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Abstract: The immune system, unlike other systems, must be flexible and able to “adapt” to fully
cope with lurking dangers. The transition from intracorporeal balance to homeostasis disruption
is associated with activation of inflammatory signaling pathways, which causes modulation of the
immunology response. Chemotactic cytokines, signaling molecules, and extracellular vesicles act as
critical mediators of inflammation and participate in intercellular communication, conditioning the
immune system’s proper response. Among the well-known cytokines allowing for the development
and proper functioning of the immune system by mediating cell survival and cell-death-inducing
signaling, the tumor necrosis factor α (TNF-α) and transforming growth factor β (TGF-β) are notewor-
thy. The high bloodstream concentration of those pleiotropic cytokines can be characterized by anti-
and pro-inflammatory activity, considering the powerful anti-inflammatory and anti-oxidative stress
capabilities of TGF-β known from the literature. Together with the chemokines, the immune system
response is also influenced by biologically active chemicals, such as melatonin. The enhanced cellular
communication shows the relationship between the TGF-β signaling pathway and the extracellular
vesicles (EVs) secreted under the influence of melatonin. This review outlines the findings on mela-
tonin activity on TGF-β-dependent inflammatory response regulation in cell-to-cell communication
leading to secretion of the different EV populations.

Keywords: melatonin; transforming growth factor β; extracellular vesicles; cell-to-cell communication

1. Introduction

The proper functioning of the cells that build the vessel walls is the basic condition
for maintaining homeostasis in the body [1–3]. In the heart, arteries, capillaries, and veins
the multi-functional nature of the ECs relies on providing an anti-inflammatory and anti-
coagulatory surface in the physiological state for the remaining cells [4,5]. On the other
hand, the vessel wall layer controls the adhesion and migration of inflammatory cells
under imbalanced conditions. Any disturbance that causes the disruption of intercellular
connections of ECs and vessel unsealing may lead to leakage of immune cells from the
lumen to adjacent tissues, and initiation of inflammation [6–8]. Typically, this process is
part of the innate immunity and physiological response to injury; however, if prolonged, it
constitutes a major factor in the development and complications of atherosclerotic cardio-
vascular diseases. For this reason, anti-inflammatory therapies involving the stabilization
of chemotactic cytokines are the current trend in cardiovascular medicine [9–11].
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Chemotactic cytokines, also known as chemokines, are a group of proteins that stimu-
late the movement of leukocytes and control their migration from the blood to tissues [12].
This property determines their undeniable role in the formation of an inflammatory focus.
The altered concentration of chemokines in individual disease states may be the target of
research—as potential diagnostic or prognostic markers, as well as a promising target for
therapeutic interventions [13,14].

At initiation sites of inflammation, chemokines direct the progression of the immune
response based on the leukocyte migration across the endothelium [15,16]. The inflamma-
tory reaction is a multi-stage process controlled by the interaction of adhesion molecules
located on the luminal surface of endothelial cells with surface leukocyte receptors [17,18].
Chemokines mobilize the immune system cells to concentrate at the focus of inflammation
and maintain homeostasis of the body. This process is referred to as extravasation, which
involves a cascade of reactions where the first step is the contact of leukocytes with the EC
layer, which is called leukocyte rolling [19]. During slow rolling, leukocytes can interact
with the chemoattractant present on the surface of the endothelium, which binds to specific
transmembrane receptors linked to intracellular Gi proteins [20]. Signals transmitted by
this class of receptors increase the affinity of integrins, which ensures the stable adhesion of
leukocytes to endothelial cells. Then, integrins can bind to adhesive proteins, e.g., intercellu-
lar adhesion molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1) [21,22].
The next step is cytokine-dependent activation and selectin-dependent tight adhesion,
which consequently allows cells to pass through the endothelial layer to the surrounding
tissues by diapedesis [23]. The first stages depend mainly on selectins, including E- and
P-selectins, which alternately bind briefly and release from bonds to carbohydrate groups,
slowing down the movement of leukocytes in the vessel [24]. Their expression is regulated
by cytokines, while their ligands are expressed on specific leukocyte subpopulations [25–27].
The expression of selectins and selectin ligands is limited to the microvilli present on the
surface of leukocytes, allowing for effective interaction with vascular ECs. The chemokine
activity is therefore essential for the initiation and course of a proper immune system
response and regaining internal balance [12,28]. Chemokines play an extremely important
role in the development of cardiovascular diseases, i.e., the progression of atherosclerotic
plaque [29,30]. The initial stages of atherogenesis are associated with the exposure of the
CXC chemokine ligand (CXCL) by ECs, which are regulated by lysophosphatidic acid, a
component of low-density lipoproteins (LDL) [31]. For example, the chemokine CXCL1
may recruit leukocytes to infiltrate the vascular wall and influence the progression of
atherosclerosis in response to stimulation by phosphatidic acid (PA) [32,33]. On the other
hand, CCL17 inhibits the influence of regulatory T cells in the promotion of atherosclerotic
lesions [34,35]. The expression of the CXCL12 chemokine in endothelial cells, which stabi-
lizes atherosclerotic plaques, can be induced by microribonucleic acid (miR)-126 [36,37].
Another chemokine receptor, CX3CR1, is responsible for sending strong signals that pro-
long the survival of monocytes and macrophages, which protects them from apoptosis. In
contrast, CXCL5 reduces the formation of foam cells from macrophages [38–41]. Thus, the
cytokine essential for many key cellular processes and for maintaining the homeostasis of
every cell in the body, TGF-β, has been considered [42,43]. Despite many studies, its action
is still difficult to characterize, due to its pleiotropic properties. It has been well-explained
in cancer research and has been referred to as “the TGF-β paradox”. However, in cardio-
vascular medicine, the role of TGF-β is still ambiguous. On the one hand, its protective
role is emphasized, and it is considered a major driver of vascular inflammation [44,45].
To date, misregulated TGF-β signaling in humans has been linked to the onset of vascular
pathologies and cardiovascular diseases such as arteriovenous malformations (AVMs),
aneurysms, atherosclerosis, cardiac fibrosis, vascular remodeling of the retina (retinopathy),
and valvular heart disease [46,47].

