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Abstract: Zucker fatty (fa/fa) rats represent a well-established and widely used model of genetic
obesity. Because previous metabolomic studies have only been published for young fa/fa rats up to
20 weeks of age, which can be considered early maturity in male fa/fa rats, the aim of our work was to
extend the metabolomic characterization to significantly older animals. Therefore, the urinary profiles
of obese fa/fa rats and their lean controls were monitored using untargeted NMR metabolomics
between 12 and 40 weeks of age. At the end of the experiment, the rats were also characterized by
NMR and LC-MS serum analysis, which was supplemented by a targeted LC-MS analysis of serum
bile acids and neurotransmitters. The urine analysis showed that most of the characteristic differences
detected in young obese fa/fa rats persisted throughout the experiment, primarily through a decrease
in microbial co-metabolite levels, the upregulation of the citrate cycle, and changes in nicotinamide
metabolism compared with the age-related controls. The serum of 40-week-old obese rats showed
a reduction in several bile acid conjugates and an increase in serotonin. Our study demonstrated
that the fa/fa model of genetic obesity is stable up to 40 weeks of age and is therefore suitable for
long-term experiments.
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1. Introduction

Obesity represents a global epidemic problem with a complex etiology, including
genetic and environmental factors [1]. The precise molecular mechanisms of obesity and its
associated health problems are still under investigation. Good animal models are essential
to better understanding the pathomechanisms of human disease [2].

Zucker fatty (fa/fa) rats are a well-established and widely used model of genetic
obesity [3]. The mutation of a single recessive gene (fa) in the leptin receptor renders this
gene nonfunctional and results in leptin sensitivity. Fa/fa rats develop obesity, hyperphagia,
hyperinsulinemia, hyperlipidemia, and insulin resistance, although their glucose levels
are normal. Since the seventies, this model of genetic-based early onset obesity has been
frequently studied, along with the need to describe the background of obesity and its
comorbidities at the molecular level.

Metabolomics is an extremely useful tool to monitor and explain metabolic disorders
at the level of biochemical networks because the metabolome, in addition to the genetic
predisposition, also reflects the actual physiological status of an organism as well as the
influence of various external factors [4,5]. Currently, two leading analytical platforms are
preferred in metabolomics: nuclear magnetic resonance (NMR) spectroscopy and mass
spectrometry (MS), in which MS is usually combined with the separation step. Both

Metabolites 2023, 13, 552. https://doi.org/10.3390/metabo13040552 https://www.mdpi.com/journal/metabolites

https://doi.org/10.3390/metabo13040552
https://doi.org/10.3390/metabo13040552
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0002-2523-7413
https://doi.org/10.3390/metabo13040552
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo13040552?type=check_update&version=2


Metabolites 2023, 13, 552 2 of 20

techniques provide complementary results and thus together enable a more comprehensive
view of the metabolic profile of samples under study.

Several publications using a Zucker fatty rat metabolomic characterization have been
published in the last two decades, and they have involved different biological matrices and
analytical platforms. Urinary profiles were studied by NMR [6,7], NMR and HPLC-MS [8,9],
or UPLC-MS [10]. Plasma samples were characterized using NMR [11], GC-MS [12],
UPLC-MS [13], or a combination of NMR, UPLC-MS, and GC-MS [14]. Waldram et al.
characterized the microbiome in parallel with urine and plasma samples [15]. The metabolic
composition of urine, blood, and fecal water was analyzed by Phetcharaburanin et al. [16].
Lees et al. performed a complex NMR-based multiple matrix analysis of urine, plasma,
liver, kidney, and pancreas samples [17]. Recently, Melnyk et al. compared serum profiles
of obese and lean Zucker fatty rats using a combination of HPLC-UV, HPLC-ECD, and
LC-MS analytical platforms [18]. A common feature of all the above-mentioned papers
was the young age of the experimental animals, which were followed up to a maximum
of 20 weeks of age. To the best of our knowledge, no metabolomic study of fa/fa rats over
a wider age range has been published to date. The main aim of our study was to cover
the gap in the metabolomics data of older fa/fa rats in long-term studies. It is necessary to
verify whether the specific features in fa/fa urinary and plasma metabolic profiles revealed
in young rats persist during aging.

A few years ago, a study focused on 12–32 weeks old Zucker fatty rats showed
that aging and obesity significantly contributed to increased peripheral insulin resistance,
which further worsened the activation of the hippocampal insulin signaling cascade [19].
Therefore, the authors hypothesized that aged fa/fa rats might be a suitable model to study
the relationship between metabolic and neurodegenerative disorders. A recently published
study [20] aimed to investigate the potential neuroprotective effects of a newly developed
palmitoylated analog of prolactin-releasing peptide (palm11-PrRP) [20,21] in a model of
aged fa/fa rats.

For our study, a recently published model [20] was utilized and both urine and serum
samples from examined animals were collected for complete metabolomic characterization.
Our approach was based on the untargeted NMR-based long-term monitoring of urine
and was supplemented by NMR and LC-MS serum analysis of rats at 40 weeks of age. In
addition, this study was the first targeted analysis of serum bile acids and neurotransmitters
in Zucker fatty rats. To the best of our knowledge, the present study provides the first
characterization of Zucker fatty rats aged 12 to 40 weeks using NMR- and MS-based
metabolomics of urine and serum.

2. Experimental Design
2.1. Experimental Animals

All the animal experiments were performed by following the ethical guidelines for
work with animals by the Act of the Czech Republic No. 246/1992 and were approved by
the Committee for Experiments with Laboratory Animals of the CAS. The experiments were
conducted on homozygous Zucker fa/fa male rats (fa/fa) and their lean counterparts fa/+−

(control) rats. Six-week-old male rats of both genotypes were purchased from Charles River
(Lecco, Italy). The rats were provided with a standard Ssniff diet (Spezialdiäten GmbH,
Soest, Germany) (58% carbohydrates, 9% fat, and 33% protein) and water ad libitum. The
animals were on a 12:12-h light:dark cycle (lights on from 5:00) and maintained at a constant
temperature of 22 ± 2 ◦C.

Fa/fa rats and their lean controls were aged to 32 weeks of age. From this time point
on, Mráziková et al. studied the impact of palm11-PrRP infused for 2 months on a newly
established group of fa/fa rats using Alzet osmotic pumps. The existing fa/fa and lean
control groups, whose urinary metabolic profiles were continuously monitored from 12
weeks of age on, were infused with saline.
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2.2. Study Design and Sample Collection

The metabolomic characterization of the aged fa/fa rats was based on an NMR analysis
of urinary data collected from fa/fa and control rats at 12, 21, 32, and 40 weeks of age. The
model description was completed using untargeted NMR and LC-MS analyses of serum
samples from saline-treated fa/fa and control groups acquired at the end of the treatment
period (Figure 1).
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Figure 1. Experimental design.

Rats at 12, 21, 32, and 40 weeks of age were placed in individual metabolic cages
(Tecniplast, Buguggiate, Italy) with free access to water but not food. Urine samples were
collected overnight (from 5 pm to 8 am) with added NaN3 and then stored at −80 ◦C.

At the end of the experiment, overnight fasted rats were anesthetized by pentobarbital
(60 mg/kg), and their blood was obtained from the abdominal aorta. Plasma and serum
samples were stored at −80 ◦C until processing.

