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Abstract: Diet energy is a key component of pet food, but it is usually ignored during pet food
development and pet owners also have limited knowledge of its importance. This study aimed
to explore the effect of diet energy on the body condition, glucolipid metabolism, fecal microbiota
and metabolites of adult beagles and analyze the relation between diet and host and gut microbiota.
Eighteen healthy adult neutered male beagles were selected and randomly divided into three groups.
Diets were formulated with three metabolizable energy (ME) levels: the low-energy (Le) group
consumed a diet of 13.88 MJ/kg ME; the medium-energy (Me) group consumed a diet of 15.04 MJ/kg
ME; and the high-energy (He) group consumed a diet of 17.05 MJ/kg ME. Moreover, the protein
content of all these three diets was 29%. The experiment lasted 10 weeks, with a two-week acclimation
period and an eight-week test phase. Body weight, body condition score (BCS), muscle condition
score (MCS) and body fat index (BFI) decreased in the Le group, and the changes in these factors in
the Le group were significantly higher than in the other groups (p < 0.05). The serum glucose and lipid
levels of the Le and He groups changed over time (p < 0.05), but those of the Me group were stable
(p > 0.05). The fecal pH of the Le and He groups decreased at the end of the trial (p < 0.05) and we found
that the profiles of short-chain fatty acids (SCFAs) and bile acids (BAs) changed greatly, especially
secondary BAs (p < 0.05). As SCFAs and secondary BAs are metabolites of the gut microbiota, the
fecal microbiota was also measured. Fecal 16S rRNA gene sequencing found that the Me group had
higher α-diversity indices (p < 0.05). The Me group had notably higher levels of gut probiotics, such
as Faecalibacterium prausnitzii, Bacteroides plebeius and Blautia producta (p < 0.05). The diet–host–fecal
microbiota interactions were determined by network analysis, and fecal metabolites may help to
determine the best physical condition of dogs, assisting pet food development. Overall, feeding
dogs low- or high-energy diets was harmful for glucostasis and promoted the relative abundance of
pathogenic bacteria in the gut, while a medium-energy diet maintained an ideal body condition. We
concluded that dogs that are fed a low-energy diet for an extended period may become lean and lose
muscle mass, but diets with low energy levels and 29% protein may not supply enough protein for
dogs losing weight.

Keywords: diet energy; pet food; beagle dog; obesity; glucolipid metabolism; fecal microbiota;
metabolomics; SCFAs; bile acids

1. Introduction

Obesity is the most common nutritional disease in domestic dogs and cats [1–3] and
there are a variety of commercial veterinary diets in the pet food market and animal practice
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targeting this issue. The energy levels and nutritional compositions of veterinary diets for
weight loss vary considerably. The metabolizable energy (ME) level ranges from 11.41 to
16.22 MJ/kg for dry diets and from 2.23 to 4.19 MJ/kg for canned diets [4]. The protein
content ranges from 24.5 to 33.82 g/MJ ME, fat from 6.88 to 10.70 g/MJ ME [5] and dry
mater (DM)-based total dietary fiber from 7.7 to 42.6% [6]. Selecting an effective weight
loss diet for a pet is therefore difficult for pet owners and veterinarians [7]. The core of
a therapeutic weight management diet is to restrict energy intake and to avoid potential
nutritional deficiencies that may occur with energy restriction [8,9]. The diversity of the
nutritional composition of weight loss diets may result from the limited knowledge of the
interactions between diet energy and body metabolism [10–12].

Recent research on canine obesity has focused on validating the results of weight
loss diets and the metabolism characteristics of high-fat-induced obesity. In two studies,
obese or overweight dogs with restricted energy intake showed decreased body weight and
body condition scores (BCS) over two months [2,13]. Methods of energy restriction include
changing the macronutrient composition, such as high-protein high-fiber diets [14–17] or
high-protein medium-carbohydrate diets [18], and the use of nutritional additives [19,20]
or high fiber or polysaccharides [21–24]. During high-fat-diet-induced canine obesity
modeling, research showed changes in glucose homeostasis, the gut microbiota and the
metabolome [25–29].

Carbohydrates and fat are two of the main energy substances that are important in
losing weight, and there has been some research in recent years on the effects of energy
substances on glucolipid metabolism and the fecal microbiota [30,31]. The interactions
between diet, host and fecal microbiota are also poorly explored in canine nutrition research.
If the diet energy level changes, then the host and gut microbiota metabolism will also
change and have an interaction. This study therefore aimed to investigate the long-term
effects of the diet energy level on body condition, glucolipid metabolism, fecal microbiota
and metabolites in beagles, reveal its possible health effects and interactions and lay a
foundation for developing canine weight loss diets.

2. Materials and Methods

The experimental procedures for animal trials were approved by the Animal Ethics
Committee of the Chinese Academy of Agricultural Sciences and performed according to
the guidelines for animal experiments set by the National Institute of Animal Health.

2.1. Animals and Experimental Design

The experiment lasted 10 weeks, with a two-week acclimation period and an eight-
week test phase, and was conducted at the Companion Animal Test Base, in Zuojia, Jilin,
China (125◦19′50” N 43◦49′46” E; elevation 313 m). The average temperature was 21.6 ◦C,
ranging from 12 ◦C to 29 ◦C, and the average humidity was 63%, ranging from 44% to 77%
in the test phase.

Eighteen healthy adult neutered male beagles aged 1.33 ± 0.47 years, with mean body
weight of 12.52 ± 2.09 kg and body condition scores (BCS) of 3.89 ± 0.99, were randomly
assigned to three groups, based on the test diet. Individual groups were maintained in
the same semi-closed paddock (5 × 7 m), and every dog was placed in an individual
1.2 × 1 × 1 m cage when feeding. All dogs were vaccinated and dewormed before
the study.

The diets were prepared as dry kibble and were formulated to meet the nutrient
requirements of adult dogs at maintenance [32], with three different energy levels, shown
in Table 1. All dogs were fed the same medium-energy diet with 15.04 MJ/kg ME in the
two-week acclimation period to remove the effects of the previous dog food and then
randomly allotted to one of the three dry diet groups: the low-energy diet (Le) group,
with dietary ME of 13.88 MJ/kg; the medium-energy diet (Me) group, with dietary ME of
15.04 MJ/kg; and the high-energy (He) group, with dietary ME of 17.05 MJ/kg. The three
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diets were designed with different levels of fat and nitrogen-free extracts (NEF), but the
same content of protein.

Table 1. Ingredients and chemical compositions of experimental diets.

