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Abstract: The presence of mycotoxins in cereals can pose a significant health risk to animals and
humans. China is one of the countries that is facing cereal contamination by mycotoxins. Treating
mycotoxin-contaminated cereals with established physical and chemical methods can lead to negative
effects, such as the loss of nutrients, chemical residues, and high energy consumption. Therefore,
microbial detoxification techniques are being considered for reducing and treating mycotoxins in
cereals. This paper reviews the contamination of aflatoxins, zearalenone, deoxynivalenol, fumonisins,
and ochratoxin A in major cereals (rice, wheat, and maize). Our discussion is based on 8700 samples
from 30 provincial areas in China between 2005 and 2021. Previous research suggests that the
temperature and humidity in the highly contaminated Chinese cereal-growing regions match the
growth conditions of potential antagonists. Therefore, this review takes biological detoxification as
the starting point and summarizes the methods of microbial detoxification, microbial active substance
detoxification, and other microbial inhibition methods for treating contaminated cereals. Furthermore,
their respective mechanisms are systematically analyzed, and a series of strategies for combining the
above methods with the treatment of contaminated cereals in China are proposed. It is hoped that
this review will provide a reference for subsequent solutions to cereal contamination problems and
for the development of safer and more efficient methods of biological detoxification.

Keywords: cereal contamination; mycotoxins; China; microbial decontamination mechanism

1. Introduction

Cereal farming has always been a major part of human agricultural production, as
cereals are essential human foods and animal feed resources. Based on global survey data
and thresholds, Marin et al. [1] confirmed the Food and Agriculture Organization’s (FAO)
claim that about 25% of global cereals are contaminated with mycotoxins. Mycotoxins
are secondary metabolites produced by certain fungi in oilseeds, cereals, legumes, nuts,
and processed products during the pre-harvest and post-harvest stages [2]. The common
mycotoxins include aflatoxins (AFs), ochratoxin A (OTA), zearalenone (ZEN), deoxyni-
valenol (DON), T-2 toxin (T-2), and fumonisin (FB), all of which exhibit a high melting
point, poor solubility, a long half-life, and are carcinogenic, mutagenic, and teratogenic [3].
The International Agency for Research on Cancer (IARC) has classified many natural
mycotoxins as being linked to carcinogenicity [4] and recognized aflatoxin as the most
serious carcinogen as it has the strongest biological toxicity. Specifically, AF exposure in
combination with hepatitis B virus infection increases the risk of liver carcinogens (hepa-
tocellular carcinoma) in some areas of South Africa and China [5,6]. Histological analysis
has confirmed that cattle mortality due to liver damage is strongly associated with the
consumption of AF-contaminated peanuts [7]. In addition, continuous exposure to high
doses of aflatoxin can cause growth retardation in children [8]. Additionally, ochratoxin,
which is as harmful as aflatoxin, is often detected in pork for human consumption [9].
According to Petkova-Bocharova et al. [10], as a nephrotoxin, ochratoxin may be related to
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the Balkan endemic nephropathy and urinary tract tumors. Table 1 lists the mycotoxins
commonly found in cereals and their effects.

Table 1. Common mycotoxins in cereals and their toxicology.

Mycotoxin
(Toxic Dose) Food Commodity

Toxicology

Human Animals

Aflatoxins (AFs)
(>2 ppm or 300 µg/kg)

Maize, sorghum,
pearl millet, rice,
wheat, oilseeds,
spices, and tree nuts

1. Ingestion of medium or high doses
of AFs can cause acute liver damage,
potentially leading to death. Chronic
AF poisoning can lead to cirrhosis
and liver cancer [11].

1. Increased mortality, reduced
hatchability, growth rate, meat and egg
yield, and quality in poultry [12].

2. Neurotransmitter deficiency
impairing the central nervous
system [13].

2. In dairy cows and beef cattle, acute AF
poisoning can decrease milk production
and cause weight loss and death [14].

3. Immunosuppression [15].

Ochratoxin A (OTA)
(>100 ng/g)

Rice, barley, maize,
wheat, flour,
and bran

1. Balkan endemic nephropathy
(BEN) and chronic interstitial
nephropathy (CIN) [16].

1. Excessive intake of OTA can cause
kidney disease in pigs.
2. In poultry, weight loss, decreased egg
production and eggshell quality, and
renal toxicity [17].2. Genotoxic and carcinogenic [18].

Fumonisin
(>200 µg/g)

Rice, wheat,
peanut, barley,
maize, rye, oat,
and millet

1. Esophageal cancer, oral cancer,
pharyngeal cancer, and fetal neural
tube defects [19].

1. Pulmonary edema in pigs and
leukoencephalomalacia in horses.
2. Toxic to the liver and kidneys of
poultry and livestock [20].2. Promotes AF-initiated liver

tumors [21].