2.3. Biochemical Parameters

The concentration of fasting plasma insulin was measured by RIA assay, and the leptin
concentrations were measured by ELISA (Millipore, St. Charles, MI, USA). Colorimetric
assays were used to determine the plasma levels of cholesterol (CHOL) and triglycerides
(TG) (Erba Lachema, Brno, Czech Republic). All the measurements were performed
according to the manufacturer’s instructions.

2.4. NMR Sample Preparation and Experiments

Prior to NMR analysis, urine samples were thawed at room temperature and cen-
trifuged at 18.620× g for 5 min. A 200 µL volume of supernatant was mixed with 340 µL
H2O and 60 µL phosphate buffer (1.5 M KH2PO4 in D2O containing 2 mM NaN3 and 0.1%
trimethylsilyl propionic acid (TSP), pH 7.4) to reach a H2O:D2O ratio of 9:1 and was then
transferred to a 5-mm NMR tube.

A 220 µL aliquot of serum sample was mixed with 440 µL cold methanol. The mixture
was kept in a freezer at −20 ◦C for 30 min and then centrifuged at 18.620× g for 10 min at
4 ◦C. The supernatant was transferred into a fresh vial and vacuum-dried. The evaporated
supernatant was dissolved in 450 µL D2O with 50 µL 1.5 M phosphate buffer and then
transferred into a 5 mm NMR tube.

The NMR data were acquired on a 600 MHz Bruker Avance III spectrometer (Bruker
BioSpin, Rheinstetten, Germany) equipped with a 5 mm TCI cryogenic probe head. All
the experiments were performed using Topspin 3.5 software at 300 K with automatic
tuning and matching, shimming, and the adjustment of the 90◦ pulse length for each
sample. The proton spectra of both urine and serum samples were acquired using a
Carr-Purcell-Meiboom-Gill (CPMG) pulse program (cpmgpr1d) with presaturation during
relaxation delay d1 (4 s) with the following parameters: number of scans (NS) = 48 for urine,
NS = 256 for serum; number of data points (TD) = 64 k; spectral width (SW) = 20 ppm;
echo time = 0.3 ms; and loop for T2 filter = 126. The CPMG experiment was chosen
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to suppress broad resonances of major urinary proteins that occur naturally in rodent
urine [22] and to improve the baseline close to lipid signals in the serum extracts. A short
J-resolved experiment (for both urine and serum NS = 2, SW = 16 ppm, TD = 8 k, number
of increments = 40, and d1 = 2 s) was performed on each sample to facilitate metabolite
identification. The metabolite assignment was supported by the information extracted from
the HSQC and TOCSY spectra acquired for the selected samples.

The raw spectral data were processed using TopSpin 3.5 software (Bruker BioSpin,
Rheinstetten, Germany). Free induction decays (FIDs) were multiplied by an exponential
window function (LB = 0.3 Hz) before the Fourier transformation and were automatically
phased. Because the TSP signal was slightly shifted and broadened by nonspecific binding
with proteins, the spectra were referenced to the downfield peak of the alanine doublet at
1.492 ppm in urine and the downfield peak of the α-glucose doublet at 5.245 ppm in serum
extracts. Regions with water, urea (in urine), and methanol (in serum extracts) signals were
excluded. Spectra within the 0.2 to 10.0 ppm range were normalized using the probabilistic
quotient normalization (PQN) method [23] with the pooled control group as a standard.

2.5. MS Sample Preparation and Experiments

For the untargeted serum analysis, a 50 µL serum sample was mixed with a 5 µL
internal 4-chlorophenyl-alanine standard (1 mg/mL) and a 200 µL acetonitrile/methanol
mixture (3/5, v/v). The sample was kept in a freezer at −20 ◦C for 30 min and then
centrifuged at 7700× g for 10 min at 4 ◦C. The injection volume of the supernatant was
10 µL. Quality control samples were prepared by mixing 5 µL serum aliquots of all the
samples, which were then processed in the same manner. To evaluate the entire process,
blank samples were prepared and then underwent the same process as real samples. The
extracts were separated by HPLC (Agilent 1200 LC, Agilent Technologies, Santa Clara,
CA, USA) equipped with an Intrada amino acid column (150 mm × 2 mm, 3 µm, Imtakt,
Portland, OR, USA). Mass detection was performed with a mass spectrometer (micrOTOF-
Q III, Bruker Daltonics, Billerica, MA, USA). The separation and detection conditions in
positive and negative modes were set up according to a previously published method [24].
Blank samples and quality control samples were analyzed together with the clinical samples.
Samples were measured in random order, and they were interrupted by blanks and quality
control samples. The data were recalibrated for exact mass, converted in DataAnalysis
4.2 (Bruker), and then imported into MZmine 2.23 software. Our previously published
paper described the data analysis procedure in detail [25]. The data were normalized by
the total intensity.

A targeted analysis of bile acids and neurotransmitters was performed according to
a previously optimized method [26,27]. The preparation of neurotransmitter derivates
suitable for MS analysis was performed according to the instructions in the EZ: fast kit user
manual (Phenomenex, Torrance, CA, USA). The bile acids were extracted from 50 µL serum
using 160 µL acetonitrile. The supernatant was evaporated and reconstructed in 50 µL
methanol-water mixture (1:1, v/v). Bile acids were separated on an HPLC system (Dionex
Ultimate 3000, Dionex Softron GmbH, Germering, Germany) equipped with a Hypersil
GOLD column (150 × 2.1 mm, 3 µm, Thermo Fisher Scientific, Inc., Waltham, MA, USA)
and a SecurityGuard column (Phenomenex, Torrance, CA, USA) and detected in a triple
quadrupole mass spectrometer (TSQ Quantum Access Max with H-ESI II probe, Thermo
Fisher Scientific, Inc., Waltham, MA, USA) operating in SRM mode. The parameters of the
separation and detection are described in [26]. The peak area of individual metabolites was
normalized by finding the area of the corresponding internal standards.

2.6. Statistical Analysis

Untargeted multivariate analysis, which was based on the analysis of equidistantly
binned spectra (bin width = 0.01 ppm) in NMR and on the analysis of all signals above the
intensity threshold for MS, was performed in Metaboanalyst 4.0 software [28]. A principal
component analysis (PCA) on Pareto-scaled data was used to monitor sample grouping
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and detect potential outliers. The statistical model was built using partial least squares-
discriminant analysis (PLS-DA) and then validated by leave-one-out cross-validation
(LOOCV) and permutation tests. The results of the PLS-DA models were evaluated us-
ing variable importance in projection (VIP) scores, which identified the important bins
contributing the most to the groups’ separation.

A univariate analysis was performed using MATLAB software (version 9.10 R2021a).
The application of the standard Student’s two-sample t-test was based on the result of
the Lilliefors test for normality; the p-value cutoff was 0.05. In NMR metabolomics, all
well-resolved non-overlapping signals or parts of multiplets were subjected to analysis.
The identification of individual metabolites in the NMR spectra was made using Chenomx
NMR Suite software (Chenomx Inc., Edmonton, AB, Canada) or previously published
data and confirmed by the comparison of proton and carbon data acquired for selected
samples with the Human Metabolome Database (HMDB [29]) and the Biological Magnetic
Resonance Bank (BMRB [30]) databases (Table S1 and Figures S1 and S2 in Supplementary
Data). The MS data analysis procedure was described in detail in our previously published
paper [25]. The identification of significantly changed metabolites in the MS spectra was
based on the exact mass, isotope pattern, MS/MS fragments, and retention time. The
detected parameters were compared with standards, databases (HMDB, MetFrag [31]), and
previously published data (Table S2 in Supplementary Data).

