2 †† 2.540 0.0192 Up (26.01%) 8
Citric Acid.3 †† 1.654 0.0202 Up (28.15%) 7
Acetic Acid.2 † 1.931 0.0247 Up (15.15%) 14

1,9-Dimethyluric Acid.1 3.301 0.027 Up (11.47%) 18
Citric Acid.4 †† 2.675 0.028 Up (23.59%) 6

1,9-Dimethyluric Acid.2 † 3.294 0.0306 Up (13.31%) 19
1,5-Anhydrosorbitol.1 3.973 0.0361 Up (15.18%) 12

Succinic Acid 2.407 0.0361 Up (8.03%) 11
Methanol 3.367 0.04 Up (21.37%) 17

1,3,7-Trimethyluric Acid.1 3.222 0.0435 Down (−6.36%) 3
D-Glucose 5.239 0.0445 Down (−9.26%) 4

D-Mannose 5.197 0.0469 (W) Down (−43.00%) 5
Undefined doublet 1.141 0.0469 (W) Up (60.96%) 15

Lactate 4.145 0.0484 Up (18.57%) 10
1,3,7-Trimethyluric Acid.2 †† 3.385 >0.05 Down (−5.30%) 2

Acetylphosphate.1 †† 2.115 >0.05 Down (−4.83%) 1
Pantothenic Acid † 3.376 >0.05 Up (0.95%)

Acetylphosphate.2 † 2.122 >0.05 Down (−1.56%)
Acetylphosphate.3 † 2.110 >0.05 Down (−2.39%)

1,5-Anhydrosorbitol.2 † 3.276 >0.05 Up (15.24%)

Pathway topology analysis (Figure 4) illustrates the impact of individual metabolites
on changes to the SCI patients’ metabolic profiles, presented in increasing order of impact.
Metabolic pathways significantly affected included pyruvate metabolism (p < 0.001), the cit-
rate cycle (p < 0.01), glycolysis/gluconeogenesis (p < 0.05), alanine, aspartate, the glutamate
metabolism (p < 0.05), and glyoxylate and dicarboxylate metabolism (p < 0.05). Pathway
analysis was also based on bins identified as significantly altered by the VIAVC best subset,
the paired T-test, and the Wilcoxon Mann–Whitney test.

3.3. Relationship between Metabolic Biomarkers and Functional Improvement

To determine if initial metabolite concentrations were related to participants’ functional
improvement, Pearson R regression analysis was performed between initial metabolite
levels and percent difference in SCIM scores to demonstrate the presence of a relationship
between these two variable sets. Regression analysis revealed acetyl phosphate to have
a significant correlation: R = −0.66, p < 0.05 (Table 3, Figure S1). To determine if the
change in metabolite concentration serves as a proxy measure of the degree of recovery, this
analysis was also applied to determine the relationship between the difference in metabolite
concentrations (delta) and percent difference in SCIM scores. Significant regression analysis
resulted for 1,3,7-trimethyluric acid (R = 0.57, p < 0.05), 1,9-dimethyluric acid (R = 0.76,
p < 0.01), and acetic acid (R = 0.74, p < 0.01) (Table 3, Figure S1). In addition, correlations
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between the delta metabolite concentration and the initial SCIM scores were investigated;
however, no significant correlations were observed (data not shown).
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Figure 4. Metabolic pathway analysis, conducted based on spectral bins that were significant in the
VIAVC best subset and paired T-test/Wilcoxon Mann–Whitney test. A higher value on the y-axis
indicates a lower p-value for the pathway. The x-axis provides the pathway impact as a measure of
how affected each pathway is by the metabolites identified as significantly altered. The colour of
the circles indicates p-value, with darker colours being more significant. The size of the circle corre-
sponds to pathway impact, with larger circles having higher impact. Only pathways with a p-value
less than 0.05 are labeled. The numbering of the significant pathways correspond to the following:
1. Pyruvate metabolism (p = 0.00028); 2. Citrate cycle (p = 0.0067); 3. Glycolysis/Gluconeogenesis
(p = 0.011); 4. Alanine, aspartate, and glutamate metabolism (p = 0.013); 5. Glyoxylate and dicarboxy-
late metabolism (p = 0.017).
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Table 3. Pearson R correlation values and associated p-values displayed for n = 7 male partici-
pants included for 2 comparisons: first, correlating initial metabolite concentration to the percent
difference in SCIM scores and second, correlating metabolite change (delta; 6 months post injury
concentration—initial concentration) to the percent difference in SCIM scores. p-values with a star in-
dicates significance based on the Bonferroni corrected threshold (alpha = 0.0038). For the correlations
to initial metabolite concentrations, a negative value indicates a lower level of the metabolite that
corresponds to a greater percent difference (improvement) in the SCIM score. For the correlations
of metabolite delta concentrations, a positive value indicates that a larger increase in the metabolite
concentration at 6 months corresponds to a greater percent difference (improvement) in SCIM score.

