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Abstract: Inflammatory bowel disease (IBD) belongs to a group of chronic diseases characterised by
periods of exacerbation and remission. Despite many studies and observations, its aetiopathogen-
esis is still not fully understood. The interactions of genetic, immunological, microbiological, and
environmental factors can induce disease development and progression, but there is still a lack of
information on these mechanisms. One of the components that can increase the risk of occurrence
of IBD, as well as disease progression, is oxidative stress. Oxidative stress occurs when there is an
imbalance between reactive oxygen species (ROS) and antioxidants. The endogenous and exogenous
components that make up the body’s antioxidant defence can significantly affect IBD prophylaxis
and reduce the risk of exacerbation by neutralising and removing ROS, as well as influencing the
inflammatory state.

Keywords: antioxidants; Crohn’s disease; inflammatory bowel disease; nutrients; oxidative stress;
ulcerative colitis

1. Introduction

Inflammatory bowel disease (IBD) is a group of chronic diseases that follow periods
of exacerbation and remission [1]. In Crohn’s disease (CD), inflammation can affect any
section of the gastrointestinal tract, from the mouth through the oesophagus, stomach,
small intestine, large intestine, to the rectum. Lesions are separated by healthy fragments.
Inflammation is most often located in the terminal segment of the small intestine and
the initial colon. In ulceratis colitis (UC), inflammation can be localised in the rectum
or rectum and colon. Inflammation forms in the mucosa and submucosa, leading to
ulceration. The characteristic distinguishing UC from CD is the presence of the continuation
of inflammatory lesions [2]. An increase in the incidence of IBD has been observed year
after year. Researchers predict that its prevalence will increase significantly in the coming
years. The incidence of UC is higher in comparison to CD. The most common diagnosis
of UC occurs in the third and fourth decades of life, while CD is diagnosed primarily in
people in their second and third decades. Up to 16% of cases of IBD are diagnosed after
age 65, while about 4% are diagnosed before age 5. They are most often diagnosed in the
Caucasian race. Ashkenazi Jews of Central and Eastern European descent are a particularly
vulnerable group, with a four-time higher incidence of CD than others in the Caucasian
population [3,4]. IBDs are diagnosed in patients with a genetic predisposition, and there
is often a correlation with specific environmental factors [1]. In addition, among the most
important factors predisposing to IBD are ROS, which, as a result of the formation of
oxidative stress, can lead to dysfunction of the intestinal barrier, thus increasing the activity
of the immune system [5]. The main objective of this review is to collect scientific reports
on the action of antioxidants in protecting against oxidative stress in IBD and to identify
knowledge gaps that can inform further research.
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2. Oxidative Stress and Reactive Oxygen Species