Item
Treatment

Le Me He

Ingredient % as-is
Corn 39.2 31.8 21.0

Corn gluten meal 7.0 8.1 9.2
Chicken fat - 6.3 16.0
Broken rice 11 11 11
Beef meal 6.5 6.5 6.5
Bean pulp 6 6 6

Wheat shorts 5 5 5
Beet pulp 5 5 5

Poultry meal 5 5 5
Beef and bone meal 3 3 3
Vitamin and mineral

premix 3 3 3

Liquid palatant 3 3 3
Hydrolyzed

spray-dried chicken
blood cells

2 2 2

Beer yeast powder 2 2 2
CaHPO4 1.3 1.3 1.3

Chicken liver meal 1 1 1

Analyzed
composition

Dry matter (DM), % 93.85 93.89 94.25
% DM

Crude protein 29.99 28.93 29.06
Crude fat 4.69 10.22 19.74

Nitrogen-free extracts 1 53.38 48.91 39.40
Crude fiber 4.18 4.10 4.55

Ash 7.76 7.83 7.26
Calcium 1.04 1.08 1.02

Phosphorus 0.81 0.78 0.80
Lysine 1.29 1.18 1.21

GE, MJ/kg 2 18.28 19.46 21.23
ME, MJ/kg 2 13.88 15.04 17.05

1 Nitrogen-free extracts = 100 − (ash + crude protein + crude fat + crude fiber). 2 Gross energy (GE) was measured
by bomb calorimetry; metabolizable energy (ME) = 8.5 kcal ME/g fat + 3.5 kcal ME/g protein + 3.5 kcal ME/g
nitrogen-free extracts; 1 kcal = 4.184 kJ.

All dogs were individually fed 32 g/BW kg/d twice a day at 9 a.m. and 4 p.m. and had
free access to fresh water. We performed multiple measurements: fasting serum biochem-
istry analysis; fasting weighing; BCS (using a nine-point system, where
1–3 indicates a less than ideal body condition, 4–5 indicates an ideal body condition and
6–9 indicates an overly ideal body condition) [33]; muscle condition score (MCS) (using
a four-point system, where a score of four means normal muscle mass, three indicates
mild muscle loss, two is moderate muscle loss and one is severe muscle loss) [34]; body
fat index (BFI) (using a BFI risk chart, where a score of 20 (16–25% body fat) = low risk,
30 (26–35% body fat) = moderate risk, 40 (36–45% body fat) = high risk, 50 (46–55% body
fat) = serious risk, 60 (56–65% body fat) = severe risk, 70 (66–75% body fat) = extreme
risk) [35]; and fecal pH. On day zero of the trial (T0) and on the last day of the trial (T8),
all these measurements were analyzed, and fresh feces were collected from the rectum.
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Fecal samples were kept at −80 ◦C. During the trial, weighing was carried out once every
two weeks and serum biochemistry analysis once every four weeks.

2.2. Serum Biochemistry Analysis

Blood samples were taken on T0, T4 and T8 after overnight fasting. After centrifuga-
tion, the supernatants were collected as serum samples to measure glucose (GLU), total
cholesterol (CHO), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-
density lipoprotein cholesterol (HDL-C) using an automatic Vitalab Selectra E biochemical
analyzer (Vital Scientific, Spankeren, The Netherlands).

2.3. Fecal pH Analysis

On T0 and T8, fresh fecal pH was immediately measured after 10% fecal suspension
(w/v) in ultrapure water with a PHS-3C pH meter (INESA Scientific Instrument Co., Ltd.,
Shanghai, China).

2.4. Content Analysis of SCFAs

Fecal samples collected at T0 and T8 were homogenated for 1 min with 500 µL of
water and 100 mg of glass beads and then centrifuged at 4 ◦C for 10 min at 12,000 rpm.
Then, 200 µL supernatant was extracted with 100 µL of 15% phosphoric acid and 20 µL
of 375 µg/mL 4-methyl valeric acid solution as the internal standard and 280 µL ether.
The samples were then centrifuged at 4 ◦C for 10 min at 12,000 rpm after vortexing for
1 min, and the supernatant was transferred into the vial before gas chromatography–mass
spectrometer (GC-MS) analysis [36–38]. SCFA content was analyzed at Shanghai Personal
Biotechnology Co., Ltd. (Shanghai, China).

All target standards were purchased from Sigma-Aldrich (St. Louis, MO, USA). The
GC analysis was performed on a trace 1310 gas chromatograph (Thermo Fisher Scientific,
Waltham, MA, USA). The GC was fitted with a HP-Innowax 30 m × 0.25 mm ID × 0.25 µm
capillary column (Agilent, Santa Clara, CA, USA) and helium was used as the carrier gas at
1 mL/min. The injection was performed in split mode at 10:1, with an injection volume
of 1 µL and an injector temperature of 250 ◦C. The temperatures of the ion source and
MS transfer line were 300 ◦C and 250 ◦C, respectively. The column temperature was
programmed to increase from an initial temperature of 90 ◦C, followed by an increase to
120 ◦C at 10 ◦C per min, then to 150 ◦C at 5 ◦C per min and finally to 250 ◦C at 25 ◦C
per min, which was maintained for 2 min. Mass spectrometric detection of metabolites
was performed on an ISQ 7000 (Thermo Fisher Scientific, Waltham, MA, USA) in electron
impact ionization mode. Single ion monitoring (SIM) mode was used with the electron
energy of 70 eV. Six SCFAs were measured, including acetic acid, propionic acid, isobutyric
acid, butyric acid, isovaleric acid and valeric acid.

2.5. Content Analysis of BAs

The protocol for quantifying bile acids was adapted and modified from the methods
previously described by Bhargava et al. [39]. Fifty mg samples were extracted in 400 µL of
methanol at −20 ◦C, with 100 mg of glass beads, vortexed for 60 s. They were then placed
into a tissue grinder at 55 Hz for 1 min and this was repeated at least twice. The sample
was next sonicated for 30 min at room temperature, centrifuged at 12,000 rpm and 4 ◦C
for 10 min, and 300 µL of the supernatant was mixed with 600 µL of water and vortexed
for 30 s. Then, 10 µL supernatant was added to 30% methanol and diluted 10 times. The
supernatant was filtered through a 0.22 µm membrane and the filtrate was added to the
LC-MS bottle. BA content was analyzed at Shanghai Personal Biotechnology Co., Ltd.
(Shanghai, China).