3. Results
3.1. Morphometric and Biochemical Parameters

In our recent study, we published the results of several rat morphometric and
metabolic parameters at 32 and 40 weeks of age. Here, we present data on the parame-
ters that significantly changed at the end of the experiment covering the time range of
12–40 weeks (Table 1). The body weight was significantly higher in the fa/fa rats than in the
controls during the entire monitored period. Similarly, the plasma concentrations of insulin,
leptin, cholesterol, and triglycerides were significantly raised in the fa/fa rats compared
with the control rats at each sample collection time.

Table 1. Body weight and selected metabolic parameters in fasted blood plasma of fa/fa and control
rats at 12, 21, 32, and 40 weeks of age.

12 w 21 w

Control fa/fa Control fa/fa

Body weight (g) 292 ± 8 366 ± 8 *** 390 ± 6 514 ± 14 ****
Insulin (ng/mL) 0.27 ± 0.05 1.80 ± 0.45 * 0.46 ± 0.08 2.23 ± 0.28 ***
Leptin (ng/mL) 0.96 ± 0.11 45.12 ± 4.83 **** 2.42 ± 0.30 52.28 ± 9.93 **
Cholesterol (mmol/L) 1.37 ± 0.04 2.18 ± 0.07 **** 2.13 ± 0.04 8.20 ± 1.00 ***
Triglycerides (mmol/L) 0.86 ± 0.15 7.98 ± 1.26 *** 1.15 ± 0.16 7.85 ± 1.13 ***

31 w a 40 w a

Control fa/fa Control fa/fa

Body weight (g) 441 ± 9 572 ± 11 **** 456 ± 9 592 ± 18 ****
Insulin (ng/mL) 0.49 ± 0.06 1.24 ± 0.02 **** 0.27 ± 0.06 1.04 ± 0.11 ***
Leptin (ng/mL) 4.02 ± 0.61 46.55 ± 1.61 **** 3.74 ± 0.51 46.80 ± 1.90 ****
Cholesterol (mmol/L) 3.37 ± 0.27 7.83 ± 0.51 **** 2.08 ± 0.15 3.77 ± 0.22 ****
Triglycerides (mmol/L) 1.11 ± 0.08 4.30 ± 0.28 **** 1.24 ± 0.15 6.78 ± 1.15 **

Data are presented as means ± SEM. Statistical analysis was performed by Student’s t-test. * p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001. a—data acquired at 31 and 40 weeks have already been published in [20].
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3.2. NMR-Based fa/fa Model Characterization Using Urinary Metabolic Profiles

The main advantage of urine-based metabolomics is the easy and noninvasive sample
collection, which enables the continuous monitoring of metabolic alterations over time.
During the first step, the urinary metabolic profiles of the fa/fa and control rats were
compared at each sample collection time, i.e., at 12, 21, 32, and 40 weeks of age. An
untargeted multivariate analysis was performed on the binned spectra to explore the
distribution of the samples, to build appropriate models, and to identify the spectral regions
that contributed the most to the group separation. Unsupervised PCA did not detect any
outliers and showed clear differences between the fa/fa and control groups at all time points
(Figure 2).
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PLS-DA models were then built and evaluated (Figure S3 in Supplementary Data).
LOOCV was used to assess the quality of various models via the computed parameters R2
and Q2. The interpretation of the PLS-DA models was based on the examination of VIP
scores; the most important bins (those with VIP scores greater than 2.0) were considered.
The assignment of these bins revealed similar sets of metabolic changes in all four models,
contributing the most to the separation of the fa/fa and control groups: they showed
elevated levels of citrate, 2-oxoglutarate, fumarate, malate, and allantoin and decreased
concentrations of creatinine, taurine, and hippurate. Nevertheless, the high p-values of the
permutation tests indicated possible model overfitting due to the small number of samples,
so the PLS-DA outputs can only be considered approximate.

Univariate analysis was subsequently used to evaluate variations in individual metabo-
lite levels. A parametric Student’s t-test was performed on the set of seventy signals in
the urine spectra and revealed primarily increased levels of tricarboxylic acid (TCA) cycle
metabolites, lactate, choline, glycine, alanine, 1-methylnicotinamide, and trigonelline, and
attenuated levels of microbial co-metabolites, creatinine, taurine, formate, methylsuccinate,
1-methyl-4-pyridone-3-carboxamide (4-PY), and lipid species (Table 2).

Another approach that can expand the comprehensive view of aging in Zucker fatty
rats is to track variations in individual metabolites over time. PCA models built for the
fa/fa and control groups separately from all time points clearly show a gradual change in
urinary profiles during the experiment (Figure 3). This shift, which is most visible between
12 and 21 weeks of age, seems to be more intensive in fa/fa rats than in control rats.

Table 3 summarizes the significant metabolic changes observed between successive
sampling points from 12 to 40 weeks of age, as evaluated by paired t-test in parallel for
fa/fa rats and their lean controls.
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Table 2. Significantly changed metabolites in the urine of fa/fa and control rats at 12, 21, 32, and
40 weeks of age, detected by NMR.

Metabolite 12 w ∆ [%] 21 w ∆ [%] 32 w ∆ [%] 40 w ∆ [%]

1-Methylnicotinamide 41.96 ** 56.08 *** 47.30 ** 26.47 *
Trigonelline 34.25 **** 37.59 *** 22.51 * 29.94 *
4-PY 9.30 −25.82 *** −31.56 *** −30.72 ***
Hippurate 26.40 ** 0.71 −47.86 **** −56.30 ****
3-Indoxylsulfate −35.72 ** −87.46 **** −97.33 **** −97.48 ***
p-Cresylglucuronide 20.38 x −12.62 * −21.27 * −26.16 ***
Putrescine −42.39 *** −43.73 *** −40.00 * −52.51 ****
Phenylacetylglycine −53.02 *** −43.67 ** −51.24 *** −47.64 **
2-Oxoglutarate 48.84 ** 59.37 **** 79.96 **** 66.64 ****
Fumarate 27.35 154.72 ** 258.00 *** 186.05 ****
Citrate 34.38 ** 72.34 **** 97.68 **** 95.19 ****
Malate 29.31 ** 96.21 *** 122.81 **** 94.75 ****
Creatinine −37.25 **** −42.05 **** −41.42 **** −41.74 ****
Lactate 33.19 * 21.23 x 30.57 x 23.32 *
Taurine 13.64 −38.73 x −56.61 * −53.14 x

Formate 40.32 78.53 −58.75 * −74.19 *
Choline 20.40 x 33.06 ** 57.38 ** 47.17 *
Glycine −11.95 21.76 x 52.26 ** 31.43 **
Alanine −15.36 * −3.63 23.06 x 29.16 *
Orotate 1.34 −8.60 −42.82 ** −41.92 ***
Allantoin −5.78 −8.25 ** −2.41 −5.14
Benzoate −68.01 ** −68.62 ** −79.76 ** −74.31 ****
Dimethylsulfone 11.96 1.73 −18.18 * −18.96 x

Pseudouridine −18.08 **** −14.64 *** −6.20 * −12.92 ***
Methanol 42.37 ** 45.58 *** 25.82 x 24.47 x

Methylsuccinate −25.86 ** −13.50 * −29.33 ** −42.39 ***
Doublet (1.25 ppm) −29.25 **** −30.21 **** −29.31 **** −32.52 ****
Lipids + keto-acids −22.04 *** −14.47 * −24.10 ** −30.11 ****
Lipids −73.66 **** −71.75 **** −65.34 **** −64.21 ****

The results are expressed as the percentage change of normalized concentrations in fa/fa vs. controls. The
statistical significance was analyzed by Student’s t-test. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, x—trend
with p < 0.1. 4-PY—1-Methyl-4-pyridone-3-carboxamide.
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Figure 3. Score plots of PCA models of urinary profile development during aging, generated
separately for fa/fa and control rats. Samples collected at 12 weeks are marked in red, at 21 weeks in
green, at 32 weeks in blue, and at 40 weeks in turquoise.
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Table 3. Significantly changed metabolites in the urine of fa/fa and control rats during aging.