Zearalenone (ZEN)
(>0.5 µg/kg)

Maize, rice, wheat,
and barley

1. Increased risk of breast cancer [22].

Miscarriage and infertility in livestock [23].

2. Excessive ZEN intake during
pregnancy can reduce embryo
survival [24].

3. Genetic, immune, blood, and liver
toxicity [23].

Citrinin
(>20–40 mg/kg)

Wheat, rye, barley,
and beans

1. Chronic poisoning can cause
kidney failure and weight loss. 1. Slow growth and watery feces in poultry.

2. Embryotoxic, immunotoxic, and
teratogenic effects [25].

2. Chickens, rabbits, and mice experience
varying degrees of liver and kidney
damage [26].

Deoxynivalenol (DON)
(>19.3 ng/g)

Wheat, barley, oats,
rye, and maize

Excessive intake of DON can cause
nausea, vomiting, diarrhea, abdominal
pain, headache, and fever [27].

1. Excessive intake of DON can cause
acute gastrointestinal diseases and
immune dysfunction.

2. Weight loss and anorexia [28].

T-2 toxin
(>0.05–10 mg/kg)

Wheat, maize,
barley, rice,
soybeans, and oats

1. Skin blistering, pain, burning,
itching, and inflammation.

1. Cows were diagnosed with
gastroenteritis lesions, intestinal bleeding,
decreased milk production, and no
estrus cycle.

2. Dyspnea and coughing after
inhalation, as well as vomiting,
diarrhea, and anorexia.

2. Poultry were diagnosed with impaired
immune systems, damaged
hematopoietic systems, and altered
feather patterns.

3. Genetically toxic and cytotoxic
with adverse effects on the immune
system [29].

3. Pigs were diagnosed with gastric
bleeding, intestinal necrosis, and a refusal
to feed [29].



Metabolites 2023, 13, 551 3 of 22

The growing public attention paid to food quality and safety has strengthened the
scientific research into mycotoxins and toxin-producing molds in cereals [30–32]. De-
veloping countries generally face a greater threat than developed countries because of
their inadequate storage and transportation facilities. Moreover, the U.S. Department
of Agriculture reports that China’s total grain production reached 548.5 million tons in
2019–2020, accounting for about 20% of the world’s total production, among which more
than 10 million tons of cereals were contaminated above national standards [33]. Therefore,
the decontamination of mycotoxins in cereals remains a research hotspot.

The growth of molds and mycotoxin production cannot be separated from warm tem-
peratures (28–31 ◦C) and high humidity (60–90%). The climate in China exhibits significant
differences in rainfall, temperature, and humidity across its vast territory, accompanied
by seasonality and an extreme climate, making cereals more susceptible to mold contami-
nation [34,35]. Although established physical and chemical methods are widely used to
decontaminate cereals, they often result in nutritional losses or chemical residues. Biologi-
cal (e.g., microbial) decontamination methods present an alternative method for inhibiting
the growth of foodborne pathogens and, importantly, keeping mycotoxin concentrations
below the prescribed limits [36]. Some of these methods have the advantages of being
efficient, economical, and environmentally friendly [37].

Recent developments in microbiology, such as the studies of Mannaa et al. and Simon-
etti et al. [38,39], which focus on important processes for the microbial decontamination of
cereals outside China, have led to a renewed interest in microbial decontamination, indicat-
ing a growing trend toward replacing physical or chemical means with microbial methods.
The reaction between the studied Stenotrophomonas species and eleven food and feed crops
contaminated by trichothecene mycotoxins [40] triggered detoxification effects beyond
the researchers’ expectations, highlighting the industrial potential of using such strains to
reduce trichothecene contamination in food and feed and to minimize their cytotoxicity.

This review summarizes the status of mycotoxin contamination of major cereal crops,
including rice, wheat, and maize, in 30 provincial areas of China between 2005 and 2021.
Data were sourced from the Food and Agriculture Organization of the United Nations
(FAO), the State Food and Material Reserve Administration, the State Administration of
Market Supervision, and the World Health Organization (WHO) databases. The review also
analyzes the persistent problems with the established physical and chemical detoxification
methods. Against this background, our study proposes practical methods for inhibiting
or detoxifying of mycotoxins using microorganisms or active microbial substances and
systematically describes the mechanisms of different inhibition or detoxification methods.
Finally, it discusses the opportunities and challenges in the practical application of various
methods to solve the ongoing problem of mycotoxin contamination in China.