The target standards were purchased from Sigma-Aldrich (Shanghai, China), Macklin
(Shanghai, China), Shyuanye (Shanghai, China), Toronto Research Chemicals (Toronto,
ON, Canada), Zzsrm (Shanghai, China) and the National Institutes for Food and Drug
Control (Beijing, China). The supernatant was analyzed by gas chromatography and mass
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spectrometry according to the methods described by Hu et al. [40] and Yang et al. [41]. A
2.1 × 100 mm, 1.7 µm Acquity UPLC® BEH C18 column (Waters, Milford, MA, USA)
was used, the injection volume was 5 µL, the column temperature was 40 ◦C and the
mobile phase was A-0.01% formic acid water and B-acetonitrile. The gradient elution
conditions were 0–9 min, 30% B, 9–14 min, 30–36% B, at a flow rate of 0.3 mL/min,
14–18 min, 36–38% B; 18–24 min, 38% to 50% B; 24–32 min, 50–75% B; 32 to 33 min,
75–90% B; 33–35.5 min and 90–30% B at a flow rate of 0.25 mL/min. The mass spec-
trophotometer used an electrospray ionization (ESI) source, in negative ionization mode.
The ion source temperature was 500 ◦C, the ion source voltage was −4500 V, the colli-
sion gas was 6 psi, the curtain gas was 30 psi and the atomizing gas and auxiliary gas
were both 50 psi. Scans were performed using multiple reaction monitoring (MRM).
Thirty-nine bile acids were measured, including deoxycholic acid (DCA), ursocholic acid
(UCA), allocholic acid (ACA), glycohyodeoxycholic acid (GHDCA), chenodeoxycholic
acid-3-β-D-glucuronide (CDCA-G), dehydrocholic acid (DHCA), taurodeoxycholic acid
sodium salt (TDCA), taurochenodeoxycholic acid (TCDCA), lithocholic acid (LCA), chen-
odeoxycholic acid (CDCA), ursodeoxycholic acid (UDCA), cholic acid (CA), glycochen-
odeoxycholic acid sodium salt (GCDCA), glycodeoxycholic acid sodium salt, (GDCA),
sodium glycocholate hydrate (GCA), taurocholic acid sodium salt (TCA), taurohyodeoxy-
cholic acid sodium salt (THDCA), allolithocholic acid (isoLCA), isolithocholic acid (al-
loLCA), 23-nordeoxycholic acid (NorDCA), 6-ketolithocholic acid acetate, (6-ketoLCA),
12-ketolithocholic acid (12-ketoLCA), 7-ketolithocholic acid (7-ketoLCA), 3β-ursodeoxycholic
acid (β-UDCA), hyodeoxycholic acid, (HDCA), norcholic acid (NorCA), 7,12-diketolithocholic
acid (7,12-diketoLCA), 6,7-diketolithocholic acid (6,7-diketoLCA), α-muricholic acid (α-
MCA), β-muricholic acid (β-MCA), 3β-cholic acid (β-CA), glycolithocholic acid sodium
salt (GLCA), glycoursodeoxycholic acid (GUDCA), lithocholic acid 3-sulfate sodium salt
(LCA-3S), taurolithocholic acid sodium salt (TLCA), tauro-α-muricholic acid sodium salt
(T-α-MCA), taurohyocholic acid sodium salt (THCA), tauro-β-muricholic acid sodium salt
(T-β-MCA) and tauroursodeoxycholic acid (TUDCA).

2.6. Microbial Analysis
2.6.1. DNA Extraction, Amplification and Sequencing

A 0.2 g fecal sample collected at T0 and T8 was stored in dry ice and sent to Shanghai
Personal Biotechnology Co., Ltd. for 16S rRNA detection of the intestinal microbiome.
Total genomic DNA samples were extracted using the M5635-02 soil DNA kit (Omega
Bio-Tek, Norcross, GA, USA), following the manufacturer’s instructions, and stored at
−20 ◦C before further analysis. The quantity and quality of extracted DNA were measured
using a NanoDrop NC2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
USA) and agarose gel electrophoresis, respectively.

Polymerase chain reaction (PCR) amplification of the bacterial 16S rRNA genes
V3–V4 region was performed using the primers 5′-AYTGGGYDTAAAGNG-3′ (520F) and
5′-TACNVGGGTATCTAATCC-3′ (802R). Paired-end sequencing was used in the Illumina
NovaSeq platform with the NovaSeq 6000 SP Reagent Kit (San Diego, CA, USA) at Shanghai
Personal Biotechnology Co., Ltd. (Shanghai, China).

2.6.2. Bioinformatics Analysis

Microbiome bioinformatics was performed with QIIME2(2019.4) [42] with slight
modifications according to the official tutorials https://docs.qiime2.org/2019.4/tutorials/
(accessed on 1 March 2023). Sequences were then quality-filtered, denoised, merged
and chimera-removed using the DADA2 plugin [43]. Non-singleton amplicon sequence
variants (ASVs) were aligned with MAFFT [44] and used to construct a phylogeny with
FastTree2 [45]. Alpha-diversity and beta-diversity metrics were estimated using the diver-
sity plugin with samples rarefied to 97% sequences per sample. Taxonomy was assigned
to ASVs using the classify-sklearn naïve Bayes taxonomy classifier in the feature-classifier
plugin [46] against the SILVA Release 132 Database [47].

https://docs.qiime2.org/2019.4/tutorials/
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Sequence data analyses were mainly performed using QIIME2 (2019.4) and R packages
(v3.2.0). A heat map showed the top 20 genera in terms of relative abundance, and it was
constructed using the R language and PheatMap package. A Venn diagram was generated
to visualize the shared and unique ASVs among samples or groups using the R package
VennDiagram, based on the occurrence of ASVs across groups regardless of their relative
abundance [48]. Linear discriminant analysis effect size (LEfSe) was performed to detect
differentially abundant taxa across groups using the default parameters [49]. Random forest
analysis was applied to discriminate the samples from different groups using QIIME2 with
default settings, and the target variable was diet [50,51]. Microbial functions were predicted
using the phylogenetic investigation of communities by reconstruction of unobserved
states (PICRUSt2) [52] based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) at
https://www.kegg.jp (accessed on 1 March 2023).

2.7. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 9.5 (GraphPad, San Diego,
CA). Data are presented as the mean ± SEM (standard error of mean). Statistical software
SPSS 19.0 was used for one-way or two-way with time and treatment interaction analysis
of variance (ANOVA) and the Turkey postmortem test was used to compare the differences
between the groups with the three diet energy levels. The fixed variable was diet and the
random variable was dog. p < 0.05 was considered significant.