Growing evidence suggests that melatonin synthesized in pinealocytes exerts pro-
tective effects against atherosclerosis-based vascular diseases, but these mechanisms are
poorly understood [48,49]. Melatonin possesses anti-inflammatory capacities with benefits



Metabolites 2023, 13, 575 3 of 20

in protecting the structural and functional integrity of vascular endothelium against aging-
, oxidative-stress-, lipopolysaccharide-, and ischemia-induced damage [50–52]. These
profound effects are mainly exacerbated due to its antioxidant properties affecting the
reduction of reactive oxygen species (ROS), which are the driving force of vascular pathol-
ogy [53]. Despite some contradictions, most of the data claims that melatonin is a promising
supplement that has no side effects [54]. Herein, we summarize the most established bene-
fits of melatonin in the vascular system, focusing on the molecular mechanisms regulating
the TGF-β signaling pathway.

The TGF-β signaling mechanism can modify the extracellular vesicle (EV) secretion
process, the evidence for which points to an important connection of EVs with inflammatory
response biology [55]. EVs form a heterogeneous group of nanoparticles, providing an
extremely important means of transmitting information between cells, without direct
contact [56,57]. Recently, the intensity of research focused on EVs has significantly increased,
paying particular attention to their activity in intercellular communication, for which
bioactive molecules carried by vesicles between cells are responsible. The activity of
the TGF-β signaling pathway in the course of the inflammatory response may regulate
the secretion of membrane structures in order to modulate intercellular communication,
allowing for the restoration of intracorporeal homeostasis [58,59]. Particularly interesting
seems to be the currently little-known effect of melatonin on the cellular environment.
The presence of this neuromolecule not only modulates the inflammatory response, but
also affects the biogenesis, EV secretion amount, and composition of membrane vesicle
cargo [60,61].

The purpose of this review is to provide a detailed description of the EV secretion
dependent on the TGF-β signaling pathway mediated by melatonin. We focus on the
molecular cargo and EVs’ association with disease and emerging strategies for their thera-
peutic exploitation.

2. Development and Progression of Vessel Wall Inflammation

The inflammation linked to the onset of atherosclerosis occurs between the layers
of large and medium arteries, more specifically in the subendothelial space [62,63]. The
endothelium is the innermost part of the blood vessels (arteries, veins, and capillaries)
and consists of a single, semi-permeable layer of cells that is constantly regulated by local
hemodynamic forces [64,65]. Areas of low endothelial shear stress (ESS) are the most
common predictor of atherosclerotic plaque formation [66]. Low ESS, tangential stress
due to the friction of the flowing blood on the endothelial surface, is also considered a
focal pro-inflammatory stimulus, which contributes to endothelial dysfunction [67,68].
Another crucial factor important for maintaining endothelial homeostasis is the balance
between vasodilation and vasoconstriction, mainly mediated by endothelium-derived nitric
oxide (NO) bioavailability and other relaxing and contracting factors, such as angiotensin,
endothelin-1 (ET-1) and oxidants [69,70]. NO production is highly dependent on the
activity of the endothelial NO synthase (eNOS), also influenced by shear stress force on
mechanoreceptors [71,72]. Therefore, oxidative stress-induced endothelial dysfunction, in
terms of vasomotor disturbances, is the earliest event in atherogenesis, quickly followed by
tissue repair mechanisms [73,74].

