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Abstract: Fatal intoxication with sedative-hypnotic drugs is increasing yearly. However, the plasma
drug concentration data for fatal intoxication involving these substances are not systematic and
even overlap with the intoxication group. Therefore, developing a more precise and trustworthy
approach to determining the cause of death is necessary. This study analyzed mice plasma and
brainstem samples using the liquid chromatography-high resolution tandem mass spectrometry (LC-
HR MS/MS)-based metabolomics method to create discriminative classification models for estazolam
fatal intoxication (EFI). The most perturbed metabolic pathway between the EFI and EIND (estazolam
intoxication non-death) was examined, Both EIND and EFI groups were administered 500 mg of
estazolam per 100 g of body weight. Mice that did not die beyond 8 hours were treated with cervical
dislocation and were classified into the EIND groups; the lysine degradation pathway was verified
by qPCR (Quantitative Polymerase Chain Reaction), metabolite quantitative and TEM (transmission
electron microscopy) analysis. Non-targeted metabolomics analysis with EFI were the experimental
group and four hypoxia-related non-drug-related deaths (NDRDs) were the control group. Mass
spectrometry data were analyzed with Compound Discoverer (CD) 3.1 software and multivariate
statistical analyses were performed using the online software MetaboAnalyst 5.0. After a series of
analyses, the results showed the discriminative classification model in plasma was composed of three
endogenous metabolites: phenylacetylglycine, creatine and indole-3-lactic acid, and in the brainstem
was composed of palmitic acid, creatine, and indole-3-lactic acid. The specificity validation results
showed that both classification models distinguished between the other four sedatives–hypnotics,
with an area under ROC curve (AUC) of 0.991, and the classification models had an extremely
high specificity. When comparing different doses of estazolam, the AUC value of each group was
larger than 0.80, and the sensitivity was also high. Moreover, the stability results showed that the
AUC value was equal to or very close to 1 in plasma samples stored at 4 ◦C for 0, 1, 5, 10 and
15 days; the predictive power of the classification model was stable within 15 days. The results
of lysine degradation pathway validation revealed that the EFI group had the highest lysine and
saccharopine concentrations (mean (ng/mg) = 1.089 and 1.2526, respectively) when compared to
the EIND and control group, while the relative expression of SDH (saccharopine dehydrogenase)
showed significantly lower in the EFI group (mean = 1.206). Both of these results were statistically
significant. Furthermore, TEM analysis showed that the EFI group had the more severely damaged
mitochondria. This work gives fresh insights into the toxicological processes of estazolam and a new
method for identifying EFI-related causes of mortality.
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1. Introduction

Sedative-hypnotic drug intoxication occurs commonly with increasing death rates
nowadays in forensic practice. According to AAPCC (American Association of Poison
Control Centers) annual reports for the past five years, sedatives/hypnotics/antipsychotics
cause the highest number of deaths of all drug intoxication deaths, and the exposure rate
of these drugs is rising [1–5]. Similar literature has been reported in Europe and Japan [6,7].
Deaths from veterinary sedative-hypnotic drugs have also been reported [8,9].

However, forensic pathology practice has shown that the autopsy findings of many fa-
tal intoxication deaths caused with prescription and illicit drugs, such as pulmonary edema
and bladder distension urine, are not specific and are referred to as negative autopsies [10]
because the results do not contribute to identifying the unknown death cause. Moreover, in
the few studies focusing on lethal plasma concentrations of sedative-hypnotic drugs, for
multiple sedative-hypnotic drugs, there is an overlap of plasma concentrations between the
fatal intoxication and reference groups or even intoxicated groups. The amount of plasma
concentration data for fatal intoxication caused with some single sedative-hypnotic drugs
is grossly inadequate, and lethal plasma concentrations lack systematicity and typical-
ity [11,12]. In some studies, plasma concentrations only reflected the intake of such drugs
before death [13]. In addition, postmortem drug redistribution exhibits an effect [14]. In the
5–10% of cases where reliable results cannot be achieved using conventional methods [15],
developing more precise and reliable procedures for identifying the cause of death in
sedative-hypnotic drug overdoses is crucial.

Metabolomics, focusing on small molecule compounds, has been widely used in
forensic toxicology [15,16]. The so-called advanced molecular autopsy is the application
of multi-omics approaches such as metabolomics, thus delivering the death-cause identi-
fication process to the molecular biology level [17]. The concept of thanatometabolomics
has been proposed and implemented for the identification of unknown death causes, post-
mortem interval (PMI) estimation and screening of potential toxicological biomarkers.
This process is also known as metabolomic autopsy [15]. As an alternative to standard
forensic toxicology methods, the metabolomics approach can allow the confirmation of
drug consumption or manipulation attempts. It also has a wide range of applications in
the identification of drug and new psychoactive substance (NPS) abuse, as well as alcohol
abuse. For example, the metabolites of ethyl alcohol (ethanol), which are ethyl sulfate
(EthS), ethylglucuronide (EthG), phosphatidylethanol (PEth), etc., have a more extensive
window of detection and can be used as suitable biomarkers for metabolomic identifica-
tion [16]. In addition, some successful applications have been made in forensic analysis to
identify the complex cause of death with the construction of a metabolomic classification
model [18,19]. Our previous study on fatal intoxication with antipsychotic drugs also
successfully achieved cause of death identification through the use of discriminative clas-
sification models [20]. Therefore, this study proposes adopting metabolomics to identify
fatal intoxication caused with sedative-hypnotic drugs.

The principal experimental drug in this study was estazolam, a traditional benzo-
diazepine sedative-hypnotic drug that produces anticonvulsant, anxiolytic and sedative-
hypnotic effects mainly through gamma-amino-butyric acid (GABA) receptor modulation
in the central nervous system [21], and it is one of the top-ranked potentially inappropriate
medications [22], and is commonly used for drug-related suicide. However, estazolam
is like other sedative and hypnotic drugs; there is also a lack of data from systematic
studies [2].

In this study, we propose to use a metabolomic approach to screen for endogenous
potential biomarkers of fatal intoxication with estazolam and to construct two classification
models in the plasma and brainstem tissue samples, respectively, to address the issue that
the existing lethal plasma concentration data cannot accurately and effectively explain
the cause of death or provide objective molecular evidence for the identification of the
cause of death of fatal intoxication with this drug in forensic practice. Meanwhile, the most
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perturbed metabolic pathways in brainstem tissues of estazolam fatal intoxication mice
were screened to explore the drug’s new toxicological mechanism further.

