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Abstract: The use of aromatase inhibitors is an established therapy for estrogen-dependent breast
cancer in postmenopausal women. However, the only commercially available aromatase inhibitor,
letrozole, is not highly selective; in addition to aromatase, it has an affinity for binding to desmolase,
an enzyme involved in steroidogenesis, which explains the main side effects. Therefore, we designed
new compounds based on the structure of letrozole. More than five thousand compounds were
constructed based on the letrozole structure. Then, these compounds were screened for their binding
ability toward the target protein, aromatase. Quantum docking, Glide docking, and ADME studies
showed 14 new molecules with docking scores of ≤−7 kcal/mol, compared to the docking score
of −4.109 kcal/mol of the reference, letrozole. Moreover, molecular dynamics (MD) and post-MD
MM-GBSA calculations were calculated for the top three compounds, and the results supported
in their interaction’s stability. Finally, the density-functional theory (DFT) study applied to the top
compound to study the interaction with gold nanoparticles revealed the most stable position for the
interaction with the gold nanoparticles. The results of this study confirmed that these newly designed
compounds could be useful starting points for lead optimization. Further in vitro and in vivo studies
are recommended for these compounds to verify these promising results experimentally.

Keywords: cancer; aromatase; letrozole analogues; molecular docking; molecular dynamics; gold
nanoparticles; drug discovery; health and wellbeing
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1. Introduction

Cancer is characterized by an uncontrolled growth of abnormal cells that can ap-
pear and metastasize in different tissues of the body, and cancer is currently the second
leading cause of death after cardiovascular disease [1]. Breast cancer is now the most
prevalent cancer detected worldwide and ranks fifth among the leading causes of cancer-
related deaths, having surpassed lung cancer as the most commonly diagnosed cancer with
2.3 million new cases (11.7%). This is followed by lung cancer (11.4%), colorectal cancer
(10.0%), prostate cancer (7.3%), and gastric cancer (5.6%). Breast cancer is responsible for 1 in
6 of all female cancer-related deaths and is the leading cause in 110 countries worldwide [2].

It is widely accepted that estrogen plays a crucial role in the progression and metastasis
of breast cancer. Specifically, in postmenopausal women, the concentration of 17β-estradiol
(E2) in breast cancer may be up to ten times higher than in plasma [3]. This may be due to
either increased plasma uptake or in situ androgen aromatization. Aromatase, an enzyme
involved in the rate-limiting step of estrogen biosynthesis, catalyzes three successive
hydroxylation reactions that aromatize C19 androgens to C18 estrogens. Aromatase is part
of the cytochrome P450 enzyme superfamily and is a membrane-bound protein located in
the endoplasmic reticulum. Human aromatase (CYP19A1) is located on chromosome 15,
band q21.2 of the genome [4].

Therefore, inhibiting estrogen synthesis by blocking aromatase is an advantageous
therapeutic approach to treating hormonally sensitive breast cancer [5]. Aromatase in-
hibitors (AIs) are first-line drugs for the treatment of estrogen receptor (ER)-positive breast
cancer in postmenopausal women. Third-generation AIs, including exemestane, anas-
trozole, and letrozole, have been approved by the Food and Drug Administration as a
first-line therapy for hormone-sensitive breast cancer in postmenopausal women, as they
have been proven to be superior to tamoxifen, a representative of selective estrogen receptor
modulators (SERMs) [6].

However, with extensive application of AIs in clinical practice, unexpected problems
have emerged, including a lack of response in some patients, resistance to AI treatment,
and inhibition of certain CYP450 enzymes [7]. Letrozole, a reversible third-generation
aromatase inhibitor, stops the final step of the conversion of androgens to estrogens [8],
with inhibition rates of up to 80–90%. Consequently, letrozole reduces the availability
of estrogen in various organs and tissues, including the ovaries, breasts, adipose tissue,
and musculoskeletal system [9]. While letrozole markedly inhibits the action of estrogen
in breast cancer cells, it also causes systemic effects. For instance, estrogens control the
metabolism of lipids and lipoproteins, and a decrease in their production may result in a
dysregulation of lipid indices [10].