Metabolite Correlation Values

Metabolite Initial Concentration to Percent Difference SCIM

Acetyl Phosphate R = −0.66, p = 0.011

Metabolite Delta Concentration to Percent Difference SCIM

1,3,7-Trimethyluric Acid R = 0.57, p = 0.035
1,9-Dimethyluric Acid R = 0.76, p = 0.002 *

Acetic Acid R = 0.74, p = 0.0026 *

4. Discussion

The present pilot study shows that metabolomic signatures in serum potentially
provide novel biomarkers that are associated with changes in SCIM scores following SCI.
The most significant changes occurred in metabolites that were part of the VIAVC best
subset (citric acid, 1,3,7-trimethyluric acid, and acetyl phosphate), suggesting that these
metabolites present possible biomarkers of recovery following SCI. Furthermore, their
ability to classify recovery processes following SCI was confirmed by a predictive accuracy
of 99%. The main metabolic pathways altered by recovery following SCI included pyruvate
metabolism, the citrate cycle, glycolysis/gluconeogenesis, alanine, aspartate, glutamate
metabolism, and glyoxylate and dicarboxylate metabolism. Moreover, these results also
indicate that a greater difference in the final concentration (delta) of 1,3,7-trimethyluric
acid, 1,9-dimethyluric acid, and acetic acid correlate to a larger percent difference in SCIM
score. Thus, a metabolomics approach combined with machine learning shows promise
in providing a fluid biomarker approach to understanding change in clinical outcomes
following SCI.

4.1. Pathway Analysis

Pyruvate metabolism is presented as the most significantly affected pathway amongst
the present SCI subjects (Figure 4). In glycolysis, two pyruvate molecules are generated
from the breakdown of glucose, which are later used to generate adenosine triphosphate
(ATP) energy via the citric acid cycle. Insulin stimulates glycolysis and the formation
of pyruvate by promoting the expression of enzymes phosphofructokinase and pyruvate
kinase, which drive this pathway. However, over time, some SCI patients experience insulin
resistance attributed to increased adiposity [10], and consequently, some cells may fail to
respond to insulin and glucose is not metabolized as quickly. For these patients, disrupted
glucose homeostasis and inflammation resulting from increased liver adiposity could be
due to impaired insulin signaling. Consequently, it is likely that pyruvate metabolism is
down-regulated amongst participants with SCI as they begin to experience alterations in
this pathway potentially leading to future glucose intolerance issues for the patients.

Significant changes in the concentrations of succinate and citrate, which are inter-
mediates in the citric acid cycle, in the study participants’ serum indicates dysregulation
of the citric acid cycle. As the second most significantly altered pathway, disruptions to
the citric acid cycle may indicate a metabolic switch from aerobic respiration to anaerobic
respiration [38]. Normally, in the presence of oxygen, cells undergo aerobic respiration,
which, due to the citric acid cycle and electron transport chain, produces a larger ATP yield
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compared to anaerobic respiration. However, following SCI with contusion or compression
of nerves and vasculature, ensuing hemorrhage creates a depletion in blood flow around
surrounding tissues, which can lead to different degrees of ischemia [39]. In part due to
these pathological processes, anaerobic glycolysis may prevail, leading to accumulation of
lactate, which was a significantly altered metabolite in the present serum samples (Table 2).
Damage to blood vessels underlies the secondary injury events that follow the initial me-
chanical insult, which leads to neuronal death [39]; thus, leakage of metabolic intermediates
into the blood suggests a shift in metabolic mode and secondary tissue damage.

The third most significantly affected pathway involved glycolysis or gluconeogenesis.
Gluconeogenesis and glycolysis are reciprocally regulated pathways, controlled by two
competing hormones: insulin that drives glycolysis and glucagon that drives gluconeo-
genesis [40]. Gluconeogenesis largely occurs in hepatocytes and is a pathway used by
the body to create glucose from other molecules. Insulin is the most important hormone
for this pathway that suppresses gluconeogenic enzymes [41]. However, in the case of
possible impaired insulin signaling in some patients, as discussed above, this regulation
of gluconeogenesis may be lost, and consequently, the rate of hepatic gluconeogenesis
is considerably increased. This claim is reinforced by a recent study that demonstrated
that in individuals with compromised insulin signaling, insulin failed to suppress hepatic
gluconeogenesis, even in the fed state [42]. Therefore, it is likely that gluconeogenesis is
up-regulated after SCI. Complementary to gluconeogenesis is glycolysis, which functions
to break down glucose into two pyruvate molecules to derive ATP cellular energy. As some
SCI patients experience altered insulin sensitivity, the down-regulation of their glycolysis
is highly probable.