2. Materials and Methods
2.1. Chemicals and Reagents

Estazolam and zaleplon were purchased from Shanxi Xinbaoyuan Pharmaceutical
Co., Ltd. (Datong, China). Diazepam and nitrazepam were purchased from Jiangsu Nhwa
Pharmaceutical Co., Ltd. (Xuzhou, China). Sodium pentobarbital was purchased from
Sigma Chem. Co., (St. Louis, MO, USA). Saccharopine (CAS Number: 997-68-2) standards
were purchased from Shanghai yuanye Bio-Technology Co., Ltd (Shanghai, China). Lysine
(CAS Number: 56-87-1), Proadifen Hydrochloride (SKF525A) (CAS Number: 62-68-0)
standard were purchased from CSNpharm Inc. (Chicago, IL, USA), estazolam (CAS
Number: 29975-16-4) was purchased from National Institutes for Food and Drug Control
of China (Beijing, China). Methanol, acetonitrile, and formic acid (HPLC grade) were
purchased from Dikma Technology Inc. (Foothill Ranch, CA, USA). The Milli-Q system
(Millipore, Burlington, MA, USA) was used to purify the deionized water.

2.2. Animals Diets and Grouping

All experimental animal protocols of this study were approved by the institutional
ethics committee of Hebei Medical University (No. 20180071, 2018-04-15). All CD1(ICR)
mice (7–8 weeks, female: 32–37 g, male: 38–42 g) were purchased from Liaoning Chang-
sheng Biotechnology Co., Ltd. (Shenyang, China), and kept under a standard 12:12 h
light/dark cycle environment with 23 ± 2 ◦C and 55 ± 5% relative humidity. All animals
were fed with specific pathogen-free-grade chow for a week and fasted overnight (with libi-
tum access to water) before experimentation. Briefly, 180 mice in 23 groups were involved
in this study.

To achieve an appropriate intragastric administration volume of 0.1–0.2 mL per 10 g
of body weight, drug concentrations were adjusted before use. According to the above
experimental design, quantitative plasma concentration analysis was first performed in the
estazolam fatal intoxication (EFI) and estazolam intoxication non-death (EIND). Combining
previous studies and our protocol, these two groups were administered at a concentration
of 500 mg/100 g (6 × LD50) [23]. The EIND group mice (n = 10, Female: Male = 1:1) were
poisoned, survived for more than 8 h and treated with cervical dislocation, but the EFI
group mice (n = 10, F:M = 1:1) died within 8 h of administration. The blood remaining after
plasma concentration quantification was used for subsequent metabolomics experiments.

In the metabolomic analysis session, EFI (n = 10, F:M = 1:1) was the experimental
group, and four NDRD (non-drug related death, n = 10, respectively, F: M = 1:1) mice
models were brought in as controls, simulating the death cases associated with hypoxia
in forensic practice, including cervical dislocation (CD), drowning (DR) [24], mechanical
asphyxia (MA) [25] and acute hemorrhagic shock (HS) [26]. The DR, MA and HS groups
were given cervical dislocation to relieve pain at the time of almost dying in all three
groups. A new batch of data matching the first five categories was presented to verify the
prediction ability of the classification model. Moreover, four other sedative-hypnotic drug
fatal intoxication models consistent with EFI, and both simulated cases of extreme drug
fatal intoxication of iatrogenic toxicant in forensic practice (n = 10, respectively, F:M = 1:1)
were: diazepam (280 mg/100 g, 5 × LD50 [27]), nitrazepam (275 mg/100 g, 5 × LD50 [28])
and zaleplon (280 mg/100 g: refer to the dosage of diazepam), and sodium pentobarbital
(20 mg/100 g, ≈1.6 × LD50 [29]). Then, to assess the classification model’s sensitivity,
three other estazolam dose groups (n = 10, respectively, F:M = 1:1) were introduced,
namely 3 × LD50 (250 mg/100 g), 50 × therapeutic (2.59 mg/100 g) and 100 × therapeutic
(5.17 mg/100 g) of estazolam [30] groups, of which the latter two groups were administered
for 24 h, then euthanized by cervical dislocation. Then, the EFI (n = 8, F: M = 1:1) group
and three control groups (CD, DR, MA, n = 6, respectively, F:M = 1:1) were introduced, and
their plasma was stored at 4 ◦C for 0, 1, 5, 10, 15 and 20 days to assess the classification
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model’s stability. All the above metabolomics groups used plasma and brainstem tissues
for differential metabolite screening and classification model construction and evaluation,
except for the stability experiments where only plasma was used, and their brainstem
samples were used for subsequent molecular experiments.

Finally, brainstems from the EFI and EIND groups (n = 10, respectively, F:M = 1:1)
were used for metabolic pathway enrichment analysis, and lysine and saccharopine content
in the brainstem were measured together with the CD group (n = 10, F:M = 1:1), and
a qPCR quantification of the key enzymes of the metabolic pathway was done, as well
as a morphological electron microscopic analysis. The objective was to investigate new
estazolam toxicity pathways.

The experimental grouping information is listed in Supplementary Materials Table S1.

2.3. Blood and Brainstem Tissues Sample Collection

For all animals used for metabolomics analysis, abdominal aortic blood was collected
immediately following cervical dislocation or death and transferred into heparin-treated
1.5 mL centrifuge tubes on ice; blood samples were centrifuged at 8000× g for 10 min at
4 ◦C to obtain supernatant plasma [31]. In the EFI and EIND groups, after blood was drawn
from the abdominal aorta, 200 µL of whole blood was administered initially for plasma
concentration quantification. All plasma samples were snap-frozen in liquid nitrogen and
stored at −80 ◦C until use. For stability evaluation, 8 EFI (F:M = 1:1) and 18 NDRD plasma
samples (drowning: cervical dislocation: mechanical asphyxia = 1:1, F:M = 1:1) were stored
at 4 ◦C from the 1st to 20th days. About 60 µL plasma was absorbed in the 0, 1st, 5th, 10th,
15th, and 20th days respectively. All plasma samples obtained this way were restored at
−80 ◦C before pretreatment.

Brainstem tissue was quickly obtained from each animal group after blood sampling
and was snap-frozen with liquid nitrogen and crushed, weighed into 50 mg portions at low
temperature, and placed in 2 mL frozen storage tubes at −80 ◦C until use. Each brainstem
sample was divided into 2–3 copies, and each was 50 mg.

2.4. Blood and Brainstem Tissue Metabolite Extraction

Pretreatment of plasma and brainstem tissue samples for non-targeted metabolomics
analysis was based on and modified from the methods in the literature [31,32]. Briefly,
100 µL of the plasma samples were added to the tubes with 300 µL ice-cold methanol
(Vsample: Vextraction = 1:3) after thawing at 4 ◦C. Each sample was then vortexed for
30 s, sonicated for 10 min in an ice-water bath, and incubated for 20 min at −20 ◦C for
protein precipitation. The mixing solution was centrifuged at 12,000× g for 10 min at 4 ◦C.
The resulting supernatants were transferred to LC-MS vials for a LC-HR MS/MS analysis.
Furthermore, the quality control (QC) sample was mixed with 10 µL supernatant taken
from each sample.