21 w/12 w ∆ [%] 32 w/21 w ∆ [%] 40 w/32 w ∆ [%]

Metabolite fa/fa Controls fa/fa Controls fa/fa Controls

1-Methylnicotinamide −9.82 −23.37 * −22.82 ** −16.69 * −13.90 2.46
Trigonelline −18.13 ** −19.68 ** −23.99 *** −14.50 * −1.72 −7.23
4-PY −45.59 *** −20.94 ** −23.98 ** −19.21 **** −4.18 −2.42
Hippurate −23.97 * −8.04 −56.46 **** −17.28 * −18.47 * −0.10
3-Indoxylsulfate −89.25 *** −37.52 ** −84.69 −33.49 ** −27.46 −22.61 *
p-Cresylglucuronide −33.23 * −11.96 * −22.26 * −15.19 * −5.27 1.66
Phenylacetylglycine −32.89 * −36.96 * −4.61 0.98 15.53 4.47
Putrescine −18.22 −19.97 * −10.52 −13.89 * −12.58 9.69 *
2-Oxoglutarate 31.80 * 23.37 11.10 −1.09 −3.18 4.06
Fumarate 97.82 * −4.55 21.30 * −8.83 −0.49 22.85
Citrate 31.59 * 1.02 16.79 ** 1.24 7.98 6.54
Malate 32.37 ** −14.05 5.32 * −5.03 −1.84 10.91
Creatinine −1.69 7.61 ** 0.49 −0.19 8.30 ** 8.17 **
Lactate 2.45 4.87 −5.98 −7.70 −13.79 * −6.54
Taurine 18.24 90.47 * −33.52 −6.31 −3.93 −10.94
Formate 147.56 64.11 −85.67 * −40.20 −59.84 −38.95
Choline −2.20 −10.84 ** 15.28 3.11 −7.26 −0.83
Glycine 13.10 −16.52 ** 17.24 −4.18 −6.33 9.99
Orotate −30.49 ** −14.56 −25.25 * 2.00 −7.47 −4.88
Allantoin −22.28 ** −19.38 **** −0.65 −7.65 ** 9.15 ** 10.49 **
Dimethylsulfone −18.39 ** −10.06 * −19.04 * 3.63 −7.58 −2.63
Pseudouridine −22.01 *** −22.73 **** 4.13 −6.21 * 9.30 ** 16.33 **
Methylsuccinate 7.74 −10.80 −25.91 ** −8.89 −6.90 16.99

The results are expressed as the percentage change of normalized concentrations in two consecutive time points
for fa/fa and controls. The statistical significance was analyzed by paired t-test. * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001. 4-PY—1-Methyl-4-pyridone-3-carboxamide.

The table reveals some similar trends in the fa/fa and control strains: a significant
decrease in nicotinamide metabolites and microbial co-metabolites and altered levels of
allantoin and pseudouridine. However, a significant increase in TCA metabolites was
observed only in fa/fa rats up to 32 weeks of age, and an increase in taurine and a decrease
in choline and glycine levels were observed only in young lean controls. The evolution
in the concentrations of selected important metabolites is well illustrated by the curves in
Figure 4.

3.3. NMR- and MS-Based fa/fa Model Characterization Using Serum Metabolic Profiles

The serum samples for the fa/fa model characterization were collected at the end of
the experiment from saline-treated fa/fa and control rats. The acquired NMR and MS data
were evaluated using a procedure analogous to that used for the urine samples.

The whole spectra were first subjected to multivariate analysis (Figure 5). The trend
in group separation observed in the PCA appeared more pronounced in the supervised
PLS-DA model, which was satisfactorily validated using the LOOCV method. Bins with
VIP values > 2 correspond to increased lactate, alanine, citrate, and lipids and decreased
levels of glucose, creatine, 3-OH butyrate, glutamine, valine, and leucine in the NMR-based
model. In the MS analysis, high VIP values indicated reduced levels of carnitine and
valine and altered levels of several phosphocholines (PC 36:2, 36:4, and 38:4) and lysophos-
phatidylcholines (LysoPC 16:1, 18:2, and 20:4) as the most discriminating combination of
serum metabolites. Unfortunately, as in the case of the urine, the poor permutation test
results for both NMR and MS models suggest a possible risk of model overfitting.
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Figure 4. The development of normalized intensities for selected metabolites at 12, 21, 32, and 40 
weeks. The statistical significance was analyzed by Student’s t-test (fa/fa vs. controls). p-values and Figure 4. The development of normalized intensities for selected metabolites at 12, 21, 32, and

40 weeks. The statistical significance was analyzed by Student’s t-test (fa/fa vs. controls). p-values
and standard deviation error bars are given for each collection time. Fa/fa rats are marked in red,
controls in green. 4PY—1-Methyl-4-pyridone-3-carboxamide.



Metabolites 2023, 13, 552 10 of 20

Metabolites 2023, 13, 552 10 of 20 
 

standard deviation error bars are given for each collection time. Fa/fa rats are marked in red, controls 
in green. 4PY—1-Methyl-4-pyridone-3-carboxamide. 

3.3. NMR- and MS-Based fa/fa Model Characterization Using Serum Metabolic Profiles 
The serum samples for the fa/fa model characterization were collected at the end of 

the experiment from saline-treated fa/fa and control rats. The acquired NMR and MS data 
were evaluated using a procedure analogous to that used for the urine samples. 

The whole spectra were first subjected to multivariate analysis (Figure 5). The trend 
in group separation observed in the PCA appeared more pronounced in the supervised 
PLS-DA model, which was satisfactorily validated using the LOOCV method. Bins with 
VIP values > 2 correspond to increased lactate, alanine, citrate, and lipids and decreased 
levels of glucose, creatine, 3-OH butyrate, glutamine, valine, and leucine in the NMR-
based model. In the MS analysis, high VIP values indicated reduced levels of carnitine and 
valine and altered levels of several phosphocholines (PC 36:2, 36:4, and 38:4) and lyso-
phosphatidylcholines (LysoPC 16:1, 18:2, and 20:4) as the most discriminating combina-
tion of serum metabolites. Unfortunately, as in the case of the urine, the poor permutation 
test results for both NMR and MS models suggest a possible risk of model overfitting. 

 
Figure 5. Score plots of PCA and PLS-DA models of serum from fa/fa and control rats (at 40 weeks 
of age) based on NMR and MS data. The LOOV results for 3 principal components: accuracy = 1, R2 
= 0.98, Q2 = 0.89 for NMR-based; accuracy = 1, R2 = 0.99, Q2 = 0.96 for positive-MS-based; accuracy 
= 1, R2 = 0.99, Q2 = 0.92 for negative-MS-based. Fa/fa group is marked in red, control group in green. 