Oxidative stress (OS) is defined as an imbalance between the induction of reactive
oxygen species (ROS) and the antioxidant components of the body’s defence system [6].
ROS are molecules composed of at least one oxygen atom and containing at least one
unpaired electron. From a biochemical perspective, ROS are highly reactive compounds
that interact reactively with cell organelles [7]. ROS include hydrogen peroxide (H2O2),
superoxide radicals (O2•−), hydroxyl radicals (•OH), and singlet oxygen (O2). They are
mainly produced as by-products of oxygen metabolism processes, but there are external
triggers that contribute to their increase [8]. These triggers include exposure to the exter-
nal environment (ultraviolet radiation, chemicals such as benzene and phenols), diseases
(cancer, infections), and certain drugs (cyclosporine, gentamicin) [9]. Mitochondria, as the
central location for oxidative phosphorylation, produce free oxygen radicals by reducing
oxygen to water. Oxidative phosphorylation is considered the most efficient human process
of energy production [10]. Other sources of ROS production include xanthine and flavin
oxidases, as well as cytochrome P450 [11]. Enzymes such as peroxidases, xanthine oxidase
(XO), NADPH oxidase (NOX), lipoxygenases (LOX), myeloperoxidase (MPO), nitric oxide
synthase (NOS), and cyclooxygenases (COX) are involved in the endogenous generation
of ROS by catalysing chemical reactions [12]. Among this group, NOX and XO may be
involved in the pathogenesis of IBD [13]. In addition to ROS, other molecules, such as
reactive nitrogen species (RNS) and reactive sulphur species (RSS), also participate in
oxidative stress. RNS comes from the reduction or oxidation of nitrogen compounds, while
RSS comes from the conversion of redox compounds containing sulphur. To understand the
interaction and mutual interaction of ROS, RNS, and RSS, the concept of “reactive species
interactome” was created [14]. The physiological level of ROS does not disturb redox
balance and is beneficial for maintaining normal body homeostasis. These compounds
participate, among other things, in inducing the immune system and also participate in
controlling insulin secretion [15]. They mainly perform the function of signal transduction,
thus stimulating the activity of cells and providing them with protection [16]. Other studies
have shown that ROS are responsible for a wide range of physiological processes. These
include, among others, cell differentiation and proliferation, posttranslational modification
of proteins, gene expression, or adaptation to hypoxia [17]. Apoptotic pathways for pro-
grammed cell death are also functions of reactive oxygen compounds [18]. The functions
described above indicate the significant role of ROS in the context of normal body home-
ostasis by maintaining their optimal levels in the cellular environment [19]. ROS production
is a natural cellular process. To maintain proper balance, ROS levels must be balanced
with antioxidants [20]. The lack of this balance due to increased ROS production and/or
reduced antioxidant defence leads to oxidative stress. Under pathological conditions, it
causes structural damage to lipids, proteins, and deoxyribonucleic acid (DNA) [21]. As
a result, the cell loses its ability to maintain basic functions. It experiences broad-based
dysfunction, which can lead to cell death [22]. A characteristic feature of IBD is the state of
the mucous membrane, with significant infiltration of inflammatory cells. This infiltration
is the result of the inflammatory state during exacerbation of the disease, which causes
damage to the mucous membrane. In addition, constant exposure to bacteria and fungi
belonging to the gut microbiota influences the state of the intestines. In the course of
IBD, the microbiota is colonised much more frequently by pathogenic microorganisms in
contrast to healthy individuals [23]. Throughout this process, there is excessive activation
of effector lymphocytes along with increased production of pro-inflammatory cytokines.
Thus, regulatory cells cannot maintain homeostasis. The result of these disturbances is a
chronic uncontrolled immune response [17,24]. Oxidative stress is the initiator of many
diseases, including cardiovascular, neurodegenerative, chronic lung, and kidney diseases,
as well as cancers and IBD [25,26]. Therefore, the balance between ROS generation and
reduction is important and essential in order to avoid cell damage. Body homeostasis
is conditioned by the balance of redox, which ultimately has a crucial impact on human
health and quality of life [27].
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3. Oxidative Stress and Inflammatory Bowel Disease (IBD)

Many researchers argue that IBD is closely related to increased ROS production. Studies
in animal models with induced colitis using dextran sulphate sodium (DSS) confirm the
increased generation of ROS such as superoxide, hypochlorous acid, and hydrogen peroxide.
At the same time, a reduction in the level of endogenous antioxidant compounds, including
glutathione and superoxide dismutase, is observed [28]. Active and chronic inflammation of
the mucous membrane is directly related to the generation of ROS, which serve as important
signalling molecules in the context of the immune response [29,30]. Furthermore, studies
show that ROS production in the microenvironment of inflammatory changes in the mucous
membrane causes secondary damage, including extensive cellular and molecular damage. As
a consequence, this can lead to the maintenance and consolidation of intestinal inflammation,
as well as induce further cell damage [31]. Such damage increases the risk from pathogens
(including through increased permeability of the intestinal barrier), which in turn may induce
a renewed immune response that can initiate the development of IBD. Additionally, ROS
overproduction alters intestinal absorption and disrupts intestinal peristalsis. Therefore, in
recent years, the number of studies on oxidative stress as a major intermediate factor in the
development of IBD has increased [32]. The protein complex acting as a transport factor
known as the NF-kB (nuclear factor kappa-light-chain-enhancer of activated B cells) is an
important regulator in many diseases. Studies have shown that it is improperly activated in
patients with IBD [33]. A study in mouse models has shown that an antioxidant drug that
inhibits NF-kB activity can alleviate symptoms of colitis [34]. Recently, it has been observed
that environmental factors such as high consumption of saturated fats and refined sugars,
excessive use of antibiotics, or even stress resulting from daily life contribute to a high risk
of IBD [35]. Cigarette smoke has been reported to greatly reduce endogenous antioxidant
activity in the colon [36]. In IBD, oxidative stress is not limited to the digestive tract, but
also has systemic effects in the form of extraintestinal manifestations [37,38]. Additionally,
oxidative stress may be involved in the carcinogenesis process in patients with IBD [39]. A
study reports that Helicobacter pylori may influence neutrophil induction to generate ROS,
which ultimately contributes to the onset of gastric cancer [40].