Disabled endothelium is leaky, adhesive, and unable to relax vascular smooth mus-
cle cells. The disruption in the normal function of the endothelial cells is inseparably
accompanied by a gradual infiltration of immune cells [75]. Simultaneously, released
reactive oxygen species (ROS) induce the nuclear factor kappa-light-chain-enhancer of
activated B cell (NF-κB) expression, which culminates in the increase in the expression
of cytokines involved in further ROS production [76,77]. TNF-α is a key cytokine that
inhibits endothelium-dependent nitric oxide (NO)-mediated vasorelaxation by activating
sphingomyelinase, resulting in •O2

− production in the ECs [78–80]. TNF-α is also a po-
tent pro-inflammatory cytokine, which promotes inflammatory endothelial activation by
upregulating the expression of VCAM-1 and ICAM-1, allowing lymphocyte and mono-



Metabolites 2023, 13, 575 4 of 20

cyte adhesion [81]. The monocytes then transmigrate to the subintimal space through the
interaction of monocyte chemotactic protein-1 (MCP-1) with the CCR2 receptor, where
they differentiate into macrophages [82,83]. A particularly important process for plaque
formation is the internalization of cholesterol-rich oxidized lipoproteins by monocytes,
giving them a foamy appearance and secreting local cytokines, as well as ROS [84–86].
Other types of immune cells, such as DCs, T cells, B cells, and neutrophils participate in
intraplaque inflammation [87,88]. The perpetuation of pro-inflammatory and oxidative
atherosclerotic stimuli results in the recruitment of more macrophages, mast cells, and
activated T and B lymphocytes, which enhance vascular lesions, which in turn release
cytokines (i.e., interleukin-1β (IL-1β), TNF-α), increase the leukocyte extravasation to the
submembrane space and maintain chronic inflammation [89,90].

The artery wall structure also consists almost entirely of circumferentially oriented
vascular smooth muscle cells (VSMC), surrounding the ECs and constituting the tunica
media. The VSMC is involved in the crosstalk between immune cells and ECs during all
stages of atherosclerosis [91,92]. ECs-derived relaxants such as NO lower the activity tone
of VSMCs, leading to (flow-mediated) vessel dilation to counteract the initial increase in
wall shear stress and contribute to pathological vascular remodeling [93–95].

3. The TGF-β Signaling Pathway in the Cardiovascular System

TGF-β is one of the crucial mediators in the pathophysiology of cardiovascular diseases
such as atherosclerosis and abdominal aortic aneurysm (IAA) [96,97]. This highly complex
polypeptide growth factor is also described as a multifunctional cytokine that elicits its
effects in the vascular system via an influence on endothelial cells, smooth muscle cells,
and regulation of extracellular matrix (ECM) deposition [98,99]. TGF-β family member
proteins are involved in a large variety of cellular processes, including the induction of
proliferation, apoptosis, migration, adhesion, ECM protein production, and cytoskeletal
organization [100,101].

The perturbations in TGF-β signaling are linked to vascular-wall inflammation, thick-
ening, and remodeling. The most abundant isoform of the family in the cardiovascular
system is TGF-β1, present in ECs and VSMC populations, but also in the myofibrob-
lasts, macrophages, and other hematopoietic cells. The outcome of cellular response to
TGF-β depends on the signaling mechanisms regulated both extracellularly and intracel-
lularly [102,103]. TGF-β is produced in an inactive form and stored in the ECM as part
of a large latent complex (LLC) consisting of TGF-β, latency-associated peptide (LAP),
and latent TGF-β binding protein (LTBP) [104–107]. The newly synthesized TGF-β binds
to the pro-domain, called LAP propeptide via covalent and non-covalent linkage and
forms a small latent complex (SLC) to keep the molecule in a biologically inactive state
and to maintain a conformation suitable for dimerization [108,109]. LTBP connects with
SLC through covalent bonding and targets and stabilizes LLC in ECM rich in fibrillin and
fibronectin. The latent TGF-β activation process is dependent on the cell context and may
result from a proteolytic cleavage within the LAP pro-domain, which can be stimulated
by factors such as plasmin, cathepsin, matrix, and metalloproteinases and the subsequent
release of the mature TGF-β and/or a conformational change in the LAP, allowing exposure
of the TGF-β ligand [104–109]. Bioactive ligands and unmasked sites of TGF-β bind to a
TGF-β type II receptor (TGF-βRII), also referred to as activin receptor-like kinases (ALKs)
at the cell surface [110]. The activated TGF-βRII then recruits and activates the TGF-β type
I receptor (TGF-βRI) by trans-phosphorylation [111]. TGF-β cellular responses are also
regulated by TGF-βRIII (also termed β-glycan), which exhibits no enzymatic activity but is
considered an important helper molecule that presents TGF-β to TGF-βRII and facilitates
its binding [112,113]. In the canonical TGF-β signaling pathway, trans-phosphorylation of
TGF-βRI induces phosphorylation of transcriptional effector proteins, receptor-activated
small mothers against decapentaplegic (R-Smads) such as Smad2 and Smad3 [114–116].