Univariate statistical analysis using the parametric Student’s t-test was applied to 
fifty-four NMR signals representing thirty-nine metabolites. Increased levels of TCA cycle 
metabolites, lactate, glycerol, alanine, allantoin, and lipids and decreased concentrations 
of glucose, arabinose, creatine, choline, amino acids, and hydroxy acids were detected in 

Figure 5. Score plots of PCA and PLS-DA models of serum from fa/fa and control rats (at 40 weeks
of age) based on NMR and MS data. The LOOV results for 3 principal components: accuracy = 1,
R2 = 0.98, Q2 = 0.89 for NMR-based; accuracy = 1, R2 = 0.99, Q2 = 0.96 for positive-MS-based;
accuracy = 1, R2 = 0.99, Q2 = 0.92 for negative-MS-based. Fa/fa group is marked in red, control group
in green.

Univariate statistical analysis using the parametric Student’s t-test was applied to
fifty-four NMR signals representing thirty-nine metabolites. Increased levels of TCA cycle
metabolites, lactate, glycerol, alanine, allantoin, and lipids and decreased concentrations
of glucose, arabinose, creatine, choline, amino acids, and hydroxy acids were detected
in the fa/fa group compared with the controls. The MS data were measured in negative
and positive ionization modes, but significantly altered metabolites were identified and
quantified only in the positive mode. The univariate analysis of the MS data revealed
lowered serum amino acids, carnitine, creatine, and deoxycytidine, increased PC levels
(except decreased PC (36:2)), and altered concentrations of LysoPCs in the fa/fa rats (Table 4).

Table 4. Significantly changed metabolites in the serum of fa/fa and control rats at 40 weeks.

NMR Analysis MS Analysis

Metabolite ∆ [%] Metabolite ∆ [%]

Citrate 95.42 *** Valine −38.96 ***
Fumarate 62.64 ** Leucine −24.15 ***
Pyruvate 51.53 * Glutamine −11.82 **
Glucose −16.37 * Lysine −25.52 ***
Arabinose −23.20 ** Histidine −20.00 ****
Lactate 40.60 * Methylhistidine −25.98 **
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Table 4. Cont.

NMR Analysis MS Analysis

Metabolite ∆ [%] Metabolite ∆ [%]

Glycerol 108.15 *** Ornithine −43.66 ****
Alanine 40.79 ** Carnitine −28.52 ****
Asparagine −34.16 *** Acylcarnitine (C18:1) 25.77 *
Leucine −14.94 ** Creatine −19.97 ***
Valine −22.18 *** Deoxycytidine −15.26 *
Lysine −23.67 ** LysoPC (14:0) 86.18 ****
Histidine −8.65 * LysoPC (16:1) 96.84 ****
Creatine −30.97 ** LysoPC (17:0) −47.47 ****
Choline −32.24 ** LysoPC (18:2) −36.41 ***
Allantoin 67.43 **** LysoPC (20:4) 43.79 **
3-Hydroxybutyrate −32.40 ** PC (32:1) 206.98 ****
3-Hydroxyisobutyrate −36.46 ** PC (35:4) 129.90 ***
Cytidine −12.14 * PC (36:2) −44.20 ****
Thymidine −14.25 * PC (36:4) 20.61 *
Dimethylsulfone 26.97 * PC (38:4) 39.17 ****
Ethanol −17.75 * PC (38:6) 37.92 **
Isoleucine + lipids 11.36 ** PC (40:6) 47.62 ****
Lipids + ketoacids 130.19 * LysoPE (16:0) 36.87 *

The results are expressed as the percentage change of normalized concentrations in fa/fa vs. controls. The
statistical significance was analyzed by Student’s t-test. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
PC-phosphatidylcholine, LysoPC—lysophosphatidylcholine, LysoPE—lysophosphatidylethanolamine.

The targeted LC-MS analysis of seventeen bile acids in serum showed a significant
decrease in seven of them. Of the five neurotransmitters analyzed here, only the sero-
tonin levels increased significantly in obese fa/fa animals compared with the lean controls
(Table 5).

Table 5. LC-MS targeted analysis of bile acids and neurotransmitters in serum.

Metabolite ∆ [%] Metabolite ∆ [%]

Bile acids

Cholic acid 89.58 Glycocholic acid −71.20 ***
Ursodeoxycholic acid −4.16 Tauroursodeoxycholic acid −62.33 *
Hyodeoxycholic acid −64.01 x Taurohyodeoxycholic acid −67.55 **
Chenodeoxycholic acid −1.97 Taurochenodeoxycholic acid −46.64 x

Deoxycholic acid −45.32 Taurodeoxycholic acid −50.49 x

Glycoursodeoxycholic acid −88.80 * Taurocholic acid −28.85
Glycohyodeoxycholic acid −85.72 ** Taurolithocholic acid sulfate −57.57 x

Glycochenodeoxycholic acid −74.45 ** β-muricholic acid 6.22
Glycodeoxycholic acid −84.87 *

Neurotransmitters

Serotonin 48.36 *** Kynurenine −2.77
Tyramine −13.03 Hydroxytryptophan 7.58
γ-Aminobutyric acid 1.32

The results are expressed as the percentage change of normalized concentrations in fa/fa vs. controls. The
statistical significance was analyzed by Student’s t-test. * p < 0.05, ** p < 0.01, *** p < 0.001, x—trend with p < 0.1.

4. Discussion

The main objective of this study was the metabolomic characterization of Zucker
fatty rats during aging over a long-time scale of 10 months since all previous metabolomic
research on fa/fa rats has only included animals up to 20 weeks of age. Therefore, our
task was to verify whether the differences detected in young fa/fa rats persist up to 10
months of age and thus prove the suitability of this genetic model of obesity for long-term
studies. Our research was primarily based on urine analysis because its non-invasive
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collection allows for the continuous monitoring of the animals without interfering with
their metabolism. The untargeted analysis of serum samples obtained at the end of the
experiment, together with the targeted analysis of serum bile acids and neurotransmitters,
completed the metabolomic characterization of the studied model. The phenotype of
our fa/fa model was verified from acquired morphometric and biochemical data. They
demonstrated that fa/fa rats developed obesity, mild glucose intolerance, and mild central
and peripheral insulin resistance in our study [20].

The first urine analysis of 12-week-old animals corresponds to the approximate age
of fa/fa rats used in other studies [6,8,11,17]. The next model at 21 weeks of age correlates
with the maximum age of experimental animals in previously published metabolomic
papers [9,10,13,14]. The subsequent sample collections and analyses at 32 and 40 weeks of
age then extended the monitoring of the animals for twice as long. All the detected changes
in metabolic profiles described in our study were compared with those reported in the
published data for younger Zucker fatty rats or other rodent models of obesity.

The first finding in our study was the significant decrease in the host-microbial
aromatic metabolites hippurate, phenylacetylglycine, 3-indoxylsulfate, and p-cresylglucuronide
in the fa/fa group compared with its lean control, indicating the altered microbial metabolism
of aromatic compounds in fa/fa rats. Analogous urinary changes were presented in previ-
ous studies of Zucker obese rats [6,15–17], in rodent models with diet-induced obesity such
as spontaneously hypertensive or Wistar Kyoto (WKY) rats [32] and C57BL/6J mice [33],
and in obese insulin-resistant humans [34].

In a human study, Brial et al. showed that urine hippurate is positively associated
with microbial gene richness and can be used as a marker of metabolic health [35]. In
the next paper, based on data from the Study of Health in Pomerania [36], the authors
detected significant genus-metabolite associations for hippurate, succinate, indoxyl sulfate,
and formate and the association between gut microbiome alpha diversity and levels of
hippurate, formate, and 4-hydroxyphenylacetate.