4. Antioxidants

Antioxidants are substances that can remove damage caused by oxidative stress,
or prevent or delay it [41]. Under physiological conditions, antioxidants regulate the
production of free radicals [42]. Based on their occurrence, antioxidants can be divided
into two groups: endo- and exogenic. The first group includes superoxide dismutase,
glutathione peroxidase, catalase. Exogenous antioxidants include flavonoids, vitamins, and
minerals, among others (Figure 1) [43].
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4.1. Exogenous Antioxidant Substances
4.1.1. Vitamin E

Vitamin E comprises four tocopherols (α, β, γ, δ) and four tocotrienols (α, β, γ,
δ). The antioxidant properties of α-tocopherol are comparable to α-tocotrienol [44]. A-
tocopherol is the best bioavailable form of vitamin E due to α-tocopherol transfer protein
(α-TTP), which has a 100% affinity for α-tocopherol and is the main determinant of α-
tocopherol concentration in plasma [45]. Vitamin E can modulate prostaglandin E2 (PGE2)
production [46]. PGE2 is involved in enhancing cytokine signalling through gene regulation.
It also facilitates Th1 differentiation and Th17 expansion [47]. Additionally, it promotes
the production of IL-22 by Th22 cells. In contrast, the improvement of PGE2 inflammation
occurs mainly through EP2 and EP4 receptors [48]. In a study by Liu et al., researchers
examined the effects of α-tocopherol (αT) and γ-tocopherol (γT) on colonic inflammation
and intestinal barrier function. They conducted the study in animal models in which
inflammation was induced by the administration of DSS (dextran sulphate sodium). They
observed that both compounds exhibited anti-inflammatory effects, but had different
effects on intestinal microflora. The researchers found that under pathological conditions
γ-tocopherol-rich tocopherols (γTmT) change intestinal microflora to a more favourable
composition, while they have no effect on microorganisms in healthy individuals. Both
α- and γ-tocopherol have beneficial effects on improving intestinal barrier function [49].
In another study, Lee observed that vitamin E, when given together with pentoxifylline
(PTX), could potentiate the effects of the drug. PTX and vitamin E have been shown to
reduce the induction of fibrinogen marker expression, suggesting that vitamin E should
be considered for inclusion in antifibrotic intestinal therapy in patients with IBD [50].
Chen et al. in their study examined single nucleotide polymorphisms and observed that
genetically higher levels of vitamin E were associated with a reduced risk of UC [51]. Other
researchers, through RNA sequencing, observed that AHRR (AHR repressor) deficiency
reduced IEL (intestinal intraepithelial lymphocytes) representation. In addition, they found
the occurrence of oxidative stress in Ahrr -/- IELs. Supplementing with vitamin E and
selenium restored redox balance [52]. Vitamin E, together with other compounds with
antioxidant activities, may be a potential protective factor against colorectal cancer [53].
Fan et al. compared the effects of vitamin E and D on UC in rats induced by DSS. Both
vitamins showed anti-inflammatory effects. Vitamin E, when administered at 30 IU/kg,
reduced the levels of inflammatory mediators, i.e., IL-6, IL-12, IL-18, TNF-α (tumor necrosis
factor α). The authors indicate that studies of the effect of vitamin E in humans are
necessary [54]. Newly developed vitamin E derivatives can also induce suppression of
keratinocyte-derived chemokine and IL-6, which could be used to treat UC [55]. The main
sources of vitamin E in food are vegetable oils, nuts, and seeds [56].