Computer-aided drug design (CADD) can be used at various stages of drug discovery,
including hit identification through virtual screening, optimization of affinity and selec-
tivity, and optimization of other pharmaceutical properties while preserving affinity [11].
CADD comprises two main disciplines: drug structural design (molecular docking and
molecular dynamics) and ligand-based drug design (3D quantitative structure-activity
relationship (3D-QSAR) and molecular similarity) [12]. To determine the optimal bind-
ing conformation, evaluation functions, such as descriptor-based, empirical, power, and
knowledge-based approaches, are used. The QM-Polarized Ligand Docking protocol is
designed to improve partial charges on ligand atoms during Glide docking by replacing
them with charges obtained from quantum mechanical calculations on a ligand in the
receptor region. This method differs from molecular docking, which predicts the confor-
mation of ligand binding within the receptor binding site [13,14]. Another CADD method
is density-functional theory (DFT), which can solve various problems related to atoms,
molecules, and solids, such as calculating the ionization potential, examining vibrational
spectra, and selecting catalytically active sites. It can also be used to study the electronic
structure of biological molecules and the electronic band structure. Gold-based nanoparticle
delivery systems are known for their ability to enhance clinical symptoms of cancer and
reduce side effects associated with chemotherapy [15]. Nanoparticles, including hyaluronic
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acid-based nanoparticles loaded with nutraceuticals, such as curcumin or quercetin, have
been reported for cancer treatment [16].

In this study, we developed novel selective aromatase inhibitors against breast cancer
using a combination of quantum docking, molecular dynamics, and theoretical studies of
gold nanoparticles.

2. Methods

In silico studies were conducted using Maestro v 12.8 of the Schrödinger suite [17],
while DFT calculations were performed using Gaussian09.

2.1. Protein Preparation

There are 38 aromatase structures in the Protein Data Bank (PDB), with 27 of them
belonging to Homo sapiens. The selected entry for docking was PDB ID 5JKV, which has
a more complete amino acid sequence and contains the endogenous ligand ASD in the
binding site. The 3D structure of the aromatase protein in complex with testosterone (PDB
ID: 5jkv) was obtained and prepared using the Schrödinger Protein Preparation Wizard
module following standard procedures [18]. This included assigning correct charges, bond
orders, and atom types to the protein structure; deleting water molecules beyond 5 Å
from the het group; and filling in missing side chains and loops using the Schrödinger
Prime Module [19]. The grid box of the protein’s active site around the bound ligand was
generated using the Glide Receptor Grid Generation module [20]. Furthermore, aromatase
has a molecule of pentaethylene glycol (PEG) in a secondary allosteric binding site, which
weakly inhibits aromatase. Although the haem cofactor remained in place, ASD and PEG
were eliminated from the protein [21].

2.2. Preparation of the Ligand

Letrozole was prepared using the Schrodinger jaguar utility, which generates low-
energy 3D structures at a neutral pH while retaining specific chirality and generating
low energy-ring conformers. Hydrogens were added or removed to approximate the
pKa values [22,23].

2.3. Quantum-Polarized Ligand Docking (QPLD) and Design of New Aromatase Inhibitors

Since the protein bound to letrozole did not have a crystal structure, quantum docking
was performed using the QM-Polarized ligand docking method [24]. New letrozole ana-
logues were designed using enumeration, and a new R group library was created by the R
group-created panel from the enumeration set at the para position of the phenyl group [25].
The co-crystallized ligand was re-docked against the target protein to validate the docking
procedure.

2.4. Glide Docking

The newly designed compounds were then screened against the target protein using
LigPrep and subjected to standard precision (SP) docking mode, and the top hits were
further subjected to the extra precision (XP) precision mode.

To predict the binding affinity of the designed compounds for the human off-target
desmolase, XP glide docking was used to dock the ligands with the protein.

2.5. ADME Prediction

The Schrodinger Qikprop was used to predict the ADME properties of the newly
designed compounds, including absorption, distribution, metabolism, and excretion [26].