Pretreatment of brainstem tissue samples was as follows. Briefly, 50 mg of brainstem
tissue was thawed at 4 ◦C, 300 µL of ice-cold methanol was added, and an appropriate
amount of grinding beads were added. This was ground at −4 ◦C for 90 s to form a
homogenized slurry. Then, the sample was vortexed for 30 s, sonicated for 10 min in an
ice-water bath, and incubated for 20 min at −20 ◦C to allow protein precipitation. The
mixtures were centrifuged at 12,000× g for 10 min at 4 ◦C. The resulting supernatants
were transferred to LC-MS vials for UPLC-MS/MS analysis. QC samples were processed
as before.

2.5. Data Acquisition with Full Scan-MS/MS Using LC-HR MS/MS

LC-HR MS/MS analysis was performed by the Ultimate 3000 rapid separation UHPLC
coupled with Q Exactive Orbitrap MS (Thermo Fisher Scientific, Waltham, MA, USA). This
specific method was modified based on the scheme of Huang et al. [33]. A UPLC HSS T3
column (2.1 × 100 mm, 1.8 µm; Waters Corp., Milford, MA, USA) was used for separation.
Mobile phase A was 0.1% formic acid in Milli-Q water, and mobile phase B was pure
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acetonitrile. The elution gradient was set as follows: 0 min, 98% A; 1 min, 98% A; 12 min,
2% A; 16 min, 2% A; 16.1 min, 98% A; 20 min, 98% A. The flow rate was 0.3 mL/min,
and the injection volume was 5 µL. The total run time was 20 min. During LC/MS
studies, a Q Exactive mass spectrometer was used for acquiring an MS/MS spectra on an
information-dependent basis (IDA) and the full scan mode (resolution of full MS 35,000,
MS2 17,500). In this mode, Xcalibur™ software (version 4.0.27, Thermo Fisher Scientific)
continuously assessed MS data collected during the full scan survey and triggered the
acquisition of the MS/MS spectra that exceeded the preselected criteria. The MS was
equipped with a heat electrospray ionization (HESI, Thermo Fisher Scientific) source and
operated under the positive/negative ionization switching mode. The ESI source conditions
were set as follows: the spray voltage was +3.2 kV or −3.1 kV, Scan range 80–1200 m/z,
AGC targetvalue = 1 × 105, sheath gas flow rate = 35 arb, aux gas flow rate = 15 arb, and
capillary temperature = 350 ◦C. The collision energy was 25/35/45 eV in the normalized
collision energy model.

Determination of the plasma concentration, measurement of saccharopine and lysine in
the brainstem tissue, quantitative real-time PCR (QuantStudio 7 Flex, Applied Biosystems,
Waltham, MA, USA), and TEM (HT7800, Hitachi, Tokyo, Japan) analyses are in the Materials
and Methods section of the supplementary materials.

2.6. Data Processing and Discriminating Component Analysis

Data preprocessing significantly impacts untargeted metabolomics analysis [34]. In
this study, MS raw data files were preprocessed using CD software (version 3.1, Thermo
Fisher Scientific) while applying the existing metabolomics process named “Untargeted
Metabolomics with statistics detect unknowns with ID using Online Database and mz-
Logic”. The default parameters were the Retention Time alignment, Fill Gaps, and Peak
Area Correction based on QC samples. Minimum peak intensity was changed to 5 × 105 to
match various compounds. The preprocessing result is a data matrix table containing reten-
tion time, exact molecular weight, annotation information and other items. The analysis
included only data with similar MS2 structural features as determined with the mzCloud
database to improve the metabolomics analysis accuracy.

The online software MetaboAnalyst (https://www.metaboanalyst.ca/, accessed on
15 April 2023), version 5.0, McGill University’s Xia-lab, Montreal, QC, Canada) was used
for multivariate statistical analysis after pretreatment. The normalization before each data
analysis was referenced to autoscaling and log transformation (base 10). PCA (principal
component analysis) was done to screen the different metabolites between EFI and NDRDs
in plasma and brainstem tissue samples. R language was utilized for correlation analysis of
QC samples to evaluate the reproducibility and system stability of the approach. PLS-DA
(partial least squares discriminant analysis) was carried out to achieve a better separation
effect between groups, and the model was evaluated with 10-fold cross-validation and
100 permutation test. Then, biomarker meta-analysis was used to determine the intersection
of differential metabolites between EFI group and each NDRD group [35]. The candidate
differential metabolites of the classification model were screened by p value and Combined
LogFC (fold change) value combined with mzCloud database MS2 spectrometry match
score in the result matrix and Combined VIP (variable importance in projection) value
obtained with PLS-DA analysis.Next, the use of biomarker analysis along with multivariate
receiver operating characteristic (ROC) curve-based test analysis which utilized the linear
support vector machine (SVM) algorithm was used to construct a better classification model
for EFI. considering We have meanwhile taken the results of conventional univariate ROC
curve analysis into consideration as well. The discriminative power and reliability of the
classification models were further evaluated, and stability was verified in plasma samples.
Precision (positive predictive value (PPV)), negative predictive value (NPV), Recall and
F1-score (plotted with GraphPad 8, San Diego, CA, USA) were used in combination with
AUC values for a comprehensive evaluation [36,37]. The cutoff value (0.8) was set with
reference to Yu et al. [38].

https://www.metaboanalyst.ca/
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To study the new toxicological mechanism of estazolam, the brainstem as the target
organ was taken as the research object; brain tissue is the common examination material
in forensic practice [16]. The student’s t-test and PLS-DA analysis drew the volcanic plot,
and the differential metabolites between EFI and EIND groups were obtained. Then the
quantitative enrichment analysis of metabolic pathways was conducted based on the differ-
ential metabolites. According to the enrichment ratio and p value, the lysine degradation
pathway with the largest disruption was identified among all the differential pathways.
LC-MS/MS analysis was used to determine the content of key metabolites in the brainstem
of the lysine degradation pathway in control, EFI and EIND groups with t-test; qPCR was
used to determine the relative expression of key enzymes in this pathway with one-way
ANOVA (p < 0.05, GraphPad 8). To visually illustrate the new toxicological mechanism of
estazolam, morphological changes in EFI and EIND brainstem tissues were compared with
transmission electron microscopy (TEM) data.

3. Results

There was a statistically significant distinction between the plasma concentrations
of estazolam in the EFI and EIND groups, and the results were statistically significant.
However, the two groups have a substantial overlap in estazolam concentrations. The
outcomes are depicted in Figure 1.
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Figure 1. Plasma concentration of estazolam in mice from EFI and EIND groups at 6 × LD50 dose
(500 mg/100 g). Notes: Quantitative results of plasma concentration of estazolam, nanimal = 10,
respectively, female: male = 1:1, **, p < 0.01, are compared between EFI and EIND groups. Statistical
significance was determined with the student’s t-test. Box plots are expressed as medians (horizontal
lines in boxes), 25 to 75 percentile (boxes), and extent of data (whiskers), with red circles and red
squares representing specific data points. Abbreviations: EFI: Estazolam fatal intoxication, EIND:
Estazolam intoxication not-dead, and EFI: Estazolam acute intoxication death. EIND meant acute
intoxication over 8 h, followed by cervical dislocation. The dose and duration of administration were
the same for both groups.