3. Results
3.1. Changes in Body Weight and Body Condition of Beagles with Different Diet Energy Levels

During the eight-week experiment, the body weight (BW) of dogs was as shown in
Figure 1A and Table 2. As the BW of the Le group decreased rapidly, the average daily
gain (ADG) was −44.05 g/d, and the other two groups were significantly higher than Le
(p < 0.05) and over zero, as seen in Table 3. The BCS, MCS and BFI of the Le group at T8
were significantly lower than those of the Me and He groups (p < 0.05), and changes in body
condition items showed a linear relation with diet energy (p < 0.05), as seen in Figure 1B–D
and Table 3.

Metabolites 2023, 13, x FOR PEER REVIEW 7 of 23 
 

 

1 ADG = average daily gain; BCS = body condition score, MCS = muscle condition score and BFI = 

body fat index. 2 Changes in BCS, MCS and BFI between T8 and T0. a,b Within a row, means with 

different superscript letters were significantly different (p < 0.05). 

 

Figure 1. Effects of diet energy level on body weight in adult beagles (A); body condition score 

(BCS), muscle condition score (MCS) and body fat index (BFI) at the end of the experiment (B–D). 

Data are shown as mean ± SEM. * p < 0.05. 

3.2. Changes in Blood Glucose and Blood Lipid Levels of Beagles with Different Diet  

Energy Levels 

As shown in Table 4, the CHO content of the He group and the TG content of the Le 

group in serum increased significantly (p < 0.05) and the serum CHO of eight beagles in 

the Me and He groups was more than the normal reference range in the eight-week trial, 

compared with only one beagle in the Le group. 

The LDL-C content and the ratio in CHO rose significantly with time (p < 0.05), espe-

cially in the He group. The serum HDL-C content at T8 increased as the diet energy levels 

were increased (p < 0.05), and the ratio of HDL-C in CHO increased over time (p < 0.05). 

The GLU content changed greatly over time in the Le and He groups (p < 0.05). In 

general, the diet energy levels affected the glucose and lipid metabolism of the trial bea-

gles, with higher diet energy levels harming the serum lipid levels and medium diet en-

ergy levels assisting glucostasis. 

  

Figure 1. Effects of diet energy level on body weight in adult beagles (A); body condition score (BCS),
muscle condition score (MCS) and body fat index (BFI) at the end of the experiment (B–D). Data are
shown as mean ± SEM. * p < 0.05.

https://www.kegg.jp


Metabolites 2023, 13, 554 7 of 23

Table 2. Effects of diet energy levels on body weight (kg).

Time Le Me He SEM p-Value

T0 12.50 12.48 12.58 0.49 0.997
T2 11.87 12.53 12.37 0.42 0.815
T4 11.30 12.24 12.36 0.39 0.500
T6 11.20 12.32 12.40 0.39 0.409
T8 11.27 12.68 12.68 0.38 0.233

Table 3. Changes in body weight and body condition of adult beagles.

Item 1 Energy Levels
SEM

p-Value

Le Me He Energy Liner Quadratic

ADG
(g/d) −44.05 a 7.14 b 3.27 b 8.68 0.016 0.015 0.084

∆BCS 2 −0.25 a 1.00 b 1.67 b 1.20 0.014 0.004 0.565
∆MCS 2 −0.58 a 0.25 ab 0.83 b 0.93 0.024 0.007 0.757
∆BFI 2 −0.83 a 6.67 ab 12.50 b 8.43 0.017 0.005 0.816

1 ADG = average daily gain; BCS = body condition score, MCS = muscle condition score and BFI = body fat index.
2 Changes in BCS, MCS and BFI between T8 and T0. a,b Within a row, means with different superscript letters
were significantly different (p < 0.05).

3.2. Changes in Blood Glucose and Blood Lipid Levels of Beagles with Different Diet Energy Levels

As shown in Table 4, the CHO content of the He group and the TG content of the Le
group in serum increased significantly (p < 0.05) and the serum CHO of eight beagles in
the Me and He groups was more than the normal reference range in the eight-week trial,
compared with only one beagle in the Le group.

Table 4. Effects of diet energy levels on serum glucose and lipid levels.

Item GLU 1 CHO 1 TG 1 LDL-C 1 HDL-C 1 LDL-C%
1

HDL-C%
1

Unit mmol/L mmol/L mmol/L mmol/L mmol/L % %
Reference Values [53] 3.61–6.55 3.50–6.99 0.20–1.30 - - - -

T0
Le 4.89 AB 5.44 0.62 A 0.39 4.18 7.13 A 77.03 B

Me 4.96 5.84 0.67 0.43 4.36 7.15 A 75.80
He 5.34 A 5.44 A 0.62 0.38 A 4.28 6.82 A 79.27 B

T4
Le 5.59 B 6.09 0.70 AB 0.54 4.13 8.88 AB 68.34 A

Me 5.64 7.01 0.69 0.66 4.60 9.28 B 66.40
He 6.41 B 6.97 B 0.84 0.62 B 4.82 8.89 B 69.45 A

T8
Le 4.45 A 5.43 0.88 B 0.56 3.74 a 10.50 B 69.28 A

Me 4.69 6.85 0.65 0.73 4.28 ab 10.17 B 65.02
He 4.95 A 6.70 B 0.72 0.62 B 4.82 b 9.21 B 72.58 AB

SEM 0.11 0.18 0.03 0.03 0.08 0.28 1.05

p-value
Time <0.001 0.030 0.142 0.001 0.392 <0.001 <0.001

Energy 0.058 0.085 0.591 0.317 0.005 0.662 0.192
Time × Energy 0.840 0.755 0.217 0.935 0.286 0.915 0.923

1 GLU = glucose; CHO = total cholesterol; TG = triglyceride; LDL-C = low-density lipoprotein cholesterol;
HDL-C = high-density lipoprotein cholesterol; LDL-C% = the ratio of LDL-C in CHO; HDL-C% = the ratio of
HDL-C in CHO. A,B Within a column, means with different superscript capital letters were significantly different
(p < 0.05) for the time factor in the same group. a,b Within a column, means with different superscript small letters
were significantly different (p < 0.05) for the diet energy factor at the same time.

The LDL-C content and the ratio in CHO rose significantly with time (p < 0.05),
especially in the He group. The serum HDL-C content at T8 increased as the diet energy
levels were increased (p < 0.05), and the ratio of HDL-C in CHO increased over time
(p < 0.05).
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The GLU content changed greatly over time in the Le and He groups (p < 0.05). In
general, the diet energy levels affected the glucose and lipid metabolism of the trial beagles,
with higher diet energy levels harming the serum lipid levels and medium diet energy
levels assisting glucostasis.