The monitoring of urinary profiles over 40 weeks showed a rapid decline in microbial
co-metabolite concentrations with age (Figure 4), which explains some of the different
results observed in much younger fa/fa rats. The hippurate levels at 12 weeks of age
were significantly higher in fa/fa rats than in control rats, which is consistent with the
finding in 12-week-old Zucker fatty rats by Williams et al. [8]; the same group of authors
described a negative correlation of hippurate with age between 4 and 20 weeks [9]. After
a sharp decrease between the first two samplings, 3-indoxyl sulfate was not detected at
all in fa/fa rats from 32 weeks of age. Formate, another product of gut microbial origin,
was significantly associated with body mass index in the human INTERMAP study [37].
Higher urinary formate in fa/fa rats compared with lean controls was reported until 12
weeks of age [6] and at 14 weeks [17]. In our study, formate was insignificantly higher
at 12 and 21 weeks in the fa/fa group; a significant decrease compared with lean rats
was detected from 32 weeks of age. It should be considered that the age of 12 weeks
corresponds to puberty and 21 weeks to early maturity in male Zucker fatty rats [38]. The
dynamic evolution of the gut microbiota composition during sexual maturation has been
reported repeatedly in humans [39–41]. Recently, the shift in gut bacteria during sexual
maturity in Sprague-Dawley rats was explored [42]. Lees et al. published that age is a
major contributor to the microbiome composition in fa/fa rats aged 5–14 weeks [43]. In
summary, the significant changes in microbial co-metabolite concentrations observed in our
study in rats aged 12 and 21 weeks old may be directly associated with the development of
their gut microbiome during sexual maturation.

Nicotinamide metabolism is the next pathway that was significantly altered in the
obese fa/fa group. Although these changes in fa/fa rats have only been discussed in a single
study [6], the significant increase in 1-methylnicotinamide and its metabolites in obese
animals is a typical feature described in many rodent models: in a diet-induced obesity
mouse model [44,45], in a diet-induced obesity model of WKY and spontaneously hyper-
tensive rats [32], in a monosodium glutamate (MSG)-induced obesity mouse model [46]
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and in genetically obese db/db mice [6]. The last above-mentioned paper identified 1-
methylnicotinamide as a unique biomarker for monitoring diabetes and obesity. The signif-
icant changes in nicotinamide metabolites can be easily underestimated for two reasons.
First, their signal intensities may be biased by the broad background of major urinary
proteins if proton spectra are acquired using the 1D-NOESY pulse sequence [22]. Second,
changes in these minor metabolites do not contribute enough to the complex multivariate
statistical model to be reflected in the VIP values [45] and are detected primarily by the
univariate targeted approach.

Our study is the first to describe a significant reduction in putrescine, a metabolite
of polyamine metabolism, in fa/fa rats. The reduced excretion of putrescine, which might
be related to the accumulation of white adipose tissue and obesity development, was also
reported in mice with MSG-induced obesity [46] and in WKY with diet-induced obesity [47].

In the current study, we observed elevated levels of lactate and alanine in the serum
and urine and pyruvate in the serum. These changes could be triggered by a disorder
in the mitochondrial respiratory chain system. Under anaerobic conditions, pyruvate is
converted to lactate through lactate dehydrogenase. An abnormal accumulation of lactate
was reported in the blood and urine of fa/fa rats [6,11,15] and in the blood and urine of DIO
mice [48]. An unusual accumulation of pyruvate was also reported in rats with diet-induced
obesity [49] probably due to the inhibition of pyruvate dehydrogenase. Alanine can be
produced from pyruvate via alanine transaminase. The urinary alanine concentration
ratios between the fa/fa and control groups varied significantly during our study. At 12
weeks, this level was significantly higher in the controls, while from 32 weeks of age on,
urinary alanine was predominant in the fa/fa group. Consistent with this trend, significant
reductions in alanine were observed in the peripheral venous blood of fa/fa rats at 4 weeks
of age [16] and in fa/fa rat urine at 8 weeks of age [7].

The elevated levels of citrate and fumarate in urine and serum, together with increased
urinary malate and 2-oxoglutarate levels, suggest the upregulation of the TCA cycle in
obese animals, which may be caused by an excess of the TCA substrate pyruvate. Our
findings are consistent with those found in Zucker obese rats at 10, 12, or 14 weeks of
age [6,15,17]. Salek et al. linked the increase in TCA intermediates to hyperglycemia-
induced systemic stress. Lees et al. explained this finding by noting the different energy
expenditure and utilization in obese and lean Zucker rats. Urinary monitoring during the
experiment showed that while TCA metabolite levels in fa/fa rats gradually increased until
32 weeks of age, whereas they remained almost stable in the lean controls.

Except for alanine, the serum levels of several amino acids decreased in fa/fa rats.
Surprisingly, significantly lower concentrations of the branched-chain amino acids (BCAAs)
valine and leucine were found in the serum of the fa/fa group compared with the lean
controls, which was confirmed independently by both NMR and LC-MS analysis. An
analogous decrease in plasma valine and leucine was also observed in our recent WKY rat
model when the animals were fed a high fat (HF) diet [47]. Park et al. detected a decrease
in circulating BCAAs in C57BL/6N mice fed an HF diet [50]. These findings contrast
with most previous publications reporting elevated BCAA levels as a significant marker
of obesity and diabetes [51]. She et al. reported elevated plasma BCAAs in 11-week-old
obese Zucker rats [52]. Reduced levels of serum valine and leucine in our study have been
independently confirmed by both NMR and LC-MS analysis, but unfortunately, we do not
yet have a satisfactory explanation for them. A partial explanation for the different results
may be related to increased levels of alanine, which is a product of BCAA catabolism in
muscle. Dunn and Hartsook observed that obese Zucker fatty rats had a higher rate of
protein muscle breakdown and were less efficient at retaining amino acids that had been
incorporated into muscle [53].

Obese Zucker rats have significantly attenuated serum creatine and urinary creatinine
levels, consistent with previous studies in this model [15,16]. Reduced creatinine levels
in fa/fa obese rats have also been reported by Salek and Lees [6,17]. Creatinine is formed
from creatine phosphate in muscle. Serum and urine creatinine were positively correlated



Metabolites 2023, 13, 552 14 of 20

with muscle mass and body weight, with a greater degree of correlation with muscle
mass [54,55]. Lower urinary creatinine levels can be explained by high body weight, lack
of muscle mass, and low physical activity in obese fa/fa animals.

In the untargeted LC-MS analysis of serum, in addition to the decrease in amino
acid concentrations also observed in the NMR analysis, we detected altered serum levels
of several phosphatidylcholines (PCs) and lysophosphatidylcholines (LysoPCs). LysoPC
(17:0) and LysoPC (18:2) were significantly decreased in fa/fa serum compared with the
lean controls. Bao et al. found that LysoPC (17:0) reduced blood glucose and alleviated
insulin resistance and related metabolic disorders in HF diet-induced mice by activating
glucagon-like peptide 1 and promoting insulin secretion [56]. Plasma LysoPC (18:2) was
negatively correlated with the insulin resistance index in a study of healthy, prediabetic,
and type 2 diabetic individuals [57]. In the population-based Cooperative Health Research
in the Region of Augsburg (KORA) cohort, adults with low serum LysoPC (18:2) had a
greater risk of developing impaired glucose tolerance over seven years of follow-up [58].
Low plasma LysoPC (18:2) was also identified as an independent predictor of the incidence
of type 2 diabetes in a cohort of Finnish men [59].