3.1. Metabolomics Profiling of Plasma Samples in the EFI and NDRDs Mice

Untargeted metabolomic analysis in 50 plasma samples from the EFI group, and the
four NDRDs groups (CD, DR, HS, and MA) used as negative controls, detected 392 metabo-
lites (molecular characteristics were shown in the Excel spreadsheet of supplementary
materials), of which 352 were annotated by the Human Metabolome Database (HMDB)
and 40 metabolites remain unclassified at present by the HMDB. The annotated metabo-
lites could be classified into nine chemical classes, most of which were organic acids and
their derivatives (30.11%), followed by lipids and lipid-like molecules (28.69%), organic
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heterocyclic compounds (13.92%), benzenes (11.36%). The details are in Figure 2A. The
specific data are shown in Table S2 of the Supplementary Materials.
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The overview of global metabolic profiles according to the quantitative results for
the metabolites in the mice plasma samples, as revealed by PCA scores plots (Figure 2B),
showed obvious dissimilarities between the EFI group and the four control groups. This
differentiation could be described with the first PC1, which accounted for 28.9% of the vari-
ance. The second PC (PC2) accounted for 15.7% of the variance. Figure S1A demonstrates
that the correlation between QC samples is extraordinarily high and that the analytical
method has excellent reproducibility and systematic stability.

Further PLS-DA analysis was performed to show better separation trends between
the different groups. The PLS-DA scores plot (Figure 2C) demonstrated a good separation
trend between EFI and control groups, and the four control groups were further separated.
The cross-validation method with a 10-fold CV algorithm was applied to calculate the Q2
to evaluate the PLS-DA model. Figure S1B shows that the model had an R2 of up to 0.98675
and a Q2-value of 0.89801 for the five components, indicating its high predictive power [35].
The results of the 100 permutation test (p < 0.01, Figure S1C) showed that the model was
fitting well, and it had high stability.

3.2. Classification Model Screening and Verification in EFI Plasma Samples Relative to
NDRDs Mice

The common differential metabolites between the EFI group and the four NDRDs
groups were screened based on the results of PLS-DA analysis using biomarker meta-
analysis using the online software MetaboAnalyst 5.0, and 146 differential metabolites
were obtained as shown in the upset plot (Figure 3A(a)). Fourteen candidate differential
metabolites were obtained after combining the compound annotation information of the
mzCloud database MS2 spectrometry match score (>85), p value (<0.05), combined LogFC
(>1, <−1) and combined VIP-value (>1) obtained from PLS-DA analysis for comprehensive
evaluation (Table 1). A multivariate ROC curve based on a linear SVM algorithm in the
biomarker analysis was applied to build the EFI classification model. The screening process
was described in Results 2.1 and Table S3 of the Supplementary Materials. Moreover, a high
discriminability classification model consisting of three candidate differential metabolites
with high predictive power, phenylacetylglycine, creatine and indole-3-lactic acid, was
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obtained with iterative validation, combined with the classical univariate ROC curve
analysis results (AUC, 95% CI). The p values are shown in Table 2. Phenylacetylglycine,
creatine and indole-3-lactic acid were significantly up-regulated in the EFI, compared
with the four NDRDs groups (Figure 3A(b–d)). The specific procedure used 80% of the
above 50 samples as the training set [39] (nEFI = 8, nNDRDs = 32). The results showed
that the classification model consisting of these three candidate differentials based on
100 cross-validations had an AUC value equal to 1 (Figure 3B(a)). The model had a strong
discriminatory ability. The confusion matrix plot (Figure 3B(b)) distribution also showed
this. Then, the model was evaluated with a permutation test (p < 0.01), and the results were
statistically significant (Figure 3B(c)), demonstrating the classification model’s stability and
robustness. The validation set (nEFI = 2, nNDRDs = 8), consisting of the remaining 20% of
samples as new samples, showed that all samples were correctly classified, as shown in
Table S4.

Table 1. Differential metabolites for estazolam fatal intoxication in plasma samples.

Compound Name a
Metabolite Identification

p d Combined
Log FC e Trend f Combined

VIP gAccurate
Mass b

Retention
Time b

mzCloud
Best Match c

Phenylacetylglycine 193.07388 6.414 90 1.52 × 10−33 1.822502209 up 1.27002
7-Methylguanine 165.06493 1.767 87.1 1.26 × 10−32 1.812534031 up 1.03212

Propionylcarnitine 217.13116 2.578 92.9 9.31 × 10−32 −1.80225988 down 1.09656
Creatine 131.06937 1.489 95.2 4.95 × 10−30 1.780471987 up 1.2083

L-Ascorbic acid 2-sulfate 255.98905 1.222 88 4.22 × 10−28 1.754421741 up 1.07764
Methionine 149.0509 1.67 91.8 3.98 × 10−25 −1.706198279 down 1.27548

Ascorbic acid 176.03203 1.226 87.4 1.54 × 10−23 1.676402203 up 1.11066
N-Isovalerylglycine 159.08942 5.848 89.3 3.21 × 10−22 1.649229414 up 1.1655

4-Pyridoxic acid 183.05305 3.268 94.8 1.91 × 10−21 1.632156605 up 1.16982
Xanthurenic acid 205.03731 5.402 91.2 6.65 × 10−21 1.619327608 up 1.25248

Acetyl-L-carnitine 203.11558 1.659 93.8 4.74 × 10−20 −1.599262594 down 1.09352
Indole-3-lactic acid 205.07359 6.928 91.8 1.62 × 10−18 1.560302287 up 1.060518

Valine 117.0788 1.619 95.8 8.78 × 10−15 −1.443708344 down 1.004272
3-Phenyllactic acid 166.06286 6.78 91.1 5.48 × 10−7 1.036145258 up 1.18646

a: The annotation for each compound was based on the HMDB database; b: accurate mass and retention time
were obtained from the Q Exactive mass spectrometer on a full-scan model; c: the mass spectrometry data were
analyzed by CD 3.1 software (version, Manufacturer name, city, state abbreviation if US or Canada, country) to
obtain; d: calculated with student’s t-test. p < 0.05 means that differences in this metabolite between EFI and
the controls are significant; e: Combined Log FC: in the biomarker meta-analysis, the mean of fold-change for
the metabolite in the experimental group relative to the different control groups is one of the main bases for
screening the common differential metabolites; f: trend compared to the control group; g: combined VIP: this
value represents the ability of each metabolite to explain estazolam fatal intoxication, and is the mean value of the
VIP-value of the experimental group and each control group and auxiliary screening for differential metabolites
(the usual screening criterium is VIP > 1).