3.3. Changes in Fecal pH, SCFAs and BA Levels of Beagles with Different Diet Energy Levels

Feces became more acidic when beagles were fed a lower- or higher-energy diet, as
the fecal pH of the Le and He groups significantly decreased by T8 (p < 0.05, Figure 2A).
The content of SCFAs and BAs in beagle feces was analyzed and showed that different
diet energy levels changed the metabolite profiles of fecal SCFAs and BAs, as shown in
Figure 3A,B.
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Figure 2. Effects of diet energy levels on fecal pH of beagles (A); changes in fecal acetic acid,
butyric acid and total short-chain fatty acids (SCFAs) between T0 and T8 (B–D); changes in fecal
7-ketolithocholic acid (7-ketoLCA), deoxycholic acid (DCA), norcholic acid (NorCA), allocholic acid
(ACA), 3β-cholic acid (β-CA) and total bile acids (BAs) between T0 and T8 (E–J). Data are shown as
the mean ± SEM. * p < 0.05.
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Figure 3. Effects of diet energy levels on fecal SCFA (A) and BA (B) proportions in adult beagles.

SCFAs are major end products of bacterial carbohydrate fermentation in the intestinal
tracts of dogs [54]. Fecal total SCFAs increased the most in the Le group, which had the
most carbohydrates, but decreased in the He group, which had the least carbohydrates
(p < 0.05), as shown in Figure 2D. The same trend occurred for linear chain SCFAs, such as
acetic acid and butyric acid (p < 0.05), as shown in Figure 2B,C.

Bile acids have lipid-digestive functions [55]. The changes in fecal total BAs were
significantly higher in the He group compared with the Le group (p < 0.05) between T8 and
T0, and the content of total BAs decreased in the Le group, as seen in Figure 2J. Changes in
five secondary BAs in the He group, including 7-ketoLCA, DCA, NorCA, ACA and β-CA,
were the highest between the three groups (p < 0.05), as shown in Figure 2E–I. However,
changes in primary BAs, such as CDCA, CA, GCDCA, GCA and TCDCA, were not altered
by diet energy levels (p > 0.05).

Using all the quantitative analysis data of six SCFAs and 39 BAs at T8 to construct
volcano plots, it was found that 6-ketoLCA, 12-ketoLCA, DCA and HDCA were down-
regulated in the Le group, while 7-ketoLCA, β-CA, CA, CDCA, UCA and ACA were
upregulated and NorDCA downregulated in the He group when compared with the Me
group (−1 ≥ log2 fold change ≥ 1 and p < 0.05), as seen in Figure 4A,B.
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Figure 4. Volcano plots for Le vs. Me (A) and He vs. Me (B). Blue triangles represent significantly
downregulated metabolites (log2 fold change < −1 and p < 0.05) whereas red triangles represent
significantly upregulated metabolites (log2 fold change > 1 and p < 0.05).
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3.4. Changes in the Structure and Composition of Fecal Microbiota of Beagles with Different Diet
Energy Levels

As the gut microbiota ferment SCFAs and modify primary BAs to secondary BAs,
the structure and composition of the fecal microbiota from the rectum were analyzed. As
shown in Figure 5A, the time factor had no significant effects on the Chao1, Shannon,
Simpson and Goods coverage indexes of fecal microbiota α-diversity when dogs were fed
the same energy diet (p > 0.05). However, dogs in the Le and He groups showed lower
levels of fecal microbiota α-diversity compared with the T0 group (p < 0.05). As seen from
the results of the PCoA analysis of β-diversity in Figure 5B, the distribution ranges of the
fecal microbiota in the Le and He groups were similar, but they were different from the
T0 group. The PCoA of Bray–Curtis distances showed that the diet energy level could
influence the gut microbiota composition and structure in dogs.
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Figure 5. α-Diversity indices (Chao1, Shannon, Simpson and Goods coverage) of fecal microbial
communities of the T0, Le, Me and He groups (A). The taxonomic composition of fecal microbiota at
the phylum (B) and genus (C) levels of the T0, Le, Me and He groups. Principal coordinate analysis
(PCoA) of β-diversity of the T0, Le, Me and He groups (D). Species with major differences at the
phylum (E–I) and genus (J) levels. Data are shown as mean ± SEM. * p < 0.05.
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As shown in Figure 5C,D, the profiles of the phylum and genus levels in the four
groups were different. At the phylum level, as shown in Figure 5C,E–I, the changes in the
relative abundances of Firmicutes between T8 and T0 in the Le group were significantly
higher than in the Me group (p < 0.05). The changes in Bacteroidetes were higher and the
ratio of Firmicutes/Bacteroidetes (F/B) was lower in the Me group than that in the other
groups (p > 0.05), but it did not show a significant difference because of the great intra-group
difference. Fusobacteria and Cyanobacteria of the He group were also different from those
of the other groups (p < 0.05). At the genus level, as seen in Figure 4D, Faecalibacterium
had the most obvious change in abundance. The relative abundance of Faecalibacterium
increased in the Me group while decreasing in the Le and He groups (p < 0.05).

3.5. Effects of Diet Energy Level on Fecal Microbiota and Metabolic Pathways

To further study the effects of diet energy factors on fecal microbiota without the time
factor, the species differences and marker species between the three groups at T8 were
analyzed. As shown in Figure 6A, 1801 amplicon sequence variants (ASVs) were obtained
in the Le group, 3091 ASVs were obtained in the Me group and 1743 ASVs were obtained in
the He group. Compared with the Me group, the numbers of ASVs in the Le and He groups
decreased by 41.73% and 43.61%, respectively. The number of ASVs shared among the
three groups was 512, the proportion of unique ASVs in the Le and He groups decreased
and the numbers of unique ASVs in the two groups changed from 68.62% in the Me group
to 49.98% and 51.29%, respectively.

To select the differential bacteria, differential abundant taxa were confirmed by LEfSe
analysis, where LDA exceeded 2.0. At the phylum level, Firmicutes was enriched in the Le
group and Bacteroidetes and Fusobacteria were enriched in the Me group. At the family level,
Enterococcaceae was enriched in the He group, ACK M1 was enriched in the Le group and
S24 7, Fusobacteriaceae, Bacteroidaceae and Ruminococcaceae were enriched in the Me group.