2.6. Molecular Dynamics (MD) Simulation and Post-MD Binding Free Energy Calculation

A molecular dynamics (MD) simulation study was conducted to evaluate the sta-
bility of the protein–ligand complexes under physiological conditions, such as solvation,
temperature, pH, and pressure. The study used the OPLS4 force field in Desmond, a
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popular academic software for running MD simulations. The top three letrozole-designed
analogs were selected as the input and were neutralized with sodium and chloride ions.
A simulated triclinic periodic boundary box with a 10 Å extension in all directions was
created for each system. The systems were subjected to energy minimization using the
NPT ensemble class, with a gradient threshold of 25 kcal/mol/Å at 300 K and 1 bar pres-
sure. The MD simulation was run for 100 ns under the NPT ensemble class. Long-range
coulombic interactions were determined using PME, while the RESPA integrator was used
to regulate all covalent bonds connected with hydrogen atoms. A cut-off value of 9.0 Å was
selected for short-range electrostatic interactions, and a uniform density approximation
was used to analyze long-range van der Waals (VDW) interactions. The Nosé–Hoover
thermostat was applied to maintain a temperature of 300 K and 1 atmosphere pressure
during the simulation, while the Martyna–Tobias–Klein barostat was used to maintain the
conditions. The complexes of the test compounds were compared to the reference ligand
by calculating root mean square deviation (RMSD), root mean square fluctuation (RMSF),
radius of gyration (Rg), H-bond occupancies, and secondary structure elements (SSE).

After conducting the MD simulation, the Gbind of the docked Combine1, Combine2,
and Combine3 complexes were determined using the molecular mechanics generalized the
Born surface area (MM-GBSA) module in the Schrodinger suite to evaluate their binding
stability. The OPLS4 force field and VSGB solvation model were utilized to compute the
binding free energy [27,28]. During the MM-GBSA calculations, a frame was selected at
every 10 ns interval after the MD run. The binding free energy was determined using the
following equation:

∆Gbind = Gcomplex − (Gprotein + Gligand)

where ∆Gbind = binding free energy, Gcomplex = free energy of the complex, Gprotein = free
energy of the target protein, and Gligand = free energy of the ligand.

2.7. Preparation of Gold Nanoparticles and DFT Calculations

The study utilized models of (Au) metal clusters as a surface for Combine1 to form a
nanostructure. First, the gold cluster and Combine1 were optimized to achieve low energy
use. The optimized models were combined to maximize drug relaxation near Au, and
the loaded Combine1 with Au was obtained for further research. In addition to optimal
geometries and interacting distances, other factors, such as binding affinity, dipole moment,
orbital energies, and energy gaps, were investigated for the analyzed models. The DFT
computations were carried out using the Gaussian program with Gaussview [29], utilizing
the B3LYP/LANL2DZ basis set. Although the following equation was used to calculate
interaction energy, other factors were also considered:

Interaction energy = complex energy − gold energy − compound energy

3. Results
3.1. Molecular Docking and ADME Studies

Molecular docking determines the binding affinity of a compound toward the binding
cavity of its receptor. First, the RMSD value of re-docking of the co-crystalized ligand with
aromatase (ID: 5jkv) was 0.1193 Å, indicating the accuracy and efficiency of the docking
methodology used in this research.

In this study, our aim was to find novel letrozole analogues that could serve as
inhibitors of aromatase enzymes using in silico studies. Quantum docking of letrozole
with the aromatase protein (Figure 1) resulted in the best pose, with a docking score of
−4.109 kcal/mol.
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Figure 1. Two-dimensional interaction of letrozole in the active site of aromatase protein (PDB ID:
5jkw) using the QPLD tool of the Maestro software.

Based on this pose, we designed new letrozole analogues using diverse R group
enumeration (Figure 2), which resulted in 5000 compounds. These compounds were
prepared with the LigPrep tool, resulting in 11,204 compounds.
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The Glide tool was used to predict the strength, affinity, and molecular interactions
of the prepared compounds toward the binding site residues. The prepared compounds
were first docked to aromatase using the HTVS mode. Then, the top 500 docked poses
with docking scores above −6.00 kcal/mol were further subjected to the SP mode. Finally,
the top 200 compounds with docking scores above −7.00 kcal/mol were docked utilizing
the XP mode. Table 1 and Figure 3 present the compounds (Combine1–14) with docking
scores of −7.041 to −8.117 kcal/mol greater than that of the bound ligand testosterone
(−5.322 kcal/mol).

Table 1. Docking scores and interactions of the top 14 compounds, letrozole, and testosterone with
aromatase (PDB ID: 5jkw).