To verify the discriminative ability of the classification model, a new set of samples
consistent with the above modeling process was introduced as a test set still evaluated
with a multivariate ROC curve based on a linear SVM algorithm. The AUC (=1) and the
confusion matrix plot showed that the classification model still had a high discriminative
ability, and the result of the 100-permutation test (p < 0.01) showed that the model had
good predictive power (Figure S1D(a–c)).

In this study, the discriminability and reliability of the classification model were
further evaluated at three levels: specificity, sensitivity, and stability. The specificity of the
classification model was first assessed by introducing four other sedative-hypnotic drug
lethal intoxication models (zaleplon, diazepam, nitrazepam, and sodium pentobarbital)
as a control group for EFI. The ROC test based on the SVM algorithm was used, and the
results are shown in Figure 4A(a–c): AUC = 0.991, the confusion matrix plot had almost no
misclassified samples, and p < 0.01 for the 100-permutation test. The classification model
has a strong specificity and high predictive power. In addition, it showed high specificity
in differentiating from the other four models of toxicant fatal intoxication (Figure S1E(a–c)).
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Table 1. Differential metabolites for estazolam fatal intoxication in plasma samples. 

Figure 3. Screening classification model in plasma samples from the EFI group relative to the NDRDs
group. (A) (a) Upset plots obtained with biomarkers meta-analysis of EFI and four NDRD groups
(total of 5 groups, nanimal = 10, respectively), with 146 common differential metabolites. (b–d) The
classification model consisted of three candidate differentials, phenylacetylglycine, creatine and
indole-3-lactic acid, and they were significantly up-regulated in the EFI group. (B) Discriminatory
ability evaluation of the EFI classification model in the training set (nEFI = 8, nNDRDs = 32). (a) ROC
plot: AUC = 1 (95% CI: 1−1) (b) Confusion matrix plot showing samples without misclassification.
(c) Classification model with 100 permutation-test plots, p < 0.01. Notes: (B) construction and
evaluation of classification models using multivariate ROC curve analysis based on linear SVM
algorithm. (a–c) in (B) respectively represent: (a) the area under the ROC (AUROC (AUC)) of the
classification model in different datasets contains the AUC-value and its 95% confidence interval
(CI). (b) The confusion matrix showed the average of predicted class probabilities between EFI and
different controls; the classification boundary was at the center dotted line of x = 0.5. (c) Permutation
tests using the model’s predictive accuracy as a measure of performance. The plots showed the actual
observed AUC of all permutations and p value.
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Figure 4. Validation of classification model in plasma samples. (A) Specificity evaluation of the
EFI classification model relative to four other sedative-hypnotic drugs’ fatal intoxication models
(zaleplon, diazepam, nitrazepam and sodium pentobarbital, nanimal = 10, respectively): (a) ROC plot:
AUC = 0.991 (95% CI: 0.96−1); (b) confusion matrix plot showing samples with few misclassifications;
(c) classification model with 100 permutation-test plots, p < 0.01. (B) Sensitivity evaluation of the EFI
classification model relative to other different dose groups of estazolam (3 × LD50, 100 × and 50 ×
therapeutic dose groups, nanimal = 10, respectively.): (a) Relative plasma concentration of estazolam
(LOG10) in different dose groups. The blue circles, orange squares, gray and pink triangles in the plot
represent the relative blood drug concentrations of estazolam in their groups, respectively. (b) line plot
of AUC-value, cutoff = 0.8; (c) line plot of the Precision (PPV), NPV, Recall and F1-score, cutoff = 0.8.
(C) Classification model stability evaluation over time (0, 1, 5, 10, 15, and 20 days) in EFI (nanimal = 8)
and NDRDs (CD, DR, MA. nanimal = 6, respectively). Line plot of AUR-value: (a) Precision (PPV),
NPV, Recall and F1-score value (b) over time, cut-off = 0.8. Notes: Precision (PPV) = tp/(tp + fp);
NPV = tn/(tn + fn); Recall = tp/(tp + fn); F1-score = 2 × PRE × REC/(PRE + REC); tp: total number
of true positive samples; tn: total number of true negative samples, fp: Total number of false positive
samples, fn: Total number of false negative samples. Because the number of EFI groups differed
significantly from each control group, the above rates were calculated by weighting. Abbreviations:
PPV: positive predictive value, NPV: negative predictive value, precision: PRE, recall: REC.
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Table 2. The diagnostic efficacy of various metabolites in plasma samples.

Compound Name AUC 95%CI p

Phenylacetylglycine 1 1−1 11.3668 × 10−15

Creatine 0.9975 0.989−1 3.4137 × 10−15

Indole-3-lactic acid 0.96 0.894−1 1.5252 × 10−10

Second, to further verify the sensitivity of this classification model, three other dosing
groups (3 × LD50, 100 × and the 50 × therapeutic dose intoxication group) were introduced
for the above ROC testing. The relative plasma concentrations of the four groups of
estazolam are shown in Figure 4B(a), specific data were shown in Table S5, and the changes
in AUC values are in Figure 4B(b). The 100 × and 50 × therapeutic dose intoxication
groups were also well differentiated from the four NDRD groups relative to the extreme
dose model (6 × LD50, 3 × LD50) with AUC-values of 0.876 and 0.842, respectively, which
are both higher than 0.8. While the line plots of Precision (PPV), NPV, Recall and F1-score
of the four groups were consistent with the trend of the AUC results, the above four rates
were greater than or equal to 0.8 for both the 100 × and 50 × groups. The Precision (0.8649),
NPV (0.814) and F1-score (0.8312) for the 50 × group were slightly higher than those for the
100 × group (Figure 4B(c)); related data are shown in Table S6 (AUC-value, Precision (PPV),
NPV, Recall, and F1-score). Thus, the discriminatory ability of the classification model is
also very high in the low-dose group. The classification model shows high sensitivity.

Finally, stability validation determines whether the above classification model can be
used as a prerequisite for forensic diagnosis. In this study, four sets of samples (nEFI = 8,
nCD, DR, MA = 6, respectively) were stored at 4 ◦C for 0, 1, 5, 10, 15 or 20 days. We deleted
HS because it had a very similar metabolic profile to MA (Figure 2B). As shown in the line
graphs of the changes in AUC on days 0, 1, 5, 10, 15, and 20, the discrimination ability of
the classification model showed a slow decline over time, but the AUC value on day 20 was
still high at 0.971—very close to 1 (Figure 4C(a)). This trend was also reflected in the line
graph of the temporal change of the Precision (PPV), NPV, Recall and F1-score of the model
in these 20 days, where only the sixth time point (day 20) had a Precision (PPV) = 0.8873,
Recall = 0.875 and F1-score = 0.8811 slightly lower than 0.9, and the NPV = 0.9412 at this
point, but these numbers were also much higher than 0.8 (Figure 4C(b)). Related data are
shown in Table S7. The model was very stable.