In endothelial cells, low TGF-β concentrations in ECs can activate the Smad1/5/8-
based pathway. The Smads classification also includes inhibitory Smads (I-Smads, Smad6/7).
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Upon phosphorylation, R-Smads associate with Smad4 (Co-Smad), enter the nucleus, and
regulate the transcription of TGF-β responsive genes [117–119]. The Smad-independent
pathways are also important for the response to TGF-β stimulation, and include the Ras
homologous (Rho) protein family, Src homology 2 domain-containing transforming protein
1 (ShcA), Ras-related C3 botulinum toxin substrate (RAC), rat sarcoma virus (RAS) pro-
tein family, cell division control protein 42 homologs (CDC42), TNF-α receptor-associated
factor 6 (TRAF6), phosphoinositide 3-kinase (PI3K), transforming growth factor beta-
activated kinase 1 (TAK1), partitioning-defective protein 6 (PAR6), mitogen-activated
protein kinase 1 (MAP3K1), protein phosphatase 2 (PP2A) and death-associated protein
6 (DAXX) [120–125].

4. Effect of Melatonin on the TGF-β Signaling

The elevated expression level of TGF-β1 mRNA is observed during the develop-
ment and progression of a variety of vascular diseases, including coronary artery disease
(CAD) [126,127]. The cellular response to the TGF-β1 stimulation also depends on its
proper synthesis, secretion, and activation. TGF-β’s effect on blood vessel function is
concentration-dependent. The pleiotropic actions of this cytokine on the ECs depend
mainly on factors such as EC origin, serum composition, cell density, and the combination
of TGF-β receptors expressed on the cell surface [128–130]. In vitro studies on HCAEC
confirm that TGF-β1 overexpression significantly promotes apoptosis, while TGF-β1 siRNA
significantly inhibits cell apoptosis [131]. Moreover, activation of endothelial TGF-β sig-
naling is one of the primary drivers of atherosclerosis-associated vascular inflammation,
contributing to endothelial activation and increased vascular permeability [132]. EC treat-
ment with TGF-β induces the expression of a number of pro-inflammatory cytokines,
chemokines and their receptors (including CCL2), leucocyte adhesion molecules including
ICAM-1 and VCAM-1, and matrix metalloproteinases (MMP2) as well as fibronectin, a
pro-inflammatory ECM component long linked to inflammation [133,134]. Based on these
data, the inhibition of TGF-β1 expression may serve as a target for the treatment of different
types of cardiovascular diseases [135,136].

Recent reports indicate that one of the potent inhibitors of TGF-β signaling is mela-
tonin [137]. Melatonin, structurally determined as 5-methoxy N-acetyl tryptamine is an
indoleamine nocturnally released by the pineal gland into the blood and cerebrospinal
fluid [138]. The melatonin secretion mechanism has been fixed by the endogenous circa-
dian rhythm generator, which is connected with the pineal gland in the suprachiasmatic
nucleus (SCN) localized into the anterior hypothalamus [139,140]. Information about the
lighting conditions of the environment reaches the pineal gland through a complex neural
pathway starting in the retina and covers the following signaling itinerancy: retina →
retino-hypothalamic tract→ SCN→ paraventricular nucleus→medial forebrain bundle
→ tectum diencephalon → intermediate-lateral nucleus of the spinal cord → superior
cervical ganglion→ postganglionic sympathetic fibers→ pineal pinealocytes [141]. Tryp-
tophan has been defined as the initial compound for the production of melatonin, which
after hydroxylation and decarboxylation is converted into serotonin. The transformation
of this chemical compound to melatonin is based on the activity of two crucial enzymes
for the entire process. The first is N-acetyl-transferase (NAT), which catalyzes the sero-
tonin N-acetylation, whereas hydroxy indole-O-methyltransferase (HIOMT) carries out
o-methylation, leading directly to the formation of melatonin. The melatonin lipophilic
structure determines its pleiotropic properties, which allow it to pass through all biological
barriers in the body [142,143]. The hydrophobic structure also determines the possibility of
interacting with several biochemical pathways and indirectly and directly affecting other
tissues and cells. Due to its lipophilicity, melatonin concentrates in membranes including
those of mitochondria, and in the cell’s nucleus [144]. The melatonin presence in the mito-
chondria is strongly associated with the participation of this hormone in the body’s immune
reactions associated with disorders of homeostasis caused by oxidative stress [145]. This
condition consists in disturbing the balance between the by-products of metabolic changes,
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i.e., reactive oxygen species (ROS), and the ability to remove them from the body [146].
Many publications report on the ability of melatonin to capture free radicals, thus protecting
cells from their harmful effects. Melatonin enhances the activity of antioxidant enzymes,
affecting the redox potential in various types of cells. Melatonin scavenges free radicals
to form kynuramine compounds such as cyclic 3-hydroxymelatonin (C3-OHM) and N1-
acetyl-5-methoxykynuramine (AMK), but also N1-acetyl-N2-formyl-5-methoxykynuramine
(AFMK). As mentioned, melatonin can modulate the cell membranes’ redox potential by
increasing antioxidant cellular defense, either enzymatic or non-enzymatic, but also by
protecting key redox proteins such as thioredoxin 1 (Trx1) from the oxidative mechanism.
It is a cascade reaction pathway, independent of the presence of receptors on the surface of
other cells, which leads to reductions in the free radicals’ deleterious effects [147,148].