Name
Docking

Scores
(Kcal/mol)

Pi-Cation Hydrogen Bond Hydrophobic Interaction

Combine1 −8.117 ARG115 ARG115 ALA306/ALA307/MET303/VAL370/VAL373/
ARG375/THR310/GLU302

Combine2 −8.053 ARG115 ARG115 PRO429/PHE430/ALA307/ALA306/ALA443

Combine3 −8.83 ARG115 ARG115 ARG435/MET364/ARG375/ARG435/
VAL370/VAL373

Combine4 −7.737 ARG115 GLN248 ALA443/MET446/MET311/ILE442

Combine5 −7.704 ARG115 ARG115/PHE430 GLU302/TRP141/MET303

Combine6 −7.411 ARG115 ARG115 VAL373/GLU431

Combine7 −7.342 HEM601 ARG115/ARG375/ARG345 ILE398/PRO429/PHE430/PHE432

Combine8 −7.324 HEM601 PHA430/ARG375 PRO429/PHE430/ALA438/CYS437

Combine9 −7.304 ARG115 MET303/ALA306/ALA307/VAL373/PHE430

Combine10 −7.287 ARG145/PHE430 ALA306/ALA307/ALA438/MET303/ILE398

Combine11 −7.119 ARG115 GLN428 ALA438/GLU439/VAL370/VAL373

Combine12 −7.09 TRP141/ARG115 PRO429/GLY431/ILE398

Combine13 −7.059 ARG115 ARG115 ALA307/ALA438/ALA443/CYS437/PRO429/
PHE430/GLY431

Combine14 −7.041 TRP141 ALA306/ALA438/MET303/GLY430/
GLY493/ARG375

Letrozole −4.109 ARG115 MET444/TRY441/TRY424/PHE430/
PRO329/PHE427

Testosterone −5.322 MET374 ILE133, PHE134, PHE221, TRP224, ILE305,
ALA306, VAL370, LEU372, VAL373, LEU477

Combine1–14 were further analyzed for their ADME properties, and the Lipinski’s
rule was evaluated according to the restrictive rules. According to the Lipinski’s rule of
5, MW ≤ 500, MLogP ≤ 4.15, N or O ≤ 10, and NH or OH ≤ 5 [30]. The Schrodinger’s
Qikprop module was utilized to assess the drug-likeness (Lipinski’s rule of five) and ADME
evaluations of the designed compounds that exhibited the best binding affinity. Combine1
to Combine14 displayed in Table 2 do not violate the Lipinski’s rule of five. Furthermore,
the ADME properties of the compounds were studied; QPlogpo/w ranges from 4.117 to
5.797, and QPPCaco ranges from 313.812 to 946.340. The range of cellular membrane access
is −0.952 to −1.741, while the range of QPlogPMDCK is 141.355 to 466.079. The % human
oral absorption of these compounds is 100%.
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The top three compounds (Combine1–3) with the highest docking scores of −8.117,
−8.053, and −8.83 kcal/mol, respectively, and favorable ADME properties (QPlogpo/w,
QPlogS, and QPPCaco) were shortlisted for further analysis (Figure 4). These three com-
pounds exhibit a similar interaction pattern with ARG115 through hydrogen bonds and
p-cation interactions.

Table 2. ADME properties for the top 14 compounds and the reference.

Compound QPlogPo/w a QPlogS b QPPCaco c QPlogBB d QPPMDCK e %HOA RoF g

Combine1 4.680 −6.913 693.833 −1.167 333.246 100 0

Combine2 4.639 −7.150 463.709 −1.395 215.576 100 0

Combine3 5.797 −8.228 846.562 −1.109 413.198 100 1

Combine4 4.444 −7.404 497.569 −1.291 232.640 100 0

Combine5 4.530 −6.276 681.210 −1.161 326.698 100 0

Combine6 4.715 −6.897 349.469 −1.527 158.792 100 0

Combine7 4.421 −7.404 313.812 −1.741 141.355 100 0

Combine8 4.345 −6.140 602.982 −1.321 286.342 100 0

Combine9 4.566 −6.298 946.340 −0.952 466.079 100 0

Combine10 4.763 −7.227 444.186 −1.340 205.783 100 0

Combine11 4.410 −7.335 402.658 −1.369 185.069 100 0

Combine12 4.397 −5.987 817.738 −1.009 398.012 100 0

Combine13 4.630 −7.118 466.185 −1.387 216.821 100 0

Combine14 4.117 −5.968 437.232 −1.383 202.303 100 0

Letrozole 1.459 −3.693 138.864 −1.570 58.559 73.838 0
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(C) Combine3.