3.3. Metabolomics Profiling of Brainstem Tissue Samples in the EFI and NDRDs Mice

Respiratory depression is one of the important toxicological mechanisms of estazolam
lethality; therefore, additional non-targeted metabolomic analysis was performed on the
target organ brainstem in the same groups as the plasma samples, and 244 metabolites
of were detected, 218 of which were annotated by the Human Metabolome Database
(HMDB), while 26 metabolites remained unclassified. Molecular characteristics are shown
in the Excel spreadsheet of the supplementary materials. The annotated metabolites can be
grouped into seven chemical classes with a similar percentage profile to the plasma results;
the details are illustrated in Figure 5A. Specific data were shown in Table S2.

The overview of global metabolic profiles according to the quantitative results for
the metabolites in the mouse brainstem tissue samples, as revealed with PCA score plots
(Figure 5B), showed obvious dissimilarities between the EFI and the four control groups.
The result is similar to the situation in the plasma sample group. This differentiation could
be described with the first PC1, which accounted for 22.6% of the variance. The second PC
(PC2) accounted for 14.1% of the variance. Figure S2A showed that the correlation between
QC samples was extremely high, and the analytical method had good reproducibility and
system stability.
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PLS-DA analysis was further performed to show better separation trends between
the different groups, and the results were essentially the same as for the plasma samples.
However, the four control groups showed better separation trends (Figure 5C). The results
of cross-validation based on 10-fold CV showed that the model had a high R2 of 0.98959
and a Q2-value of 0.85946 for the five components, which had good predictive power
(Figure S2B). The 100 times permutation test result (p < 0.01) showed that the model had
high predictive power and good stability (Figure S2C).

3.4. Classification Model Screening and Verification in EFI Brainstem Tissue Samples Relative to
NDRDs Mice

Consistent with plasma sample data processing, 46 common differential metabolites
(Figure 6A(a)) and six candidate differential metabolites were screened from the EFI (n = 10)
relative to the four NDRDs (n = 10, respectively) groups. (Table 3). Furthermore, a
classification model consisting of palmitic acid, creatine, and indole-3-lactic acid was
developed in brainstem tissue samples. The screening process was described in Results
2.1 and Table S8 in the Supplementary Materials. The indole-3-lactic acid was significantly
up-regulated in the EFI group, while palmitic acid and creatine were down-regulated
(Figure 6A(b–d)). The AUC-values, 95% CI and p-values of the three differential metabolites
found through classical univariate ROC curve analysis are shown in Table 4. The specific
procedure was to use 80% of the above 50 samples as the training set (nEFI = 8, nNDRDs = 32),
and the results showed that the AUC value was equal to 0.996 (Figure 6B(a)), which shows
the model had a very strong discriminative power. The confusion matrix plot (Figure 6B(b))
also showed that the model had strong predictive power, the permutation-test (p < 0.01)
result was statistically significant (Figure 6B(c)), and the classification model had strong
stability and robustness. The remaining 20% of samples were used as the validation set, and
the result showed that all samples were correctly classified (Table S9). The validation session
of the test set was dispensed based on the experience of plasma sample data processing.

Table 3. Differential metabolites for estazolam fatal intoxication in brainstem tissue samples.

Compound Name
Metabolite Identification

p Combined
Log FC Trend Combined

VIPAccurate
Mass

Retention
Time

mzCloud
Best Match

Palmitic acid 256.23977 9.512 96.3 2.09 × 10−21 −1.653094773 down 1.63824
Prostaglandin D2 352.22435 8.491 93.1 3.22 × 10−21 −1.648333391 down 1.8836

Indole-3-lactic acid 205.07668 6.625 89.6 7.08 × 10−21 1.640230298 up 1.72006
Creatine 131.06942 1.05 96.7 2.39 × 10−15 −1.48559731 down 1.24968

DL-Tryptophan 204.08967 5.174 87.3 2.49 × 10−15 1.483820281 up 1.48568
Indole-3-acrylic acid 187.06325 5.176 93.4 3.98 × 10−15 1.476502537 up 1.48258
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indole-3-lactic acid; indole-3-lactic was up-regulated in the EFI group, and palmitic acid and crea-
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Creatine 0.958 0.896−0.992 3.0926 × 10−7 

Figure 6. Screening of classification model in brainstem tissue samples from the EFI group relative
to the NDRDs group. (A) (a) Upset plots obtained with biomarker meta-analysis of EFI and four
NDRD groups (total of 5 groups, nanimal = 10, respectively), with 46 common differential metabolites.
(b–d) The classification model consisted of three candidate differentials: palmitic acid, creatine, and
indole-3-lactic acid; indole-3-lactic was up-regulated in the EFI group, and palmitic acid and creatine
were down-regulated. (B) Discriminatory ability evaluation of the EFI classification model relative
to the NDRDs groups: (a) ROC plot: AUC = 0.996 (95% CI: 0.956−1); (b) the confusion matrix plot
showed that one case was wrongly diagnosed as EFI. (c) 100 permutation-test plot, p < 0.01.

Table 4. The diagnostic efficacy of various metabolites in brainstem tissue samples.

Compound Name AUC 95%CI p

Palmitic acid 0.98 0.939−1 9.6901 × 10−11

Indole-3-lactic acid 0.973 0.914−1 1.6272 × 10−9

Creatine 0.958 0.896−0.992 3.0926 × 10−7
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The classification model was evaluated using the four sedative-hypnotic drugs
(Figure 7A(a–c)), and four toxicants’ fatal intoxication models described above, which
showed a very high specificity (Figure S2D(a–c)).
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cation models (zaleplon, diazepam, nitrazepam and sodium pentobarbital, nanimal = 10, respectively)
(a) ROC plot: AUC = 0.991 (95% CI: 0.919−1); (b) confusion matrix plot showed that one case was
wrongly diagnosed as control. (c) 100 permutation test plot, p < 0.01. (B) Sensitivity evaluation of the
EFI classification model relative to other different dose groups of estazolam (3 × LD50, 100 × and
50 × therapeutic dose groups, nanimal = 10, respectively); (a) line plot of AUC-value in different dose
groups, cutoff = 0.8. (b) Line plot of the Precision (PPV), NPV, Recall and F1-score, cutoff = 0.8.