At the genus level, Megamonas, Dolichospermum, Peptostreptococcus and Eubacterium
were enriched in the He group and Bacteroides, Rothia and Faecalibacterium were enriched
in the Me group, as shown in Figure 6B,C. Heat maps at the species level further re-
vealed the influences of the diet energy level on the fecal microbiota structure, as in
Figure 6D. Compared with the Me group, the relative abundances of Lactobacillus helveticus,
Bifidobacterium pseudolongum, Lactobacillus vaginalis and Clostridium spiroforme in both the Le
and ME groups, and Clostridium hiranonis, Lactobacillus coleohominis, Clostridium perfringens,
Eubacterium biforme, Collinsella stercoris and Ruminococcus gnavus in the He group, were
all significantly increased. The relative abundances of Blautia producta, Bacteroides plebeius,
Faecalibacterium prausnitzii, Lactobacillus pontis, Prevotella copri, Cetobacterium somerae and
Lactobacillus salivarius in both the Le and ME groups, and Ruminococcus torques,
Bifidobacterium animalis and Clostridium celatum in the He group, were low.

To select the differential bacteria, differential abundant taxa were confirmed by LEfSe
analysis, where LDA exceeded 2.0. At the phylum level, Firmicutes was enriched in the Le
group and Bacteroidetes and Fusobacteria were enriched in the Me group. At the family level,
Enterococcaceae was enriched in the He group, ACK M1 was enriched in the Le group and
S24 7, Fusobacteriaceae, Bacteroidaceae and Ruminococcaceae were enriched in the Me group.
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model of species level (E). Metabolic pathways analysis (KEGG database) of the Le, Me and He
groups (F). The upregulated metabolic pathways of the Le group compared with the Me group (G).
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At the genus level, Megamonas, Dolichospermum, Peptostreptococcus and Eubacterium
were enriched in the He group and Bacteroides, Rothia and Faecalibacterium were enriched
in the Me group, as shown in Figure 6B,C. Heat maps at the species level further re-
vealed the influences of the diet energy level on the fecal microbiota structure, as in
Figure 6D. Compared with the Me group, the relative abundances of Lactobacillus helveticus,
Bifidobacterium pseudolongum, Lactobacillus vaginalis and Clostridium spiroforme in both the Le
and ME groups, and Clostridium hiranonis, Lactobacillus coleohominis, Clostridium perfringens,
Eubacterium biforme, Collinsella stercoris and Ruminococcus gnavus in the He group, were
all significantly increased. The relative abundances of Blautia producta, Bacteroides plebeius,
Faecalibacterium prausnitzii, Lactobacillus pontis, Prevotella copri, Cetobacterium somerae and
Lactobacillus salivarius in both the Le and ME groups, and Ruminococcus torques,
Bifidobacterium animalis and Clostridium celatum in the He group, were low.

Random forest analysis can identify the complex nonlinear dependence between
variables to enable the more effective and accurate classification of intestinal flora samples
from each group [56]. As shown in Figure 6E, the relative abundances of Eubacterium biforme,
Collinsella stercoris, Clostridium hiranonis, Lactobacillus helveticus, Clostridium perfringens,
Clostridium ruminantium and Ruminococcus gnavus significantly increased and became
the dominant strains in the He group. The relative abundances of Ruminococcus torques,
Clostridium disporicum, Clostridium celatum, Lactobacillus vaginalis and Clostridium spiroforme
significantly increased and became the dominant strains of the Le group. Most of the
strains above are harmful bacteria, and the relative abundances of a variety of probiotics,
such as Faecalibacterium prausnitzii, Bacteroides plebeius, Blautia producta, Prevotella copri,
Cetobacterium somerae and Lactobacillus pontis, increased in the Me group. The above results
show that adequate diet energy levels promoted the growth of probiotics and prevented
the growth of harmful bacteria.

After examining the structural characteristics, the Picrust2 software was used to
observe the influence of the fecal microbiota on metabolic pathways. As shown in Figure 6F,
metabolic pathways in each group were concentrated in the aspects of metabolism and
genetic information processing, among which the metabolism-related pathways accounted
for the highest proportion of the total. The identification of bacterial functions between
the Le and Me groups revealed that two distinctive pathways, including the metabolism
of xenobiotics by cytochrome P450 (ko00980) and fluorobenzoate degradation (ko00364),
were significantly represented, as shown in Figure 6G. There were no differential metabolic
pathways between the He and Me groups.

3.6. Network Relation between Diet, Host Microbiota and Fecal Microbiota

To comprehensively evaluate our data and support a system-level understanding of
the relation between diet, host and fecal microbiota, an integrative analysis of data from
four dimensions was employed. We used four items in diet nutrition content, eight body
condition indexes and nine serum biochemistry and fecal pH indexes in host phenotypic
data, 10 phylum-level taxa and 20 genus-level taxa in fecal microbiota and eight fecal
SCFAs, five primary BAs and 34 secondary BAs in fecal metabolites.

The Le, Me and He groups at T8 with 18 beagles were chosen for an association
analysis. The Pearson correlation between all the data was evaluated. Data with strong
correlation (−0.6 > r > 0.6 and p < 0.05) were used to construct an integrated visualization
network containing eight circles. As shown in Figure 7, nine taxa were in the circle of
the phylum level of the fecal microbiota, nineteen taxa were in the circle of the genus
level of the fecal microbiota and twenty-five secondary BAs were in the fecal BAs circle.
The diet nutrition content items, host phenotypic items, primary BAs and fecal SCFAs
were all selected in the network and the results showed that secondary BAs, such as
TDCA, isoLCA, LCA and GDCA et al., were strongly correlated with fecal microbiota,
especially Firmicutes, Fusobacteria, Bacteroidetes and Actinobacteria at the phylum level,
and Cetobacterium, Bacteroides, Sutterella, Phascolarctobacterium, Turcibacter, Faecalibacterium,
Bifidobacterium and Dorea at the genus level. The taxa of these fecal microbiota all showed a
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positive correlation with secondary BAs, except Firmicutes and Lactobacillus, which were
negatively correlated with BAs. It should be noted that primary BAs were mainly associated
with five secondary BAs, including NorCA, bata-MCA, ACA, β-CA and 7-ketoLDA,d and
were only correlated with Bifidobacterium at the genus level.
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Figure 7. Network relation between diet, host and fecal microbiota. The network illustrates the
interaction among diet, host and fecal microbiota. The hexagon nodes indicate the diet factor, the
ellipse nodes indicate the host phenotype, the triangle nodes indicate the fecal microbiota, and the
diamond nodes indicate fecal metabolites. The red edges indicate a positive correlation, and the blue
edges indicate a negative correlation. The edges are the correlations with a Pearson’s correlation
coefficient < −0.6 (or >0.6) and p < 0.05.