4.1.2. Vitamin C

L-ascorbic acid is a compound that is not synthesised in the human body, so it must
be supplied from exogenous sources. Vitamin C exhibits immunomodulatory and protec-
tive effects against ROS [57]. It can have a protective effect on the endothelium, among
other things, by decreasing ROS in endothelial cells or neutralising the nitrate tolerance
phenomenon [58]. It can act as a cofactor for mono and dioxygenase enzymes [59,60]. The
hydroxyl groups of ascorbate in the lactate ring are electron donors and proton donors;
they convert to the diketone moiety of dehydroascorbate (DHA), and therefore have a
protective effect on cells. Such action of hydroxy groups is shown against superoxide
radicals, singlet oxygen, and hydrogen peroxide [61]. Due to molecular stabilisation, the
resulting ascorbyl radical is hardly reactive [62]. A high concentration of vitamin C has a
protective effect on neutrophils against ROS. It also affects neutrophil leukocyte chemoki-
nesis and chemotaxis [63]. In IBD, up to one fifth of patients with active inflammation may
be vitamin C deficient, which may also be associated with feelings of increased fatigue and
impaired wound healing [64]. The cause of vitamin C deficiency in patients may be due
not only to the active form of the disease, but also to the avoidance of fruit and vegetable
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consumption [65]. A study by Miyake et al. showed that a higher intake of vitamin C
and vegetables may be associated with a lower risk of UC [66]. Other researchers have
reached similar conclusions [67]. Patients with CD also show reduced vitamin C intake [68].
Jo et al. studied the effect of vitamin C deficiency in induced inflammatory bowel disease
by administering DSS to mice. They observed that deficiency of the compound caused
a decrease in mucin, while it increased IL-6 production and oxidative stress [69]. The
SLC23A1 polymorphism may result in a decreased activity of the ascorbate transporter and
its reduced intracellular amount [70]. Good dietary sources of vitamin C include berries,
citrus fruits, parsley [71].

4.1.3. Zinc

Zinc is a trace element that must be supplied to the body in order for it to function
properly. Zinc deficiencies can lead to malfunctioning of T and B lymphocytes and to
abnormal maturation and differentiation of them [72]. In addition, they can cause de-
creased phagocytosis and PMN (polymorphonuclear cells) chemotaxis, and also affect
monocyte adhesion to the endothelium [73]. Zinc has also been shown to preserve redox
metabolism. An example is the increase in intracellular zinc in granulocytes caused by
H2O2. Zinc can also be released in increased amounts from metallothionein (MT) through
ROS induction [74]. Zinc can increase IFN-γ (interferon gamma) secretion from peripheral
blood mononuclear cells (PBMCs) [75]. Deficiency of the element can lead to increased
production of TNFα and IL-6 [76]. The antioxidant activity of zinc occurs indirectly. Its
antioxidant functions are multiple, including increasing glutathione (GSH) production or
as a cofactor of antioxidant enzymes [77]. The element is also essential for maintaining
normal intestinal barrier function, as its deficiency can reduce the function of the tight
junction resulting in increased permeability. Additionally, the repair of the intestinal barrier
requires the presence of zinc [78,79]. Zinc is also responsible for the proper functioning of
intestinal alkaline phosphatase [80]. Deficiencies are more common in patients with IBD
than in the general population [81]. In patients with IBD, microelement deficiencies can
increase the risk of complications of the disease, as well as hospitalisation [82]. Therefore,
screening is recommended, especially during disease exacerbations, to identify possible
deficiencies [83].