However, for the most part, immunoregulatory effects of melatonin are based on the
interaction with membrane and nuclear receptors located in the central nervous system
(CNS), eyesight organs, skin, digestive tract, liver, heart, arteries, kidneys, prostate gland,
and uterus [149]. The mechanism of melatonin action by binding to membrane recep-
tors is based on the reduction in cyclic adenosine monophosphate (cAMP) concentration,
which affects the signaling pathways of a number of biological signals’ secondary transmit-
ters. The significant engagement of cAMP, inositol trisphosphate (IP3), cyclic guanosine
monophosphate (cGMP), diacylglycerol (DAG), or arachidonic acid leads to changing
patterns of enzyme activities [150]. In addition, melatonin is involved in the transmission
of information based on the release of calcium into the cytosol by stimulating the activity
of phospholipase C, which catalyzes the hydrolysis process. As a result of this process,
among others, IP3 is formed, passing to the plasma reticulum, where Ca2+ ions are stored,
strongly stimulating the increased secretion of these ions [151]. Melatonin has an affinity for
orphan nuclear receptors—retinoid orphan receptors/retinoid Z receptors. The activity of
nuclear receptors particularly affects leukocytes, by inhibiting the action of 5-lipoxygenase,
the enzyme responsible for cellular leukotriene biosynthesis from arachidonic acid, un-
derlying inflammatory processes [152]. Another mechanism of melatonin action is based
on binding to intracellular proteins, such as calmodulin, calreticulin, and tubulin, but its
antioxidant properties also promote the creation of a melatonin-dependent antioxidant
system [153,154].

Although melatonin plays a significant role in maintaining homeostasis and protect-
ing tissue functional activity under exposure to unfavorable environmental conditions, a
high concentration of this substance can cause a negative effect on physiological process
courses [155]. An excessive melatonin amount can come from improper supplementation
based on supraphysiological doses of melatonin or dysfunction of the organs responsible
for the secretion of this hormone. This can cause circadian rhythm disorder, by imitating
“artificial darkness” [156]. High concentrations of melatonin are associated with a high
amount of its metabolites, which could have deleterious effects per se. Due to the knowl-
edge of the pharmacodynamics of melatonin, the consequences of its high concentration
may concern the signaling of the immune system, the central nervous system, platelet
aggregation, and the cardiovascular system, as well as glucose metabolism, ending in
carcinogenesis [157].

Pre-treatment with this indoleamine suppresses the increased intracellular level of
ROS in TGF-β1-treated cells [158,159]. The antioxidant activity of melatonin can also at-
tenuate epithelial-mesenchymal transition (EMT) stimulated by TGF-β1, by significant
reversing changes in mRNA levels of E-cadherin, smooth muscle alpha-actin (α-SMA),
vimentin, and fibronectin after TGF-β1 stimulation [160]. The TGF-β signaling pathway
is mainly driven by a series of phosphorylation of Smad transducer proteins and their
nuclear co-location to regulate the expression of target genes [161]. Melatonin prevents
TGF-β1-induced cellular processes via the inhibition of Smad and non-Smad signaling cas-
cades by inhibiting ROS-mediated mechanisms (Figure 1) [162]. Mechanistically, melatonin
suppresses Smad2/3 phosphorylation and nuclear co-localization of their phosphorylated
forms and Smad4 after TGF-β1 stimulation, in a dose-dependent manner [163,164]. The
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increasing phosphorylation of extracellular signal-regulated kinase 1/2 and p38 is attenu-
ated by melatonin in a dose-dependent manner [165]. It is documented that the inhibitory
action of melatonin does not require its membrane receptors [166]. The anti-inflammatory
and anti-fibrotic actions of melatonin were also seen in the heart of melatonin-treated
mice with diabetes mellitus, where it was found that melatonin significantly ameliorates
cardiac dysfunction by inhibiting TGF-β1/Smad signaling and NOD-, LRR- and pyrin
domain-containing protein 3 (NLRP3) inflammasome activation, as manifested by down-
regulating TGF-β1, p-Smad2, p-Smad3, NLRP3, ASC, cleaved caspase-1, mature IL-1β, and
interleukin-18 (IL-18) [167].
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Figure 1. Effect of melatonin on the TGF-β signaling. TGF-β can signal via the canonical Smad
proteins or in a Smads-independent manner. The specific course of the signaling pathway induced
by the active TGF-β ligand depends on a series of phosphorylation of protein signal transducers.
Intracellular levels of ROS are elevated after treatment with TGF-β1, while their presence ensures
proper regulation of its signaling cascades. The hormone melatonin suppresses the TGF-β pathway
due to its intracellular redox-status-altering properties, as evidenced by the effective reduction
in ROS generation. Moreover, the inhibitory effect of melatonin is independent of its membrane
receptor mechanisms. Indirectly, melatonin may interfere with many cellular processes coordinated
by TGF-β-induced genes and intracellular ROS levels [158–167].