3.2. Molecular Dynamics and Post-MD MM-GBSA Calculations

MD simulation was conducted on the compounds that demonstrated stronger ligand–
protein interactions, namely Combine1, Combine2, and Combine3, following XP-docking
and with the best ADME study results. The changes in structural conformation were
monitored in terms of RMSD and RMSF, while the protein interactions with the ligands
were monitored throughout the simulation.

Combine3 has the most fluctuating RMSD curves between 8 and 20 ns, with an RMSD
range between 1.94 and 4.17 Å. The RMSD analysis (Figure 5) shows that Combine1 and
Combine2 are the most stable among the three complexes, with a medium fluctuation ob-
served. During the entire simulation, the Combine1 complex has an RMSD range between
1.49 and 4.2 Å, and Combine2 has an RMSD range between 1.7 and 6.07 Å. However, the
RMSD curves for Combine1 and Combine2 show tight binding with aromatase during most
of the simulations, indicating that the conformations obtained from the MD simulations
are structurally stable and ideal for further computational analysis when compared to the
RMSD of letrozole (0.6–3.1 Å).

Figure 6 shows that the protein bound to letrozole and the top three compounds has
less fluctuation, with values below 2.5 Å. The regions of striking values of RMSF are distant
from the binding pocket; hence, it could be inferred that the active site can accommodate
the bound compounds without a negative influence on the stability of the binding.

As shown in Figure 7, Combine1 has hydrophobic interactions with PHE148 (90.6%),
ALA306 (24.9%), and VAL370 (23.9%). Water bridges are also formed with many residues,
such as THR310 (18.4%), ALA438 (13.5%), GLY439 (13.3%), and SER478 (15.8%). Combine2
shows hydrogen bond interactions with ARG115 (13.1%), ILE123 (30.6%), and ILE133
(41.4%). Additionally, it forms hydrophobic interactions with ARG115 (81.5%), PHE134
(74.9%), PHE4330 (50.8%), and PHE148 (37.9%). Combine3 protein complex forms hydrogen
bond with ARG115 (52.1%), THR310 (56.6%), and ALA438 (32.6%). Additionally, it shows
interactions through water bridges with ALA438 (21.1%) and GLY439 (22.7%). Many
hydrophobic interactions are formed with ARG115 (67.3%), PHE430 (27.9%), ILE133 (24.7%),
TRP141 (26.1%), and ALA438 (24.8%).
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The low RMSD, RMSF, and simulation duration imply that the aromatase protein’s
3D structural model is accurate, and the three complexes are structurally stable and equi-
librated. These top three compounds were further subjected to MM-GBSA. MM/GBSA
calculates the ligand strain energy by placing the ligand in a solvent, thus giving more
reliable results than those calculated from MD results. The post-MD MM-GBSA results for
the three compounds and letrozole were calculated from the MD results to be in the range
from −68.9075 to −63.5514 kcal/mol (Table 3).

Table 3. Post-MD MM-GBSA for the top three compounds and Letrozole.

Compound MM-GBSA Free Binding Energy (kcal/mol)

Combine1 −68.9075 ± 5.304

Combine2 −63.5514 ± 4.219

Combine3 −66.2378 ± 5.1799

Letrozole −44.3891 ± 8.014567

3.3. DFT Calculations

The DFT calculations were carried out on Combine1, which has the best MD results.
This compound contains five nitrogen atoms and one oxygen atom. The gold model inter-
acts with each of the six atoms, resulting in six complexes (with the exception of Complex1,
which contains oxygen), as shown in Table 4. Among these complexes, Complex3, which
contains nitrogen, exhibits the strongest binding energy compared to the other complexes.

Table 4. DFT results of combine1 and gold atoms.