4.1.4. Selenium

Selenium was discovered in 1817 [84]. Biologically, it is found in the form of 25 se-
lenoproteins and occurs in humans as an element with immunomodulatory effects, among
others. It mainly neutralises organic hydroperoxides and hydrogen oxides [85]. It has been
shown to act on immune cells, such as NK cells and T lymphocytes, by affecting selected
cell signalling pathways or antioxidant functions [86,87]. The element also modulates redox
signalling and counteracts ROS [88]. The main compound in the selenoprotein group is
glutathione peroxidase (GSH-Px). It consists of 4 units containing selenocysteine, which
are antioxidant [89]. It can regulate free radical production when there is inflammation [90].
In addition, it can support immunoglobulin production [91]. Selenium is also essential
for the metabolism of some intestinal microorganisms [92]. Cytoplasmic ROS activate the
NF-κB signalling pathway and are subsequently involved in the expression of IL-2 and
IFN-γ. Therefore, it is important to monitor selenium levels in IBD [93–95]. Yan et al. tested
whether there was a correlation between serum selenium levels and disease activity in CD
patients. After including 135 patients in the study, they observed that serum concentrations
of the element were inversely correlated with the severity of the disease course, indicating
that selenium could be a factor along with other factors for monitoring disease activity [96].
Some researchers indicate that it is possible to enhance the effect of a probiotic by adding
selenium to it, which may also mitigate the inflammation that occurs [97–99]. This could
be due, among other things, to an increase in SIRT1 gene expression [100]. Keshteli et al.
in their study observed that a diet containing anti-inflammatory ingredients altered the
composition of the intestinal microflora in patients with UC and led to metabolic changes,
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which consequently supported the maintenance of clinical remission [101]. In addition,
adequate selenium levels can reduce the risk of cardiovascular disease in patients with
IBD [102]. Short et al. in their study observed that selenoprotein P (SEPP1) has a significant
role in the regulation of intestinal homeostasis and thus the occurrence of inflammation
and indirectly colorectal cancer [103,104].

4.1.5. Betacarotene

B-carotene is a vitamin A provitamin and belongs to the carotenoid group. It has a
C40 in its structure including two β-ion rings [105]. By scavenging superoxide radicals and
quenching singlet oxygen, it is considered a compound with antioxidant properties [106].
The antioxidant properties of the compound depend on its conformation. Hydrogen abstrac-
tion reactions are more exothermic in water compared to gaseous media [107]. B-carotene
shows positive effects in many diseases, such as diabetes and skin diseases [108,109].
Carotenoids also show beneficial effects on the gastrointestinal tract [110]. Honarbakhsh
et al. investigated whether carotenoids can have a positive effect on improving intestinal
dysfunction. They showed that in the presence of vitamin A deficiency, the administration
of β-carotene can reduce intestinal ROS and levels of pro-inflammatory cytokines. In addi-
tion, the compound may also have the effect of reducing the permeability of the intestinal
barrier [111]. Cheng et al., using epithelial cells in vitro, also observed an improvement
in intestinal barrier function by enhancing tight junction function. They also found that
with LPS- (lipopolysaccharide) induced colitis, β-carotene can reduce inflammation by
down-regulating the toll-like receptor 4 (TLR4) pathway [112]. In addition, provitamin
A can exhibit IL-6 and TNF-α lowering abilities [113]. Inflammatory bowel disease can
also be alleviated by decreasing PGE2, nitric oxide (NO) production, and modulation of
certain signaling pathways [114,115]. Other studies, in animal models, have shown that
β-carotene administration can modulate the composition of the intestinal microbiota, which
could significantly benefit patients with IBD [116,117]. Good dietary sources of β-carotene
include vegetables (carrots, kale, parsley, chard) and fruits (apricots, melon) [71].