5. Inflammatory EVs and Melatonin: Where Their Pathways Intersect

Different types of cells and tissues in the human body secrete distinct vesicles, which
in turn allow for the transmission of intercellular signals through many pathways and, as a
result, determine the maintenance of body homeostasis [168]. M137utual signal transduc-
tion via the membrane mediators is an important aspect of the body’s defense mechanisms
because cells of the immune system are available to EVs for efficient and effective coordina-
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tion of the immune response through the transport of biological molecules, primarily based
on the proteins [169,170]. The course of immunological processes depends on the synchro-
nization of a number of regulators of the immune system, both pro-inflammatory and
acting as immune reaction brakes [171,172]. Among these biologically active pleiotropic
compounds, significant importance has previously been ascribed to TGF-β, as well as the
constitutive TNF-α molecule [173,174]. These substances mediate the secretion of mem-
brane inflammatory mediators, affecting the frequency of their secretion, the number of
secreted vesicles, and their molecular profile. Referring to the latest scientific reports, mela-
tonin is also a factor that deserves special attention, as it can not only affect the mechanism
of EV secretion but also modifies their cargo [175,176].

Melatonin is a widely acting anti-inflammatory molecule responsible for inhibiting
chronic and acute inflammation, but it also removes ROS, which testifies to the antioxidant
role of this compound [177,178]. The combination of properties characterized by EVs
and melatonin-acting mechanisms seems to be a promising therapeutic strategy [179,180].
Accordingly, the melatonin-derived modification of the EVs cargo is considered a potential
factor influencing damaged cells, noticeably modifying their molecular profile [181]. As
a result, the presence of modified EVs in the environment of damaged cells can induce
significant changes in the signaling mechanisms of these cells, often affecting their further
fate [182].

5.1. Overview of Origin, Composition, and EVs Significance

EVs form a heterogeneous group of nanoparticles characterized by appropriate surface
receptors (Table 1). Specific protein markers may be associated with different properties
of the vesicles, affecting their ability to induce programmed death against different types
of target cells or affecting their immune system stimulation [169,182–184]. Achieving
the described relationships between cells through membrane vesicles secreted into the
intercellular space enables an autocrine and paracrine means of intercellular communi-
cation, which favors the modification of both local and distant microenvironments [185].
The diverse load of EVs, apart from core proteins that reflect their origin and function,
may also contain proteins phenotypically and physiologically identical to primary cells
responsible for the secretion of specific vesicle populations, which means that they may
provide important information about the pathological processes of the medical state of
some individuals [186–190].

Table 1. Detail classification and characteristics of EV populations (modified based on 186–190).

Vesicle Type

Exosomes Microvesicles Apoptotic Bodies Oncosomes Exophers Migrasome

Morphology
(by TEM) Cup shape Irregular shape Oval shape Heterogeneous Quasi-Spherical

Bodies
Pomegranate-like

structures

Diameter (nm) 30–200 50–1000 50–5000 1000–10,000 +/−4000 500–2000

Density (g/mL) 1.13–1.19 1.04–1.07 1.16–1.28 N/A N/A N/A

Biogenesis

ESCRT endocytic
pathway

Ceramide-
dependent

multivesicular
bodies

Cell Surface;
Plasma

membrane
shedding

Cell Surface;
Release by cell
fragmentation

during shrinkage
caused to cell

death (apoptosis)

Plasma
membrane

blebbing from
cells

Budding out of
cells into the
extracellular

space

Retraction fibers;
Migracytosis
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Table 1. Cont.

Vesicle Type

Enriched Markers

CD63
CD9
CD81
CD82
Hsp60
Hsp70
Hsp90
ALIX

TSG101
PDCD6IP
LAMP1

Flotillin-1
Rab27

ESCRT proteins

CD14
CD31
CD34
CD51

CD62E
CD40
LL-37

HMGB1
ARF6

Integrin β1
VAMP3

ADAM10
NOTCH2

Trp-BODIPY
cyclic peptide

Annexin V
C3b
gp96

PANX1
Caspase-3
Caspase-7
VDAC1

CD63
CD9
CD81

Cytokeratin-18
EGFR
AKT1
Cav-1
ARF6
CK18

MMP-2
MMP-9
eEF1γ

αV-integrin
MDH

GPI-Aps

MAP2
β-III tubulin
tau protein

Tspan-4
Tspan-7

Integrinα5β1
NDST1

Molecular Cargo

Lipid
Proteins

Nucleic acids
Non-coding

RNAs
MHC molecules

Lipid
Proteins

Nucleic acids
Non-coding

RNAs

Nuclear fractions

Protein
Nucleic acids
Non-coding

RNAs

Cell organelles

Processes Intercellular communication via paracrine, autocrine, endocrine, and cell-to-cell contact signaling