Notably, we observed increased levels of LysoPC (14:0) and LysoPC (20:4), which is
the precursor for the inflammatory mediators eicosanoids [60]. Overweight/obese subjects
showed higher levels of LysoPC (C14:0) and LysoPC (C18:0) and lower levels of LysoPC
(C18:1) than lean subjects [61]. Significantly increased concentrations of PC (38:4) and PC
(40:6) in our model were also detected in fat-fed mice and were positively correlated with
fasting glucose [62]. The concentration of PC (32:1) in fa/fa rats in our study was twice that
of the controls. The opposite result was observed by Gowda et al., namely, a significant
decrease in PC (32:1) in rats fed an HF diet was negatively associated with obesity [63].

The LC-MS analysis of the serum also revealed decreased levels of carnitine and in-
creased acylcarnitine (C18:1) in the fa/fa group compared with the control group. Carnitine
is a key metabolite for transporting long-chain fatty acids in the form of acylcarnitines
to mitochondria. Its low concentration is often associated with obesity [61], and its sup-
plementation can have a positive effect on weight loss [64]. Increased concentrations of
acylcarnitines (C18:1), (C14:1), and (C14:2) were also detected in overweight patients with
impaired glucose tolerance [65].

The concentrations of seventeen bile acids (BAs) in the serum of the fa/fa and control
rats were analyzed using a targeted LC-MS approach. We found significantly reduced
levels of all five glycine conjugates studied here, together with two taurine conjugates of
BAs. The BA concentrations in the blood, liver, or fecal extracts have often been studied in
human and experimental models in relation to obesity and diabetes, but with controversial
results. The decrease in several conjugated BAs observed in our study can be attributed to
the perturbated metabolism of BAs and indicate dysregulation of lipid and carbohydrate
metabolism, energy expenditure, and the presence of inflammation [66]. In addition,
it should be considered that the level of circulating BAs could also be affected by the
higher age of the animals under study [67], as was described previously in mice [68] and
humans [69].

The conjugation of primary BAs takes place in the liver, from which they are released
via the gallbladder into the intestine. The gut microbiome is responsible for their deconju-
gation and conversion to secondary BA. Both primary and secondary BAs are subsequently
re-conjugated with glycine or taurine in the liver and released back into the gut. Thus,
the concentration of conjugated BAs has also been modified by the gut microbiome [70].
For instance, the comparison of germ-free and conventional mice showed different sizes
and compositions of the BA pool [71]. An analysis of the fecal microbial composition
in 10-week-old obese and lean Zucker rats revealed different relative abundances of the
dominant members of their intestinal microbiota [15]. Later, Lees et al. highlighted that the
gut microbiota composition may be more influenced by age and the cage environment than
the genotype [43]. Hakkak et al. analyzed the fecal microbiome of genetically obese and
lean Zucker rats housed individually in cages [72]. Clear differences in intestinal microbiota
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populations associated with both the time point of the study and the lean or obese status
were reported. Thus, based on our observed changes in urinary microbial co-metabolite
levels, we can speculate that the different concentrations of conjugated BA between the
fa/fa and control groups may be attributable to differences in the composition and activity
of the gut microbiome.

A targeted LC-MS analysis of five selected neurotransmitters (γ-aminobutyric acid,
kynurenine, serotonin, hydroxytryptophan, and tyramine) in serum showed significantly
higher serotonin concentration in obese fa/fa rats. All serotonin-related studies in Zucker
rats to date have focused on the serotogenic mechanism in the brain. Because serotonin
is unable to cross the blood-brain barrier, there are two independent pools with opposing
functions in the regulation of energy homeostasis. An increase in central serotonin, which
is made in the neurons of the brainstem, is expected to decrease body weight, whereas
the increasing activity of peripheral serotonin, which is produced primarily in the gut,
increases body weight and adiposity [73,74].

Significantly higher serum serotonin was reported in HF diet-fed mice than in lean
controls [75]. Since diet-induced obesity is associated with inflammation, the authors
hypothesized that blood serotonin could serve as an important mediator of inflamma-
tion. The majority of serotonin in the body is synthesized in the periphery within the gut
neurons and enterochromaffin cells (ECs) by the enzyme tryptophan hydroxylase Tph1.
Thp1 activity is positively regulated by microbiota-derived short-chain fatty acids (SCFAs)
or glucose [76]. Serotonin from the gastrointestinal tract is absorbed by enterocytes or
can enter the bloodstream, where platelets absorb it by serotonin reuptake transporter
(SERT) [77]. Bertrand et al. reported increased serotonin in the ileum in western-type
diet-fed rats caused by increased ECs and mRNA for Tph1 enzyme [78]. It was accom-
panied by a decrease in SERT mRNA and protein, which prevents serotonin reuptake.
Crane et al. found that Tph1-deficient mice fed the HF diet were protected from obesity,
insulin resistance, and nonalcoholic fatty liver disease while exhibiting greater energy
expenditure through their brown adipose tissue. The authors speculated that the inhibition
of serotonin signaling or its synthesis in adipose tissue might be an effective treatment for
obesity and its comorbidities [79]. Another study of mice on the HF diet indicated that
the intraperitoneal injection of serotonin prevented obesity by inducing an increase in the
activity of mitochondria and an elevation of energy metabolism in skeletal muscle [80]. We
can speculate that the increased serotonin level in the plasma of fa/fa rats could be caused
by its increased synthesis in the gastrointestinal tract and limited absorption in the gut and
by platelets.

It should be added that our study has similar limitations to other experimental models
of obesity. The results obtained are to some extent influenced by the way obesity was
induced (type of diet, genetic background). In addition, we have documented in this paper
that even using an identical fa/fa rat model, the levels of many metabolites are significantly
affected by the age of the animals. Furthermore, not all the findings described in the experi-
mental model can be easily transferred to human obesity. On the other hand, we verified
certain typical trends observed across all experimental models. An example is the altered
metabolism of niacinamide, where an increase in 1-methylnicotinamide was also observed
in the urine and serum of obese humans [6,81]. Nicotinamide N-methyltransferase, which
catalyzes methylation of niacinamide to generate 1-methylnicotinamide, has been proposed
as a promising therapeutic target to prevent or treat obesity and diabetes [82,83].

5. Conclusions

In this study, the metabolic profiles of obese and lean fa/fa rats were monitored for the
first time on a long-term basis. Almost the same set of metabolites was responsible for the
differences in urinary metabolic profiles of obese and lean fa/fa rats over a 40-week period,
particularly microbial co-metabolites, metabolites of nicotinamide metabolism, and TCA
metabolites. Dynamic changes in the levels of some metabolites between 12 and 21 weeks
of age may be related to the development of the gut microbiome during adolescence in rats.
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The changes in the serum lipid profile of 40-week-old rats are consistent with previously
published results in other experimental models of obesity. The significant decrease in tauro-
and glycoconjugates of serum bile acids, as first analyzed in fa/fa rats, may also be related
to gut microbiome changes induced by genetic obesity.

The main contribution of our study is to cover the information gap on the metabolomic
status of elderly fa/fa rats. Our results demonstrated that this rat genetic model of obesity
with leptin and insulin resistance is stable even at 10 months of age and is therefore suitable
for long-term studies. Thus, Zucker fatty rats can be successfully applied to study disorders
associated with older age, e.g., neurodegenerative diseases [20]. Moreover, since significant
changes in urinary host-microbial co-metabolites and serum BAs were observed, it is
desirable in the future to focus on microbiome characterization and its correlation with
metabolomic data.
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Figure S3: Score plots of the urine PLS-DA model.