4.1.6. Flavonoids

Flavonoids are compounds made up of a benzopyrone ring that contains polyphenolic
or phenolic groups. They have a variety of uses and actions [118]. The main groups of
substances belonging to the category of flavonoids are: anticyanins (examples of bioactive
substances: cyanidins, pelargonidins), flavanols (e.g., catechin, epicatechin), flavonols
(e.g., quercetin, kaempferol), flavones (e.g., luteolin, apigenin), flavanones (e.g., naringenis,
naringin), and isoflavones (e.g., daidzein, genistein) [119,120]. Due to the presence of a
hydroxyl group in the β-ring and a double bond, flavonoids exhibit antioxidant abilities
against peroxynitrite, superoxide, or hydroxyl radicals [121]. The antioxidant role of
flavonoids is exerted by chelating metal ions, trapping reactive oxygen species, detoxifying
enzymes, and increasing the production of antioxidant enzymes [122]. They also inhibit
the expression of pro-inflammatory mediators such as the NF-κB cascade, and inhibit
the release of pro-inflammatory cytokines [123]. In addition to their pro-inflammatory
properties, the compounds show the ability to regulate tumour-associated macrophages
(TAMs) [124]. The anti-inflammatory effects of flavonoids focus primarily on inhibiting
the activation of intracellular protein complexes containing PRRs (pattern recognition
receptors) and inflammatory molecules. This occurs by decreasing the expression of
components of the inflammasome, resulting in inhibition of caspase-1 activation and the
secretion of pro-inflammatory cytokines [125]. Flavonoids also show non-direct effects
on the gut. In their work, Wang et al. show that citrus flavonoids can exert positive
effects on maintaining normal intestinal barrier functions by regulating the expression of
TJ (tight junction) expression. They mainly point to nobiletin as the bioactive component of
flavonoids, which shows effects similar to those of an anti-inflammatory drug. In addition,
citrus flavonoids show regulatory effects on mucin expression and secretion and on shaping
the composition of intestinal microflora [126,127]. Due to their properties, flavonoids may
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exert beneficial effects on the course of IBD by, among other things, protecting against
functional and morphological changes in the vascular endothelium [128]. Furthermore,
they may counteract colonic inflammation by activating the AhR/Nrf2/NQO1 pathway
as well as limiting the action of the NLRP3 (NLR family pyrin domain-containing-3)
inflammasome [129]. Due to all these factors, antioxidants can reduce the disease activity
index [130,131]. The main sources of flavonoids in food are herbs, vegetables, fruits, nuts,
cereals, coffee, and tea [132].

4.2. Endogenous Antioxidant Substances

Despite the fact that excessive and uncontrolled oxidative stress has destructive prop-
erties for the digestive system, antioxidant defence systems can counteract the undesirable
effects of ROS [133,134]. The main defence mechanism of the body involves the production
of endogenous antioxidants, including superoxide dismutase (SOD), glutathione peroxi-
dase (GPX), and catalase (CAT) [135].

4.2.1. Superoxide Dismutase

Superoxide dismutase (SOD) is responsible for transforming superoxide radicals
into hydrogen peroxide (H2O2) and molecular oxygen (O2) [136]. Hydrogen peroxide
is subsequently converted by catalase and glutathione peroxidases [137]. The excessive
and uncontrolled production of H2O2 can be potentially harmful to cells. In contrast, an
optimal concentration of hydrogen peroxide may have a signalling effect [138]. Superoxide
dismutase exists in three isoforms: SOD1, SOD2 and SOD3. SOD1 is present mainly in the
cytosol of liver and kidney cells, as well as in the central nervous system and erythrocytes.
SOD2 is predominantly found in mitochondria. SOD3 is found in blood serum, tissues,
and body fluids (including synovial fluid and cerebrospinal fluid) [139]. A study showed
that SOD activity was elevated in rats with acetic acid-induced UC compared to the control
group. It appears to be a defensive reaction against oxidative damage under inflammatory
conditions caused by the disease [140]. A study found that patients with inactive CD have
a higher activity of SOD compared to those with active CD. This suggests that endogenous
antioxidant defence during disease exacerbation is impaired. Furthermore, in the same
study, Szczeklik et al. demonstrated that the level of C-reactive protein (CRP) in the CD
group was inversely correlated with SOD activity in serum [141]. Another study indicated
that the SOD concentration was statistically significantly lower in 42 patients with CD
compared to healthy individuals. A limitation of this study was the lack of division of CD
patients into a group with exacerbation of the disease and a group in remission. The authors
of the study concluded that CD patients are more susceptible to oxidative stress than healthy
individuals [142]. Mohammadi et al. also found a decrease in SOD activity in CD patients,
as well as UC patients [143]. Zielinska et al. showed a significant decrease in SOD activity
in patients with IBD compared to the control group, while also noting a significant decrease
in glutathione peroxidase (GPX) only in patients with CD [144]. A study involving 40 mice
with IBD showed that supplementation with a strain of Lactobacillus with activity similar
to SOD was much more effective in alleviating inflammation compared to strains with
activity similar to catalase [145]. A similar study, this time using the strain Bifidobacterium
bifidum BGN4-SK, which was created to produce SOD and CAT, was conducted in mice
with DSS-induced intestinal inflammation. B. bifidum BGN4-SK was found to effectively
increase antioxidant potential, inhibit colon inflammation, and protect the integrity of the
large intestine epithelium [146]. In recent years, a great deal of attention has been paid to
exogenous supplementation of antioxidants as a therapeutic approach in IBD to reduce ROS,
indicating that antioxidants have enormous potential in both preventing and supporting
the treatment of inflammatory diseases. Liang et al. conducted a study on mouse models
with DSS-induced colitis, which received oral capsules containing SOD and CAT. The
results showed that supplementation with antioxidant capsules can effectively reduce
ROS and also inhibit the secretion of pro-inflammatory cytokines, ultimately reducing
inflammation in the colon [147].
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4.2.2. Glutathione Peroxidase (GPX)