Next, three other dose groups (3 × LD50, 100 × and 50 × therapeutic dose intoxication
groups) were introduced to validate the sensitivity of the classification model. The variation
of the AUC is shown in Figure 7B(a). The AUC (=0.858 and 0.872, respectively) was higher
than 0.8 in the two low-dose groups. The line plots of the precision (PPV), NPV, recall and
F1 scores of the classification model were consistent with the trend of this result. The recall
values of the 100 × and 50 × groups were equal to 0.8, and all other values were greater
than 0.8 (Figure 7B(b)). Specific data are shown in Table S10. Thus, the classification model
had a high sensitivity.

3.5. New Toxicological Mechanism of Estazolam

The overview of global metabolic profiles according to the quantitative results for
the EFI- and EIND-group metabolites in the mouse brainstem tissue samples were re-
vealed with PCA scores plots in Figure S3(A). Clustering showed that the two groups
partially overlapped, but there were significant differences. PLS-DA analysis was applied
to distinguish the two groups (Figure S3(B)).
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Nine up-regulated and 23 down-regulated differential metabolites were further
screened among 244 compounds by p < 0.05 and FC > 1.5 or < 0.67, VIP > 1 conditions
(Figure 8A). Among them, there were 24 endogenous metabolites, nine were up-regulated
and 15 down-regulated. Specific data are shown in Table S11. To screen the differential
metabolic pathways between the two groups based on the above differential metabo-
lites, quantitative enrichment analysis was performed, and the results showed that the
main differential pathways were lysine degradation, purine metabolism, phenylalanine
metabolism, pentose phosphate pathway and pyrimidine metabolism. Among them, the
lysine degradation pathway was the most disturbed (Figure 8B). The results related to
quantitative enrichment analysis are shown in Table S12.
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Figure 8. Exploring a new toxicological mechanism of estazolam in brainstem tissue samples between
EFI and EIND groups (nanimal = 10, respectively). (A) Volcano plot of the EFI and EIND group, with
nine up-regulated (red points) and 23 down-regulated (blue) differential metabolites. (B) In the plot
for quantitative enrichment analysis of differential metabolites, the most perturbed pathway is the
lysine degradation pathway.

Further validation of the lysine degradation pathway revealed that in brainstem
samples, the EFI group exhibited a significant increase in saccharopine and lysine con-
centration than the EIND and control groups, with means for the former of 1.253 ng/mg,
0.9533 ng/mg, and 0.6678 ng/mg, respectively (Figure 9A(a)), and the latter of 1.089 ng/mg,
0.7415 ng/mg, and 0.5914 ng/mg, respectively (Figure 9A(b)), with p values < 0.05 for all
group comparisons, and the differences were statistically significant. Specific data were
shown in Table S13.

Validation with qPCR showed that the relative expression of SDH mRNA was signif-
icantly decreased in the EFI group compared to EIND groups, with respective means of
1.206, 2.678, and a statistically significant difference of p < 0.05 between the two group’s
comparisons. In contrast, there was no statistically significant difference in relative ex-
pression of lysine-ketoglutarate reductase (LKR) mRNA, with means of 1.130, and 1.104,
respectively (Figure 9B(a,b)).

Finally, the electron microscopy results showed more severe overall damage to mi-
tochondria in the EFI group. Some mitochondria showed moderate to severe swelling,
broken membranes, more matrix lysis, broken cristae, and a few vacuoles (Figure 9C(c,d)).
In contrast, mitochondria in the EIND group were less damaged; most had fine structure
and uniform matrix, with a small amount of mild swelling, and small numbers of broken
membranes and simple matrixes (Figure 9C(a,b)). Significant differences in mitochondrial
damage existed between the two sample groups.
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Figure 9. Validation of a new mechanism of estazolam toxicology. (A) Quantitative analysis of sac-
charopine (a) and lysine (b) between the EFI and EIND and control group (nanimal = 10, respectively),
which were normalized to the WT (weight, 50mg brainstem tissue) value: *: p < 0.05; **: p < 0.01;
***: p < 0.001; and ****: p < 0.0001. (B) Histogram of relative expression of SDH and LKR mRNA in two
sets of brainstem samples (nanimal = 10, respectively): ****: p < 0.0001; ns: no statistically significant
difference. (a) Histogram of relative expression of SDH mRNA between EFI and EIND groups.
(b) Histogram of relative expression of LKR mRNA between EFI and EIND groups. (C) Brainstem
ultrastructure between EFI and EIND groups (nanimal = 3, respectively); (a) brainstem ultrastructure



Metabolites 2023, 13, 567 17 of 21

of EIND group, bar = 5 µm; (b) EIND group, bar = 1 µm; (c) brainstem ultrastructure of EFI group,
bar = 5 µm. (d) EFI group, bar = 1 µm. (a,b) The double nucleolus (Nu). The mitochondria (M) were
mostly round, some were mildly swollen, individual membranes were broken, the matrix was a little
shallow, the cristae were shortened; the rough endoplasmic reticulum (RER) was slightly dilated;
(c,d) The nucleus (N) was oval, mitochondria (M) were mostly round; some of them were moderately
to severely swollen, with broken membranes, more matrix lysis, broken and disappearing cristae,
and a small amount of vacuolation; the rough endoplasmic reticulum (RER) was locally aggregated
and slightly dilated; Golgi apparatus (Go) was slightly hypertrophied; lipofuscin (Lip) and lysosomes
(Ly) were present.

4. Discussion

In recent years, fatal intoxication by sedative-hypnotic drugs had steadily increased [4,5].
There are, however, no systematic data on the plasma concentrations of fatal intoxication
with such drugs [13]. There is even an overlap of plasma concentration values between
the fatal and intoxication groups [9]. Therefore, it is typically challenging to use the
plasma concentration as an accurate indicator when identifying deaths resulting from
this type of iatrogenic lethal poisoning, particularly in complex instances. In this study,
considering that one branch of metabolomics, thanatometabolomics [16], can perform a
metabolomic autopsy and potentially screen biomarkers [15], this approach was applied
to construct a classification model (in plasma and brainstem samples, respectively) for
estazolam fatal intoxication to provide molecular evidence [17] for its cause-of-death
identification, based on which the toxicological mechanism of estazolam was further
explored. Eventually, a more scientific and exact identification approach was developed to
identify the cause of death in fatal estazolam intoxication and a new understanding of this
drug’s intoxication mechanism.

To observe the overlap of plasma concentrations mentioned in the above literature, this
study analyzed the plasma concentration data of two groups (EFI and EIND) of mice with
the same dose and dosing time, but with different results. Moreover, it was found that the
plasma concentration ranges of estazolam’s fatal intoxication and non-death intoxication
groups not only had a large overlap interval but also differed significantly between groups
(Figure 1). This result was consistent with the previous literature [9] in that the plasma
concentration values were not an objective criterion. Thus, a more accurate identification
method was needed.