Author Contributions: Conceptualization, L.M. (Lenka Maletínská), J.K., M.K. and H.P.; formal
analysis, B.Š.; investigation, H.P., P.T., L.M. (Lucia Mráziková) and B.N.; writing—original draft
preparation, H.P.; writing—review and editing, H.P., P.T., L.M. (Lenka Maletínská), B.Ž., J.K. and
M.K.; visualization, H.P. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Czech Science Foundation grant No. 20-00546S, RVO:
61388971 of Czech Academy of Sciences, RVO: 61388963 of Czech Academy of Sciences, and RVO:
67985823 of Czech Academy of Sciences.

Institutional Review Board Statement: All animal experiments were performed following the ethical
guidelines for work with animals by the Act of the Czech Republic Nr. 246/1992 and were approved
by the Committee for Experiments with Laboratory Animals of the CAS.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. Ongoing studies with this particular data set are still in progress.

Acknowledgments: The authors are indebted to Zdenka Kopecká for her excellent technical assis-
tance.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hruby, A.; Hu, F.B. The Epidemiology of Obesity: A Big Picture. Pharmacoeconomics 2015, 33, 673–689. [CrossRef] [PubMed]
2. Kanasaki, K.; Koya, D. Biology of Obesity: Lessons from Animal Models of Obesity. J. Biomed. Biotechnol. 2011, 2011, 197636.

[CrossRef] [PubMed]
3. Kava, R.; Greenwood, M.R.C.; Johnson, P.R. Zucker (fa/fa) Rat. ILAR J. 1990, 32, 4–8. [CrossRef]
4. Fiehn, O. Metabolomics—The Link between Genotypes and Phenotypes. Plant. Mol. Biol. 2002, 48, 155–171. [CrossRef]
5. Nicholson, J.K.; Lindon, J.C.; Holmes, E. ‘Metabonomics’: Understanding the metabolic responses of living systems to patho-

physiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999, 29, 1181–1189.
[CrossRef] [PubMed]

6. Salek, R.M.; Maguire, M.L.; Bentley, E.; Rubtsov, D.V.; Hough, T.; Cheeseman, M.; Nunez, D.; Sweatman, B.C.; Haselden, J.N.;
Cox, R.D.; et al. A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol. Genom.
2007, 29, 99–108. [CrossRef]

7. Zhao, L.-C.; Zhang, X.-D.; Liao, S.-X.; Gao, H.-C.; Wang, H.-Y.; Lin, D.-H. A Metabonomic Comparison of Urinary Changes in
Zucker and GK Rats. J. Biomed. Biotechnol. 2010, 2010, 1–6. [CrossRef]

8. Williams, R.E.; Lenz, E.M.; Evans, J.A.; Wilson, I.D.; Granger, J.H.; Plumb, R.S.; Stumpf, C.L. A combined 1H NMR and HPLC–
MS-based metabonomic study of urine from obese (fa/fa) Zucker and normal Wistar-derived rats. J. Pharm. Biomed. Anal. 2005,
38, 465–471. [CrossRef]

https://www.mdpi.com/article/10.3390/metabo13040552/s1
https://www.mdpi.com/article/10.3390/metabo13040552/s1
https://doi.org/10.1007/s40273-014-0243-x
https://www.ncbi.nlm.nih.gov/pubmed/25471927
https://doi.org/10.1155/2011/197636
https://www.ncbi.nlm.nih.gov/pubmed/21274264
https://doi.org/10.1093/ilar.32.3.4
https://doi.org/10.1023/A:1013713905833
https://doi.org/10.1080/004982599238047
https://www.ncbi.nlm.nih.gov/pubmed/10598751
https://doi.org/10.1152/physiolgenomics.00194.2006
https://doi.org/10.1155/2010/431894
https://doi.org/10.1016/j.jpba.2005.01.013


Metabolites 2023, 13, 552 17 of 20

9. Williams, R.E.; Lenz, E.M.; Rantalainen, M.; Wilson, I.D. The comparative metabonomics of age-related changes in the urinary
composition of male Wistar-derived and Zucker (fa/fa) obese rats. Mol. Biosyst. 2006, 2, 193–202. [CrossRef]

10. Granger, J.H.; Williams, R.; Lenz, E.M.; Plumb, R.S.; Stumpf, C.L.; Wilson, I.D. A metabonomic study of strain- and age-related
differences in the Zucker rat. Rapid Commun. Mass Spectrom. 2007, 21, 2039–2045. [CrossRef]

11. Serkova, N.J.; Jackman, M.; Brown, J.L.; Liu, T.; Hirose, R.; Roberts, J.P.; Maher, J.J.; Niemann, C.U. Metabolic profiling of livers
and blood from obese Zucker rats. J. Hepatol. 2006, 44, 956–962. [CrossRef] [PubMed]

12. Major, H.J.; Williams, R.; Wilson, A.J.; Wilson, I.D. A metabonomic analysis of plasma from Zucker rat strains using gas
chromatography/mass spectrometry and pattern recognition. Rapid Commun. Mass Spectrom. 2006, 20, 3295–3302. [CrossRef]
[PubMed]

13. Plumb, R.S.; Johnson, K.A.; Rainville, P.; Shockcor, J.P.; Williams, R.; Granger, J.H.; Wilson, I.D. The detection of phenotypic
differences in the metabolic plasma profile of three strains of Zucker rats at 20 weeks of age using ultra-performance liquid
chromatography/orthogonal acceleration time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 2800–2806.
[CrossRef] [PubMed]

14. Williams, R.; Lenz, E.M.; Wilson, A.J.; Granger, J.; Wilson, I.D.; Major, H.; Stumpf, C.; Plumb, R. A multi-analytical platform
approach to the metabonomic analysis of plasma from normal and zucker (fa/fa) obese rats. Mol. Biosyst. 2006, 2, 174–183.
[CrossRef]

15. Waldram, A.; Holmes, E.; Wang, Y.; Rantalainen, M.; Wilson, I.D.; Tuohy, K.; McCartney, A.L.; Gibson, G.R.; Nicholson, J.K.
Top-Down Systems Biology Modeling of Host Metabotype−Microbiome Associations in Obese Rodents. J. Proteome Res. 2009, 8,
2361–2375. [CrossRef]

16. Phetcharaburanin, J.; Lees, H.; Marchesi, J.R.; Nicholson, J.K.; Holmes, E.; Seyfried, F.; Li, J.V. Systemic Characterization of an
Obese Phenotype in the Zucker Rat Model Defining Metabolic Axes of Energy Metabolism and Host–Microbial Interactions. J.
Proteome Res. 2016, 15, 1897–1906. [CrossRef]

17. Lees, H.J.; Swann, J.; Poucher, S.; Holmes, E.; Wilson, I.; Nicholson, J. Obesity and Cage Environment Modulate Metabolism in the
Zucker Rat: A Multiple Biological Matrix Approach to Characterizing Metabolic Phenomena. J. Proteome Res. 2019, 18, 2160–2174.
[CrossRef] [PubMed]

18. Melnyk, S.; Hakkak, R. Metabolic Status of Lean and Obese Zucker Rats Based on Untargeted and Targeted Metabolomics
Analysis of Serum. Biomedicines 2022, 10, 153. [CrossRef]

19. Špolcová, A.; Mikulášková, B.; Kršková, K.; Gajdošechová, L.; Zórad, Š.; Olszanecki, R.; Suski, M.; Bujak-Giżycka, B.; Železná,
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