The fourth most significant pathway implicated within our study participants’ samples
involved alanine, aspartate, and glutamate metabolism. Prior studies have shown that
levels of excitatory amino acids, including aspartate and glutamate, are up-regulated
in response to trauma to the brain and spinal cord [43,44]. Specifically, glutamate levels
transiently increase within the first three hours following an SCI [45]. Neurons are especially
susceptible to the damaging effects of glutamate excitotoxicity since they express a full
complement of glutamate receptors [46], and oligodendrocytes within the white matter are
especially sensitive [47]. Reduced intracellular aspartate levels in the cervical spinal cord of
a rat model suggest release of this excitatory amino acid in response to injury [48]. Unlike
glutamate and aspartate, the amino acid alanine is inhibitory. It has been shown that cell
damaging conditions, such as ischemia, oxidative stress, and free radical formation, trigger
its release to protect against neurotoxicity [49]. Thus, degenerative mechanisms following
SCI may trigger the release of metabolites implicated in this pathway.

The fifth potentially altered pathway affected by SCI was glyoxylate and dicarboxylate
metabolism. Recent evidence discusses the potential of glyoxylate as a biomarker of type 2
diabetes, with changes that predetermine glucose levels [50]. As SCI patients experience
altered sensitivity to insulin, evidence of this pathway within the serum may indicate the
initial development of this pathology. The fact that a glyoxylate shunt is activated during
oxidative stress and provides an alternative metabolic route to the citric acid cycle is also
relevant [51]. Oxidative stress following SCI may lead to the use of this alternative pathway.

4.2. Relationship between Metabolite Profiles and SCIM

Acetyl phosphate is a clinically significant metabolite, given that the initial levels
of this biomarker correlated to the percent difference measurements for the SCIM per-
formance (Table 3, Figure S1). The negative correlation indicates improved recovery as
levels of this metabolite decrease. Evidence suggests that acetyl phosphate serves as a
marker of mitochondrial activity, with a postulated role as a reaction intermediate in the
generation of precursors for the citric acid cycle [52]. It is known that changes in mitochon-
dria activity within skeletal muscle underlie the development of insulin resistance [53].
Insulin resistance is a prevalent issue afflicting SCI patients [54], likely due to the ensuing
changes in the amount of muscle tissue. The observed decrease in blood acetyl phosphate
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levels may indicate the attenuation of muscle atrophy and subsequent decrease in break-
down of organelles, such as mitochondria, leading to the observed improvement in study
participant recovery.

The present findings indicate that changes in blood metabolites, especially
1,3,7-trimethyluric acid, 1,9-dimethyluric acid, and acetic acid, may serve as robust proxy
measures for SCIM scores. The positive correlation indicates that improvement in study
participant outcomes is paralleled by increased blood 1,3,7-trimethyluric acid levels. As a
breakdown product of purines, 1,3,7-trimethyluric acid may serve as a biomarker of the
neuroprotective action of purines in the nervous system [55]. It has been shown that plasma
uric acid, the purine 1,3,7-trymethyluric acid is a derivative of, was negatively correlated
with the incidence of neurodegenerative disease by promoting neuronal glutathione syn-
thesis [56], a major antioxidant [57]. This same framework could also explain the presence
of 1,9-dimethyluric acid, another purine derivative that is positively correlated to SCIM
outcomes and potentially reflective of underlying neuroplastic mechanisms.

A positive correlation was also seen for changes in acetic acid levels compared to
the percent difference in SCIM scores. Again, this indicates that recovery is paralleled
by increased blood acetic acid levels. Acetic acid, whose conjugate base is acetate, is a
precursor to glucose production within the tricarboxylic acid cycle (TCA cycle). Via a
thioester linkage, acetic acid is bound to coenzyme A, which serves as the starting material
for energy production within the TCA cycle, common to all types of cells [58]. Increasing
levels associated with recovery may indicate a greater metabolic demand for glucose,
likely due to muscle rebuilding and restoration, which are very metabolically active [59].
Moreover, a previous study showed that physical exercise prevents insulin resistance
by inhibiting pro-inflammatory signaling pathways [60]. Therefore, higher acetic acid
levels may indicate higher glucose demand, which emphasizes the importance of exercise
interventions to attenuate insulin resistance.