Therefore, we set up four negative control groups (NDRDs) to compare with the
EFI mouse models to establish highly predictive classification models, and conducted the
metabolomic analysis. These control groups were set up because they had a common
influencing factor, which was hypoxia, and to increase the specificity of the differential
metabolites. The metabolic profiles of the EFI and the four NDRD groups can be observed
in Figures 2 and 5. The EFI group was completely separated from the four NDRD groups
without overlap. A biomarker meta-analysis approach was used to screen the EFI group for
common differential metabolites with each NDRD group; as there were more than four data
sets, a more visualized upset plot was used to facilitate their reading and interpretation [40].

After obtaining the common differential metabolites, further screening was performed
to obtain the candidate differential metabolites. The application of a biomarker analy-
sis combined with a multivariate ROC curve-based test analysis using the linear SVM
algorithm was applied to develop a classification model for estazolam fatal intoxication.
Simple models consisting of a few biomarkers are preferred over the complex models that
include many biomarkers, because they are more robust, cost-effective, and easier to fit
well [35]. A discriminative classification model for EFI was found in plasma based on three
possible differential metabolites, phenylacetylglycine, creatine, and indole-3-lactic acid. A
discriminatory model was created in brainstem tissue based on palmitic acid, creatine, and
indole-3-lactic acid. However, each selected endogenous compound was not a differential
metabolite unique to estazolam’s fatal intoxication [41–44]. However, the combination of
several of the above-mentioned endogenous compounds were unique to the drug.
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After the model was constructed, its predictive power needed further evaluation in
terms of discriminability and reliability. Based on this signal detection framework, mea-
sures for evaluating reliability (PPV and NPV) may be retrieved from the ROC curve,
an important discriminability tool [36]. Based on this, there are almost no misclassified
samples when the AUC values of the classification models are equal to 1 or very close to 1;
then the PPV and NPV values are equal to or close to 1 [45]. The ROC curve and confusion
matrix plot can visualize the predictive power of the classification model. However, inter-
preting the confusion matrix becomes difficult when the class probability decreases and the
misclassified samples increase. Therefore, based on the rich information of the confusion
matrix plot [46], this study combined the above reliability evaluation and machine learning
evaluation metrics: Precision (PPV), NPV, Recall, and F1-score to evaluate the model com-
prehensively [36,37,47]. As shown in Figures 3 and 5, when comparing the EFI group with
the four sedative-hypnotics and the four toxicants, all the above indicators were high (equal
to 1 or very close to 1), and the two sets of classification models were highly discriminatory
and reliable, with high specificity. Moreover, the models’ sensitivity was very high when
the 3 × LD50 group and the 50 × and 100 × therapeutic dose intoxication groups could be
distinguished from the control group. Then in forensic practice, the classification model
can be applied to intoxication cases with tens or even hundreds of times the therapeutic
dose of this drug [48].

Furthermore, concerning the stability of plasma samples for 0–20 days, this study
showed that the predictive ability of the classification model was very strong at all six-time
points (0, 1, 5, 10, 15, and 20 days) within 20 days. However, the Recall, Precision (PPV),
and F1-score at the last time point were slightly below 0.9. Thus, the classification model
proved robust for detecting this drug-induced fatal overdose within 15 days of postmortem
examination [49].

Here, we return to the plasma concentration values overlapping between the EFI and
EIND groups to investigate their causes. The results of quantitative metabolic pathway
enrichment analysis of the differential metabolites of these two groups showed that the
lysine degradation metabolic pathway was most strongly perturbed. This lysine degrada-
tion pathway is potentially responsible in estazolam’s fatal intoxication. According to the
literature, α-aminohemialdehyde synthase (AASS), a key enzyme in the lysine degradation
pathway, is a bifunctional enzyme with a lysine-ketoglutarate reductase (LKR) structural
domain at the N-terminal end and a saccharopine dehydrogenase (SDH) structural do-
main at the C-terminal end. Numerous reasons, including mutations in AASS, cam cause
a decrease, or even a loss, of the catalytic function of the saccharopine dehydrogenase
(SDH) structural domain at the C-terminal end, which in turn leads to the accumulation of
saccharopine [50], an intermediate product of lysine degradation, which in mitochondria
causes abnormalities in their morphology, structure and function, thus affecting the normal
energy metabolism of tissues and organs [51].

As shown in Figure 9, qPCR validation showed that the relative expression of SDH was
lower in the EFI group than in the EIND and control groups, with statistically significant
differences. Estazolam’s toxic effects superimposed on saccharopine accumulation and
mitochondrial dysfunction caused by the decreased catalytic activity of SDH, a key enzyme
of the lysine degradation pathway, led to central respiratory inhibition. In contrast, mice
in the EIND group without superimposed aberrant lysine degradation showed only drug
toxicity and did not die. This result was supported by the quantification of brainstem lysine
and saccharopine. Additional electron microscopy findings supported more mitochondrial
damage in the EFI group compared to the EIND group [51]. This result further supports the
association of estazolam’s fatal intoxication with abnormal lysine degradation pathways.

In this study, two sets of discriminative classification models with high discriminability
and reliability for estazolam fatal intoxication were constructed by combining MS/MS
full-scan coupled with metabolomic approaches in plasma and brainstem tissue samples, re-
spectively. The sensitivity and specificity of the above classification models were evaluated
and validated in different categories of sedative-hypnotic drugs and different dose-groups
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of estazolam, respectively, and the stability of the classification model was validated in
plasma samples. We also analyzed and validated estazolam’s fatal intoxication and con-
cluded that the lysine degradation pathway is an important synergistic site for its toxic
effects. This provides a new idea for the identification and mechanism study of estazolam’s
fatal intoxication.

There were a few limitations in our study that should not be ignored. First, estazolam’s
fatal intoxication was only validated in the lysine degradation pathway; other metabolic
pathways need further validation. Second, the discriminative classification model devel-
oped in this study was not realistically verified on human specimens due to a shortage
of such specimens. We hope to collaborate with other forensic identification institutes to
gather equivalent specimens.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13040567/s1. Figure S1: Evaluation of PCA and PLS-DA
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tion of PCA and PLS-DA models for brainstem samples and the results of EFI classification model
validation; Figure S3: overview of metabolic profiles of the EFI and EIND groups. Table S1: sum-
mary of group information; Table S2: metabolite classes and proportions in plasma and brainstem
tissue samples; Table S3: AUC values of different candidate differential metabolite combinations in
plasma samples; Table S4: prediction results of new plasma samples (validation set); Table S5: relative
blood drug concentration of estazolam in different dose groups (plasma samples); Table S6: sensi-
tivity validation results of classification models in estazolam different dose groups (plasma sam-
ples); Table S7: stability validation results of classification models in different storage time groups
(plasma samples); Table S8: AUC values of different candidate differential metabolite combinations
in brainstem tissue samples; Table S9: prediction results of new brainstem samples (validation
set); Table S10: sensitivity validation results of classification models in estazolam different dose
groups (brainstem samples); Table S11: endogenous differential metabolites in the EFI group vs the
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