Glutathione peroxidase is a broad family of compounds with peroxidase activity [148].
GPX has the ability to catalyse the conversion of glutathione to oxidised glutathione (GSH)
and can also reduce H2O2 to water molecules and lipid hydroperoxides to stable alcohols.
Humans have eight GPX isoforms, many of which contain selenocysteine residues [149].
GSH, as a soluble antioxidant, has been shown to be less active in experimental mouse
models of inflammatory bowel disease [150]. A study in mouse models of Crohn’s disease
and ulcerative colitis reported that GPX2 plays a significant role in antioxidant defence
against oxidative stress and inflammation in the intestinal mucosa, but is also significantly
induced in stomach cancer [151]. Studies show that concurrent mutations in GPX1 and
GPX2 in mice produce symptoms similar to those of patients with IBD, suggesting that
this is due to oxidative damage in the digestive tract [152]. The study by Rana et al.
showed a significant decrease in reduced glutathione (GSH) activity in erythrocytes of
81 patients with UC compared to a healthy control group. Additionally, they found
higher levels of lipid peroxidation in patients, which may be a consequence of oxidative
stress [153]. Krzystek-Korpacka et al. examined 174 patients diagnosed with IBD and
found a statistically significant decrease in GPX in patients with active Crohn’s disease and
ulcerative colitis compared to healthy individuals and those in remission [154].

4.2.3. Catalase

Catalase is located mainly in peroxisomes [155]. CAT is responsible for breaking
down H2O2 into water and molecular oxygen, thus preventing cell damage resulting from
the Fenton reaction. In the Fenton reaction, which requires the presence of transition
metal ions such as iron or copper, a highly reactive hydroxyl radical (HO) may be formed.
In some cases, where catalase is absent, its functions can be performed by glutathione
peroxidase [156]. Catalase can also act in a so-called peroxidative mode, in which its
functions involve the breakdown of small substrates such as methanol or formate [157].
Another important function of catalase is apoptosis [158]. A study showed that CAT activity
in erythrocytes increases in patients with UC [153]. In contrast, another analysis found
persistent inhibition of CAT activity in mononuclear cells in patients with CD [159]. On the
basis of this, Iborra et al. showed that the constant decrease in CAT observed in CD patients
may be due to genetic changes. Various genetic mechanisms that inhibit this antioxidant
may contribute to the pathophysiology of CD [160].

Table 1 summarizes the mechanisms of action of endo- and exogenous antioxidants.

Table 1. Summarising the mechanism of action of antioxidants.