Complex Interact Atom E(UB3LYP) Dipole Moment Zero Energy

Complex1 Nitrogen47 −1932.195781 7.401879 −1931.767112

Complex2 Oxygen45 −1932.163889 5.534319 −1931.736428

Complex3 Nitrogen30 −1932.209405 14.785182 −1931.780390

Complex4 Nitrogen3 −1932.197730 8.697839 −1931.769055

Complex5 Nitrogen5 −1932.191763 10.960059 −1931.763301

Complex6 Nitrogen1 −1932.201165 6.402050 −1931.772674

Combine1 - −1390.215008 6.376844 −1389.789215

Gold - −541.930470 0.00 −541.929251

According to the results shown in Table 4 and Figure 8, Complex3 of Combine1, with
a nitrogen atom interacting with the gold cluster, exhibits a binding energy of E(UB3LYP) =
−1932.209405, a zero-point energy of −1931.780390, and an interaction energy of −0.061924
hartree (−38.85731 kcal/mol).

3.4. Molecular Docking with Human Off-Target Desmolase

Extra-precision Glide docking was employed to dock the proposed designed com-
pound with the human off-target desmolase and predict the binding affinity of the top
three ligands for the protein. This resulted in a docking score of −5.3 to −5.4 kcal/mol.
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4. Discussion

In 2020, breast cancer was the most frequently diagnosed cancer in women, with an
estimated 2.3 million new cases, making it the most incident and deadly malignancy [2].
Estrogen receptor (ER), which is often directly implicated in cancer development, provides
the basis for two types of anti-hormone therapy: selective estrogen receptor modulators
(SERMs), such as tamoxifen, and selective estrogen receptor degraders (SERDs), such
as fulvestrant [31]. The current methodology for estrogen hardening involves limiting
aromatase (CYP19A1) to reduce estrogen production, e.g., using letrozole [31,32]. To date,
considerable effort has gone into designing novel compounds with advances in IC50 values
and selectivity over clinically approved reference compounds, showing promising AI
activity and selectivity.

In this investigation, we chose a protease, aromatase, as our target of interest to
design new compounds that bind to it with optimal efficacy as a novel treatment for breast
cancer. We retrieved the three-dimensional structure of aromatase from the PDB and
prepared it for the docking study. We then applied quantum-polarized ligand docking
with letrozole, which resulted in a docking score of –4.109 kcal/mol. Based on this, we
designed over five thousand compounds based on the letrozole structure and docked them
using the Glide tool to study their potential to inhibit aromatase. After the HTVS and SP
Glide docking modes, the top hits with docking scores < −7.00 were further subjected
to XP docking to confirm their affinity to aromatase. The docking scores of Combine1 to
Combine14 show the highest docking scores compared to the reference drug letrozole, as
shown in Table 1. The top three compounds (Combine1–3) have docking scores ranging
from −8.117 to −8.83 kcal/mol. Combine1–3 interact with ARG115 through hydrogen
bonds and pi-cation interactions. Moreover, Combine1 forms hydrophobic interactions
with VAL370, VAL373, ALA306, and ALA307; Combine2 forms hydrophobic interactions
with ALA306 and ALA307; and Combine3 displays hydrophobic interactions with VAL370
and VAL373. Several reports agreed with these findings, including a study by Naravut
Suvannang et al. that demonstrated the docking of aromatases showed hydrophobic
interactions between the protein and the AIs involving VAL370, VAL373, ALA306, ALA307,
THR310, and MET311, and hydrogen bond interaction involving ARG115 residue [33].
Chanamon Chamduang et al. synthesized and performed in silico studies on a set of 13
unique triazole-tetrahydroisoquinoline derivatives. According to their in silico analysis,
the aromatase enzyme’s highly potential inhibitory action might depend on the creation of
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hydrogen bonds between 2i and THR310 [34]. The same study revealed that the docking
results of triazole 1 against aromatase displayed crucial interactions, including hydrophobic
interaction and pi–pi stacking interaction using triazole. One of the compounds formed
hydrophobic interaction with residue Val370.

Optimizing ADME properties, in addition to their pharmacological effects, increases
the success of drug discovery. All compounds, including Combine1–3, complied with the
Lipinski’s rule, and all calculated parameters are presented in the supporting data. The
theoretical calculations indicate that the ADME parameters of the compounds are within
suitable limits, including absorption and distribution across the body, cell permeability, and
cellular membrane access. Moreover, they do not cross the blood–brain barrier. QPlogPo/w,
which is essential for estimating the absorption and distribution of drugs throughout the
body, ranges from 4.117 to 5.797, and QPPCaco, a cellular permeability factor that influences
the metabolic pathway, ranges from 313.812 to 946.340. Therefore, these compounds have
the potential to behave as drug-like molecules, whereas the reference compound letrozole
demonstrates weak cell permeability and low human oral absorption.