Different SCFAs showed different functions in the network. Butyric acid was neg-
atively correlated with body condition indexes and positively correlated with the NFE
content in the diet. Caproic acid was the only SCFA associated with BAs, such as GDCA
and isoLCA. Most SCFAs are associated with Fusobabacteria, Firmicutes, SMB53, Allobaculum
and LDL%. On the host phenotypic dimension, fecal pH showed a positive correlation
with Fusobacteria, Faecalibacterium and Cetobacterium. LDL% was positively correlated with
SMB53, butyric acid, acetic acid and total SCFAs. The GLU was the only serum biochem-
istry index associated with BAs. Diet dimension is mainly associated with body condition
indexes and HDL-C, and it had no edge with the fecal microbiota dimension. Butyric acid,
caproic acid and DCA were the only three fecal metabolites correlated with diet nutrition.

4. Discussion

Animals need energy for all their life activities, and energy comes from fat, protein and
carbohydrates in the diet [57]. Changes in the composition of these components may alter
the diet energy level and also affect the metabolism of the host, and fecal microbiota and
related studies have been reported in humans [58,59], mice [60], pigs [61] and cattle [62]. In
the current pet food market, brands and consumers tend to pay attention to the content
and source of protein in pet food and usually ignore the energy content. Excessive or
insufficient energy intake may have adverse effects on animals [63]. Research on the
nutritional regulation of obesity in dogs and cats is increasing [64,65], but the question
of how to ensure healthy weight loss in animals while controlling energy is currently an
important topic in dog and cat nutrition research [1].
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This study investigated the effects of diet energy factors on body condition, glycolipid
metabolism, fecal microbiota and metabolites in adult beagles. It found that changing
the energy level of the diet, while keeping the protein level constant, significantly af-
fected the body condition of adult beagles. At the end of the eight-week trial, weight
loss was observed in the Le group, whose dietary ME was 13.88 MJ/kg, while the Me
(ME = 15.04 MJ/kg) and He (ME = 17.05 MJ/kg) groups did not show significant changes.

During feeding, it was found that dogs in the Le group could consume almost all
of the 32 g/BW kg/d food, while dogs in the Me and He groups had varying degrees of
leftovers, which may have been related to the fact that dogs can adjust their food intake
according to their energy intake. A similar finding was obtained by Xue et al. [14], where
adult beagle dogs lost 15 to 25% of their body weight after eight weeks of consuming a diet
with ME of 13.54 or 12.93 MJ/kg diet, while no significant changes were observed after
24 weeks of consuming a dietary ME of 15.07 MJ/kg diet.

It is the nature of dogs to eat for energy. When the energy intake of a canine is satisfied,
its appetite and consequently food intake decreases, which is regulated by the body’s
hormones and the nervous system [66]. In a study by Hall et al. [67], it was found that dogs
preferred balanced food with 25.2% protein, 15.8% fat and 44.9% carbohydrates over high-
fat food with 24.6% protein, 28.4% fat and 44.9% carbohydrates, when the two diets had
similar protein levels. The study also found that healthy adult dogs chose to consume most
of their energy from fat (41%) and carbohydrates (36%) and there was a negative relation
between fat and carbohydrate intake (r = −0.87). In view of the effects of the macronutrient
composition of the diet on palatability and the appetite regulation mechanism of canines,
it can be explained why there were no significant changes in body weight in the Me and
He groups over eight weeks under adequate food conditions, and the body weights of the
two groups were similar.

Compared with the other two groups, the BCS, MCS and BFI of the Le group showed
significant decreases. The results of the Le group were mainly due to the imbalance of fat
and carbohydrates and the lack of fat. The fat content of the Le diet was only 4.69%; it was
lower than the NRC recommendation for adult dogs. The BCS is a common clinical scoring
system to assess the body condition of dogs and cats, which can be used to determine
the degree of obesity scoring. In this trial, the BCS of adult beagles increased with an
adequate energy supply, while the Le group showed a decrease in BCS and entered a
leaner body condition after being fed a low-energy diet for eight weeks. Many studies have
shown that lowering the diet energy level by adjusting the macronutrient composition may
reduce body weight and body condition [11,13,15,19,68]. These results were associated
with inadequate energy intake, resulting in an inability to ensure the maintenance of energy
requirements. The use of MCS for the clinical assessment of the nutritional status of dogs
and cats is also an important indicator, where overweight animals may have significant
muscle loss and animals with lower BCS may also have good muscle condition [69,70].
The BFI is used in the clinical assessment of the body fat percentage (BF%) by palpation
to assess the risk of obesity [69]. In this trial, both the Me and He groups maintained
good muscle mass and BF%, but dogs in the Le group showed a significant decrease in
muscle mass and BF% after the eight-week trial. In combination with the BCS results, this
suggests that if the energy supply is inadequate, the dogs will consume fat and protein
to ensure maintenance energy requirements used for the most basic vital and voluntary
activities. In one weight loss program study using a diet with ME = 12.39 MJ/kg, the protein
content needed to be increased to 29% to ensure that no significant decrease in lean body
mass or significant downregulation of fat mass and BF% occurred during the six-month
weight loss period [13], but these results showed that dietary protein of 29% may be not
enough for canine weight loss. Phungviwatnikul et al. [15] found a significant decrease in
total body mass and lean mass in dogs fed a 42% protein, high-fiber diet with an ME of
11.76 MJ/kg for six weeks, suggesting that the content of dietary protein should be noted
in the development of dog prescription diets for weight loss to avoid lean weight loss by
reducing the diet energy level.
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From the results of the network diagram, food factors were also associated with
glycolipid metabolism, in addition to being more associated with body condition indexes.
In this trial, the serum GLU of the Le and He groups was the highest at T4 and changed
greatly over time, while the Me group was relatively stable. Changes in environmental
temperature can cause changes in glucose metabolism in the body, as shown by changes
in blood glucose [71], and diets with appropriate energy levels reduce this effect [72,73].
For serum biochemical indexes related to lipid metabolism, both the Le and He groups
showed changes related to temporal factors, while the Me group was stable. The content
of LDL-C in serum shows a significant positive correlation with the incidence of coronary
heart disease, and it is an important index to evaluate the risk factors of individual coronary
heart disease [74]. In canine obesity modeling and weight loss trials, high-fat diets were
found to lead to a significant increase in serum CHO levels, while low-energy diets led to a
decrease in CHO [13–15,75].