Substance Mechanism of Action

Endogenous
antioxidants

Superoxide
dismutase

- conversion of superoxide radical to hydrogen peroxide (H2O2)
and molecular oxygen (O2) [136]

- lowering C-reactive protein levels [141]
- alleviating symptoms associated with colitis by inhibiting

production of pro-inflammatory cytokines [147]
- SOD3 (Superoxide dismutase 3) -> regulation of T lymphocyte

differentiation [161]

Glutathione
peroxidase (GPX)

- catalysis of glutathione to oxidised glutathione [149]
- reduction of H2O2 to a water molecule [149]
- reduction of lipid hydroperoxides to stable alcohols [149]
- regulation of Th17 lymphocyte differentiation [162]
- inducing the production of regulatory lymphocytes [162]

Catalase

- decomposition of H2O2 to water and molecular oxygen [156]
- degradation of small substrates (methanol or formate) [157]
- insufficient levels of catalase can lead to suppression of

autophagy-dependent cell death [160]
- the persistent reduction in the catalase enzyme observed in CD

patients may be due to genetic alterations [160]
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Table 1. Cont.

Substance Mechanism of Action

Exogenous
antioxidants Vitamin E

- modulation of PGE2 production [46]
- reduction of IL-12, IL-18, TNF-α, IL-6 with vitamin E

supplementation [54,55]
- vitamin E supplementation reduced the decrease in ZO-1,

thereby affecting the deterioration of intestinal barrier
function [49]

Vitamin C
- effects on chemokinesis and chemotaxis of neutrophil

leukocytes [63]
- Vitamin C deficiency can increase IL-6 production [69]

Zinc
- deficiency can lead to decreased phagocytosis, PMN

(polymorphonuclear cells) chemotaxis [73]
- deficiency can lead to increased (TNF)-α and IL-6 [76]

Selenium

- Mainly neutralises organic hydroperoxides and hydrogen
oxides [85].

- Acts on immune cells, e.g., NK cells, T lymphocytes, by
affecting selected cell signalling pathways or antioxidant
functions [86,87]

Betacarotene

- scavenges superoxide radicals and quenches singlet
oxygen [106]

- can reduce inflammation by downregulating the toll-like
receptor 4 (TLR4) pathway [112]

- IL-6 and TNF-α lowering abilities [113]
- reduction of prostaglandin (PG)E2, nitric oxide (NO)

production [114,115]

Flavonoids
- inhibition of the NF-κB cascade [123]
- chelation of metal ions, uptake of reactive oxygen species,

production of detoxification enzymes [121]

5. Limitations

There are a small number of studies in humans on the effects of specific antioxidants
on periods of remission and exacerbation of IBD. In addition, the methodology of studies
is often not defined in terms of homogeneity of groups, age, or drugs used. There are no
conclusive studies on the role of oxidative stress in the pathophysiology or progression of
IBD. It should be noted that oxidative stress may result not only from IBD itself, but also
from other factors, such as diet (low fruit and vegetable intake), low physical activity, mal-
nutrition, or psychological stress. Any of these factors can interfere with the interpretation
of scientific findings.

6. Conclusions

Due to the possibility of nutritional deficiencies in patients with IBD resulting from
poor absorption, chronic inflammation, and/or reduced consumption of certain foods,
nutritional therapy should be an integral part of treatment [163–165]. Many studies suggest
paying particular attention to compounds with antioxidant properties, such as vitamins
E and C, zinc, selenium, carotenoids, flavonoids, and many others. It seems that factors
such as genetic, immunological, microbiological, and environmental factors, along with
oxidative stress, play a significant role in the initiation and development of IBD. This is due
to the disturbance and loss of homeostasis between the gut microbiota and the immune
system of the patients. Oxidative stress is a physiological process in which cells experience
an imbalance between the generation of reactive oxygen species and the body’s ability to
neutralise and remove them. Due to the wide spectrum of oxidative stress in IBD, many
attempts have been made in recent years to analyse individual antioxidants to find an
alternative treatment or support therapy method for patients with UC and CD. The results
obtained so far suggest potential benefits from their actions; however, more research is
necessary to clarify the mechanisms connecting oxidative stress with the onset of IBD.
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