Detection

Flow Cytometry
ELISA

Cryo-EM
TEM
SEM
WB

AFM
DLS
RPS

Proteomics

TEM
SEM

IF
WB

5.2. Melatonin-Dependent EVs

Due to the multifunctional nature of melatonin, it is considered one of the most
important molecules providing hope in the dilemma concerning the connection of the
unique diverse functions of EVs with their clinical application [191,192]. Melatonin is
considered as the cornucopia among other neuromolecules, and its introduction into the
selected populations of EVs induces modifications which have a strong protective effect
on the surrounding cells (Figure 2). This is due to the ability of this biogenic amine to
restore homeostasis in the body by stimulating the action of antioxidant enzymes, while
having the ability to directly remove reactive oxygen and nitrogen species. This indicates
the strong regulating properties of melatonin and its metabolites against the immune
system, additionally showing a protective effect in diseases associated with oxidative
stress [193–195].

It has been reported that the Toll-like receptor (TLR4)/NF-κB pathway connected with
melatonin activity increases the anti-inflammatory possibilities of EVs via the stimulation
of macrophage polarization. Melatonin-promoted EVs lead to the transformation of the
M2 macrophage type by a phosphatase and tensin homolog deleted in the chromosome
10/Protein kinase B (PTEN)/PKB signaling pathway [196,197]. Melatonin-promoted EVs
are characterized by the decreased exposition of vesicles signature cytokines, including
IL-1β, IL-18, IL-6, and tumor necrosis factor-alpha (TNF-α), while an increase in the release
of anti-inflammatory factors IL-10 and the conversion of TGF-β are observed [198,199].
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Figure 2. Circadian rhythms in regulation of melatonin-dependent secretion of the EVs. Mela-
tonin is a ubiquitous molecule, synthesized in the pineal gland, and has myriad biological functions
which primarily lead to the regulation of the endocrine circadian rhythm of the body. The presence
of melatonin in the cellular environment changes the molecular composition of EVs. Melatonin is
characterized by anti-inflammatory functions. The connection of EVs and melatonin represents a
promising therapeutic instrument [191–195].

Melatonin is a powerful antioxidant that scavenges various types of free radicals in
body fluids and cells [200]. It has a protective effect against cellular oxidative stress, which
includes anti-apoptotic actions. Melatonin-mediated EVs may play a neuroprotective role
by upregulating the expression of the anti-apoptotic B-cell protein gene, which is observed
in many neoplastic diseases, such as lymphomas [201,202]. The increased level of melatonin
in the ECM environment modifies the biogenesis of EVs by regulating the secretion process
from donor cells. Due to the relatively small size of EVs, their secretion may follow a
mechanism characteristic of the secretion of low-molecular-weight metabolites, known
in the literature as exocytosis. The mentioned process is based on the connection of
secretory vesicles with the plasma membrane and the release of vesicle content into the
extracellular space, leading to the selected proteins and lipids’ inclusion into the plasma
membrane [203–206]. In the first step, melatonin activates the phosphatidylinositol 3-
kinase/protein kinase B (PI3K/PKB) axis, while inhibiting the activity of glycogen synthase
kinase 3 (GSK-3) [207]. During melatonin-supported exocytosis, an elevated donor cell
membrane potential and increase in the elasticity and fluidity of the membrane have been
observed. These symptoms are the result of the impending release of EV. There is also an
increased metabolism of fatty acids in the cells responsible for extracellular secretion. Thus,
the presence of melatonin in the cellular environment may result in enhanced intercellular
communication, leading to increased exosome secretion [208].

Interestingly, the secretion of EVs can be supported by the process known as self-
clearing the cells, described as autophagy [209]. Autophagy is considered as a regulated
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self-degradation process that can modify the mechanisms of exosome biogenesis in response
to changes in external stimuli, related in this case to the presence of melatonin in the
environment [210–213]. This is indicated primarily by reports which show that proteins
responsible for the initiation and progression of cytosol and membrane autophagy take
an active part in the formation and secretion of exosomes. Guo and Gil proved that the
regulation of the autophagic system is based on the same signal transduction pathways as
the formation of EVs [214]. The common denominator for these two, so far independent,
processes, has become a conservative interaction involving the autophagy-related protein
(ATG), such as ATG5 and ATG16L1 proteins [215]. Moreover, the presence of melatonin in
the cellular environment directly induces autophagy by activating a number of proteins
from the ATG protein family (4, 5, 7, 10, 12, 16), and the ratio of microtubule-associated
protein 1A/1B-light chain (LC3) II/I is increased. In the context of EV secretion, the
increased expression of these proteins enhances the fusion of multivesicular bodies (MVBs)
with autophagic vacuoles and generates hybrid vesicles [216–219]. Due to the activity of
specific guanosine triphosphatases (GTPases) such as Ras-related protein Rab-8A and Ras-
related protein Rab-27 (Rab8a and Rab27), the release process of exosomes and autophagic
contents is being carefully studied [220,221]. Thus, the presence of melatonin affects
the overexpression of proteins responsible for the efficient course of autophagy, thereby
changing the exosome production pathways and their content. Melatonin’s enrichment of
the ECM may also provide the activation of other, alternative exosome secretory pathways,
which are not observed in the melatonin-free environment [222,223].