During the 100 ns of MD simulation, all ligand–aromatase complexes were used to
estimate the stability of the protein–ligand interaction. Root mean square deviation (RMSD)
was used to analyze the structural stability of the macromolecular system throughout
the simulation time. The higher the stability of the macromolecular system, the lower
the values of the RMSD, indicating fewer deviations from the reference mean distance.
Despite the excellent results of the docking investigation, which supported our design
reasoning, MD studies were carried out for additional confirmation and validation of the
entire work. We performed four dynamic simulations to identify and study the nature
of aromatase dynamics and compared it with letrozole to provide insights for future
lead optimization. Root mean square fluctuations (RMSF) were conducted on the protein
complexed with the reference ligand and the three top compounds to measure the stability
of amino acid residues. RMSF is a statistical analytical tool that conveys the magnitude
of residue motion throughout a simulation, allowing us to understand which regions of
the protein are responsible for high amounts of fluctuations. Therefore, the RMSF of the
protein main chain was plotted on the y-axis against the number of protein residues on the
x-axis. The minimal changes in the RMSF values suggest that the protein–ligand complexes
are structurally stable. The low RMSD values obtained during the whole simulation in the
RMSD interpretation of the MD simulations suggest stability for both the protein and its
inhibitor complex. The MD simulations produced structurally stable conformations that
are suitable for further computational study. These findings were additionally confirmed
by determining the free binding energy using the post-MD MM-GBSA method. The MM-
GBSA calculations infer that our selected compounds have the most favorable energy with
the active site of aromatase, even better than letrozole.

Gold-based nanoparticle delivery systems are known for their ability to amplify
clinical symptoms of cancer and reduce the side effects associated with chemotherapy ad-
ministration [15,35]. In this study, DFT simulations were used to investigate drug loading
on metal clusters. Firstly, each of the Combine1 and Au molecular models were optimized
to obtain the lowest energy structures. Then, to achieve the most stable configurations
of the interacting components, the complex formation of Au and Combine1 was studied
by conducting additional optimizations. The outcomes of this study include the obtained
values of energies for molecular binding processes, as well as energies of molecular or-
bital levels and dipole moments. The DFT study showed that Combine1 exhibits stable
interactions, as shown in Table 4 where Complex3 (Figure 8) with a nitrogen atom inter-
acting with the gold cluster in position 30 has an interaction energy of −0.061924 hartree
(−38.85731 kcal/mol). These results indicate that placing gold atoms at various positions
around the heteroatom leads to low-energy complexes, which can be considered as sta-
ble. These theoretically stable complexes can guide further testing of experimental gold
nanoparticle carriers for Combine1. The gold atom forms a non-covalent bond through
interaction with the Combine1 heteroatom. This preliminary non-covalent interaction re-
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leases the drug from the engineered nanoparticle carrier once it reaches the active site in an
in vivo environment. Further delivery systems, such nano-emulsion stabilized with lecithin
and loaded with cobalt ferrite oxide nanocubes, are recommended for cancer treatment [36].
Additionally, targeting other targets related to cancer, such as HER2, with nanoparticles
represents a promising approach [37].

5. Conclusions

The aim of this research study was to design novel letrozole analogues with a high
affinity for the enzyme aromatase and a lower affinity toward desmolase in order to reduce
the undesirable side effects associated with letrozole. To achieve this, 5000 compounds
were designed through enumeration, and Glide docking and ADME analyses were used to
filter out 14 compounds (Combine1 to Combine14) that showed greater binding affinity
than the reference letrozole toward the aromatase protein. Further analysis revealed
that Combine1, Combine2, and Combine3 had better molecular dynamics (MD) results
compared to the reference letrozole. In addition, the DFT quantum mechanical calculation
of the interaction energy between Combine1 and a representative gold atom resulted in
stable interaction energy, indicating that these compounds could potentially be formulated
as gold nanoparticles. These in silico results suggest that these hits could be used as starting
points for lead optimization.
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