By analyzing the pH of the fresh feces of dogs, it was shown that the long-term
consumption of either low- or high-energy diets caused fecal acidification, which was
related to the metabolites in the feces and the composition of the gut microbiota, in several
studies on canine nutrition [50–52,76–78]. Based on the above, the total SCFAs in the feces
were measured in this study and were increased significantly in the Le group, especially for
acetic acid and butyric acid. SCFAs are the end-products of carbohydrate metabolism by
the gut flora, and the Le group had the highest carbohydrate content in the diet, explaining
the above results. However, a significant decrease in SCFAs was also found in the He group
compared to the beginning of the trial, which may be related to the lower carbohydrate and
higher fat content in the diet. It has been shown that SCFAs can improve the inflammatory
response of the body, induced by a high-fat diet [79,80], where butyric acid alleviates both
oxidative stress and inflammation [81]. In contrast, SCFA deficiency leads to increased
intestinal permeability, which triggers an inflammatory cascade response and induces the
development of inflammatory diseases [82]. In addition, a sustained increase in glucagon-
like peptide-1 (GLP-1) and PYY induced by propionate affects appetite regulation circuits
in the brain and inhibits food intake [83,84]. In a study of pigs, both fecal acetic acid and
butyric acid content were correlated with finishing weight [85].

Bile acids are involved in diet lipid absorption and utilization [86], and bile acids were
analyzed that were closely related to lipid digestion and absorption in the intestine. The
results showed that the profiles of BAs differed significantly between groups, and that the
highest rise in total BAs was observed in the He group. Moreover, 7-ketolithocholic acid
(7-ketoLCA), deoxycholic acid (DCA), norcholic acid (NorCA), allocholic acid (ACA) and
3β-cholic acid (β-CA) also showed similar trends with total BAs. Bile acids can be divided
into two major groups according to the secretion pathway: one is primary bile acids directly
secreted by the host, while the other is secondary bile acids after the modification of primary
bile acids by intestinal flora. The bile acids, such as DCA mentioned above, are precisely
secondary bile acids, which suggests that the digestion and utilization process of high-fat
diets altered the metabolic activity of intestinal microbiota, reflected by similar results in
humans [87,88]. A study in mice demonstrated that high-fat diets induced an increase in
fecal DCA content and low-fat diets decreased the total BA content [89]. They also found
that DCA disrupts intestinal mucosal barrier function by interfering with aryl hydrocarbon
receptor (AHR) signaling in intestinal stem cells. The marker metabolites of bile acids in
the feces of adult beagle dogs fed different energy level diets were significantly different.
Decreased microbial secondary BA metabolites of DCA and HDCA were revealed in the
feces of the low-energy group, and research showed that they were found responsible for
stimulating 5-hydroxy tryptamine (5-HT) levels [90], involved in the regulation of appetite,
weight and behavior [91]. Pan et al. [92] found that HDCA-treated mice exhibited reduced
fat content and the metabolite HDCA was found to be significantly increased in the feces of
uncoupling protein 1 (UCP1) knock-in pigs and had a negative relationship with backfat
thickness. It is hypothesized that the decrease in fecal HDCA may be associated with
energy deficiency in dog diets.
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Changes in diet energy levels caused changes in intestinal metabolites, and there was
an opposite trend in the changes in SCFAs and BAs between the Le and He groups. The
reason may be the differences in energy levels in this experiment, which stemmed from
the different carbohydrate and fat ratios, and the different intakes of carbohydrates and fat
changed the structure and function of the intestinal flora—the network analysis confirmed
this idea. The fecal microbiota compositions of the three groups were analyzed and it was
found that changes in diet energy levels changed the flora structure. The change in diet
energy level caused a decrease in microbiota diversity. In terms of flora composition, both
temporal and energy level factors influenced the profiles of the genus and phylum levels
and the number of ASVs. Similar findings have been obtained in canine studies on the
relationship between food and the gut microbiota [93–95] and related studies have also
demonstrated that Fusobacterium and Clostridium appear to be very strongly associated with
the administration of raw-meat-based diets to cats and dogs [96].

The fecal microbiota results showed that either elevated or decreased diet energy
levels inhibited the growth of probiotics and increased the growth of harmful bacteria. The
relative abundances of Faecalibacterium prausnitzii, which is considered as one of the most
important bacterial indicators of a healthy gut [97], significantly decreased in the Le and He
groups. Ruminococcus torques, linked with gastrointestinal disease [98], was increased in the
Le group. Clostridium was mainly associated with the Le and He groups and most of the
associated strains were pathogenic or harmful [99,100]. Bacteroides plebeius improves muscle
wasting in the chronic kidney [101], Blautia producta alleviates lipopolysaccharide-induced
acute liver injury [102] and ameliorates high-fat-diet-induced hyperlipidemia [103], and
Cetobacterium somerae and its metabolites are beneficial for liver health [104,105]. These
probiotics were all enriched in the Me group. In terms of microbial function, a reduction
in diet energy levels promoted the metabolism of xenobiotics by cytochrome P450 and
fluorobenzoate degradation function. It has been found that the metabolism of xenobiotics
via the cytochrome P450 pathway can be activated by increased energy restriction [106].
Fluorobenzoate degradation may be the key metabolic pathway involved in myasthenia
gravis [107] and may be related to Crohn’s disease [108]. These facts suggest a poten-
tial risk associated with the prolonged feeding of low-fat, high-carbohydrate diets to
adult beagles.

Diet–host–fecal microbiota interactions exist, and this relationship was also evident
in the network analysis in this paper. Diets modify the body condition of dogs through
their effect on body metabolism and act as a link between the host and the gut microbiota
through secondary bile acids [109,110]. This suggests that further research is needed on
the mechanism by which diet energy levels affect canine metabolism, and it suggests
that attention should be paid to the role of fecal metabolites as biomarkers in pet food
development to better monitor food–pet interactions.

5. Conclusions

We found that different diet energy levels altered the body condition, the glucolipid
metabolism and the structure of fecal SCFAs, BAs and microbiota in adult beagles because
of the interaction between diet, host and gut microbiota. Feeding dogs with a medium-
energy-level diet with an ME of 15.04 MJ/kg was suitable for maintaining an ideal body
condition and stable glucolipid metabolism and promoting the relative abundance of
probiotics in the gut. Feeding low- (ME = 13.88 MJ/kg) or high-energy (ME = 17.05 MJ/kg)
diets was harmful for glucostasis, decreased the diversity of the intestinal microbiota and
promoted the relative abundance of pathogenic bacteria in the gut. Dogs fed a low-energy
diet for an extended time may become lean and lose muscle mass, but a diet with low
energy and 29% protein may not supply enough protein for dogs losing weight.
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