4.3. Metabolite Alterations across Biofluids

Previous work under the overarching UCAN study identified urinary metabolites
that indicate recovery from SCI [16]. Several metabolites identified in the present study
can be linked to previous findings; notably, significant changes in glutamate metabolism,
1,3,7-trimethyluric acid, and 1,9-dimethyluric acid.

Under normal physiological conditions and after injury in the spinal cord, glutamate
is released from excitatory synapses and binds to presynaptic receptors on neighboring
astrocytes. Following this, astrocytes release ATP, which is converted to adenosine [61,62].
Adenosine is a neuromodulator in the spinal cord involved in locomotor activity [63]
and it inhibits neurotransmitter release by binding to presynaptic receptors [61]. Further,
inhibiting adenosine A2A receptors reduces toxic glutamate levels and protects from
motor deficits after SCI. These receptors promote excitotoxicity by releasing glutamate and
inhibiting glutamate uptake [64]. The previous study found the purine adenosine to be
upregulated in urine [16]. It is possible that this increase could be linked to the potential
alterations in glutamate metabolism suggested in this study.

Interestingly, 1,3,7-trimethyluric acid and 1,9-dimethyluric acid are downstream prod-
ucts of caffeine metabolism [65]. Caffeine was significantly upregulated in the previous
study of urine and found to be correlated with SCI recovery outcomes [14]. Both caffeine
and uric acid derivatives, including 1,3,7-trimethyluric acid, have been shown to have an-
tioxidant effects [66], meaning they could be released as a response to free radicals released
after SCI. Bykowski et al. further discusses how caffeine dysregulation is connected to
spinal cord injury [16], but it is also worth noting that caffeine inhibits adenosine receptors
and increases motor activity [67]. At this point, it is unclear if and how caffeine and its
downstream products, adenosine, and glutamate, interact to cause metabolic changes.
Given this, future research should focus on the metabolic pathway of caffeine after SCI as
the findings of both studies indicate it is significantly altered in blood and urine following
injury and rehabilitation.
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Although the present study includes a limited sample size, the longitudinal design
revealed a significant regulation of metabolite concentrations across initial and 6-month
post-injury time points, which allowed the identification of unique blood-derived metabolic
signatures. In addition to a larger sample size, future studies should incorporate a more
diverse sample group that includes an equal number of females. Although it was not one
of the objectives of this pilot study, future research involving a larger patient population
would also benefit from taking injury level into consideration. Another limitation to this
pilot study is that patients with SCI were not on a strict diet regimen, followed rehabilitation
and exercise regimen that varied based on their individual needs, and had variable mobility.
It is also worth noting that other confounding factors, such as body mass index, medical
history, and acute versus chronic drug treatment, were not considered in this study. Further,
future studies would benefit from using a control group with musculoskeletal injury to
account for other potential injuries acquired with the SCI. Additionally, most of the patients
in this study did not have a minimal clinical important difference [68]; thus, we cannot
extrapolate that the changes in metabolomic biomarkers presented reflect clinical recovery
as a phenotypic change. The effects of these potential confounds were minimized, however,
by collecting two blood samples from each participant so that significant metabolite changes
reflect a global change across paired blood samples.

5. Conclusions

Rehabilitation interventions that capitalize on mobilizing the SCI patient from the
acute stage would be prudent for limiting the extent of inflammatory degradation, min-
imizing patient adiposity, and improving glucose tolerance. The identified biomarkers
and metabolic pathways may represent attractive therapeutic targets and have prognostic
potential for clinical translation; however, these findings need to be verified with a larger
cohort of patients before implementation in clinical practice. Metabolites with statistically
significant correlations to SCIM outcomes represent a window of opportunity for neu-
rotherapeutic intervention for SCI patients. Acetyl phosphate may predict recovery and
outcomes, whereas 1,3,7-trimethyluric acid, 1,9-dimethyluric acid, and acetic acid could
potentially serve as proxy biomarkers of physiological change following SCI. Furthermore,
significant group separation in metabolite profiles was observed, where the subset of the
metabolite part of the VIAVC best-subset correctly classified metabolic profiles with a
predictive accuracy of 99%. The findings presented in this pilot study are foundational for
more rigorous testing of biomarkers with potential for clinical translation.
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