The results of the bioinformatic analyses indicate a high correlation between the Wnt
pathway proteins and melatonin-induced production of EVs. Based on the conducted anal-
yses, the expression of paired box 2 (Pax2) and transducing-like cleavage enhancer 4 (TLE4)
genes, characteristic of the course of the Wnt pathway, significantly enhances the secretion
of EVs. Overexpression of these genes leads to the induction of specific intracellular signals,
which then regulate the biogenesis of exosomes. However, the influence of the presence
of melatonin on the alternative pathways of exosome biogenesis described above requires
more extensive explanation in further studies [215–223].

The latest scientific reports indicate that the presence of melatonin in the environment
of EVs can affect the size of exosomes, depending on the cells from which they were
secreted [60,224]. The source of melatonin’s varied influence on the size of vesicles is
therefore at the basis of the mechanisms of their biogenesis. For example, the presence
of melatonin in bovine granulosa cells enhances the production of exosomes, but their
diameter is much smaller than that of physiologically secreted exosomes. In some cases,
i.e., SH-SY5Y human neuroblastoma cells, the presence of melatonin decreased the size of
the vesicles, reducing it by as much as 36.23% [60,225]. Another feature of EVs influenced
by the presence of melatonin in the ECM is their content, which is based primarily on
mRNA, miRNAs and proteins [60]. In line with the topic of this work, the intercellular
environment of anti-inflammatory macrophages enriched in melatonin induces an increase
in the expression of transferring exosomes miRNA, such as miR-135b, miR-34a and miR-
124, which distinguishes them from other EVs in which the above-mentioned tryptophan
derivative is not observed [60,226]. Moreover, it has been shown that melatonin-stimulated
EVs are characterized by increased levels of miR-4516. In the case of EVs secreted by
smooth muscle, preliminary studies indicate that the presence of melatonin induces an
increase in the expression of miR-204 and miR-211 in exosomes, compared to vesicles
whose content was not subjected to melatonin modifications. The elevation in miR-181
in melatonin-treated exosomes is also observed in vesicles secreted by bone tissue cells,
while enhancing the effect of osteogenesis. Notably, high expression of these molecules
regulating the expression of exosome genes induced by the presence of melatonin may
attenuate inflammation by modulating the immunoregulatory properties of EVs against
target cells [60,225–228].

The presence of melatonin does not, however, affect all properties of exosomes. For ex-
ample, high levels of melatonin in the cellular environment leave the unchanged tetraspanin
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levels of CD9, CD63, and CD81. The presence of melatonin also does not involve apoptosis
regulators such as apoptosis-linked gene 2-interacting protein X (ALIX) and tumor progres-
sion genes, among which the tumor susceptibility gene 101 has been distinguished. The
expression of protein markers on the surface of exosomes is extremely important in terms of
the functionality of these structures. These specific surface molecules regulate internaliza-
tion, immune evasion, and targeted exosome transport to target cells [60,225–228]. The issue
of the level of proteins constituting the cargo of EVs, such as cellular prion protein (PrPC)
or α-ketoglutarate, is different. Enrichment of the intercellular environment with melatonin
affects the growth of these proteins inside the exosomes, which increases the proliferation
and release of angiogenic cytokines to mitigate the inflammatory response [228–230].

In addition, exosomes are known to horizontally transfer melatonin between cells.
Passive melatonin transport across the cell membrane is possible due to its lipophilic
layer and passive membrane diffusion. Researchers are extremely interested in the mecha-
nism of transfer of the high-affinity G protein-coupled receptors named MT1 melatonin
receptor by internalization and endocytic transport. When melatonin signaling is con-
nected to MT1, Rab5 supports the relocation of the internalized MT1 to early endosomes.
MT1-carrying endosomes can cross the plasma membrane through the activity of other
GTPases [60,220–233].

6. Conclusions

The development and complications of cardiovascular diseases are largely based
on pro-inflammatory cytokine-signaling pathways. Dysfunction and activation of the
endothelium leading to inflammation occur in response to the induction of ROS production
by a myriad of proinflammatory cytokines. Due to its antioxidant properties, melatonin is
a pharmaceutical that specifically targets the molecular and signaling pathways involved
in the pathophysiology of CVDs, which has been demonstrated in the example of TGF-β.
TGF-β is a cytokine that causes the growth and proliferation of many types of cells, and
thus affects the increased production of EV populations. Despite the existence of many
papers describing TGF-β-dependent vesicle secretion and melatonin-stimulated follicular
secretion, there is still a lack of data confirming the synergy of these two factors in the
secretion process.
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