2. Cereal Contamination by Mycotoxins in China and the Existing Decontamination
Methods
2.1. Impact of Climate Change on the Mycotoxin Contamination Rate of Cereals in China

China serves as a major global cultivator and preserver of numerous cereals, including
maize, wheat, and rice [41]. Above 60% of consumers rely on cereals as their main energy
source in this developing country [42]. Due to China’s distinct continental monsoon climate
and complex geographical conditions, high temperature, high humidity, and drought are
observed in many of its regions annually [43]. These conditions benefit the growth and
metabolism of toxin-producing molds [44,45].

The amount of cereal contaminated by mycotoxins increased due to climate change
in southeastern China from 2009 to 2015 [46–48]. DON is a mycotoxin secreted by Fusar-
ium species, including F. culmorum, F. pseudograminearum, and F. graminearum, causing
Fusarium head blight (FHB) in cereals [49,50]. Their production has been reported to be
associated with increased rainfall and higher temperatures [45,46]. From 2010 to 2012,
increased rainfall led to severe DON contamination of wheat in Jiangsu Province (South-
eastern China) [51]. Additionally, an increasing trend in DON-contaminated maize (n = 50)
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was observed in Shanghai for 4 consecutive years (from 2009 to 2012), with an average
contamination concentration of 130 µg/kg [52]. The above observations demonstrate the
strong correlation between AF-contaminated cereals and temperature and humidity in
China. Specifically, most molds can multiply at a relative humidity above 70% [53], with
Aspergillus flavus being able to multiply consistently at water contents ranging from 94 g/kg
to 175 g/kg and temperatures in the range of 30–40 ◦C [54]. A 2010 survey revealed that
the better growth conditions for A. flavus and A. parasiticus Speare in Huaian and Fusui
(Southeastern China), as compared to Huantai (Northeastern China), were caused by the
lower annual rainfall and temperature in the former regions. This in turn explained the
greater amount of aflatoxin B1 (AFB1)-contaminated maize in Huaian and Fusui [47], with
>20 µg/kg AFB1 in ~35% of maize samples collected in Huaian [55]. Figure 1 illustrates our
review of cereal contamination by mycotoxins in China as calculated by several surveys (a
total of 8700 samples). Combined with other findings [56–61], this overview demonstrates
that the humid and hot climate in southern China is favorable for mycotoxin production
by fungi, resulting in more severe cereal contamination in southern China than in the
north [41].
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2.2. Correlation between Cereal Types and Mycotoxin Contaminants in China

It is common for specific mycotoxins to only be found in certain cereals in China.
For example, among 151 rice samples tested in 3 northeastern provinces of China, the
contamination rate of AF reached 63%, while the contamination rate of OTA was only
5.3% [62]. Fumonisin B1 (FB1), secreted by F. moniliforme, was mainly contaminated in maize
and its products when the ambient humidity was 18–23%. Figure 1 shows the contamination
of maize with FB1 in Henan and Shandong provinces. In warm and humid areas, Alternaria
species produce tenuazonic acid (TeA), which is the main mycotoxin present in wheat
samples [63,64]. Overall, DON and OTA were found in oat, barley, and gypsophila. AF
and ZEN were frequently found in maize, while OTA, T-2, HT-2, and diacetoxyscirpenol
(DAS) were not specific to contaminated cereals [60,65,66]. Figure 1 shows the cereals
contaminated with different mycotoxins found in various regions of China.

2.3. Existing Mycotoxin Detoxification Methods

In China, mycotoxins in food and feed are mainly removed using established physical
and chemical methods. Specifically, physical methods combine light, ultrasound, or ultra-
high temperatures with the sorting, washing, and milling process [67], or use UV/gamma
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radiation [68] during cereal processing to remove mycotoxins, but this may lead to nutrient
loss in the food. Chemical methods involve the addition of substances that promote
mycotoxin degradation during cereal processing, such as oxidants, ammonium, sodium
hydroxide, and diatomite. However, these substances are hard to remove and can remain
in cereals [69–71]. Moreover, the application of organic solvents for extraction generates
wastes and is not environmentally friendly. The advantages and disadvantages of these two
approaches for detoxification are analyzed in Table 2. Considering the chemical and thermal
stability of most mycotoxins, complete detoxification (i.e., mitigation of their toxicity by
altering or shifting the relevant structure) cannot be achieved using conventional measures.
What is more, mycotoxin contamination is usually heterogeneous, which poses another
challenge for the established treatment methods.

Table 2. Physical and chemical detoxification methods with analysis.

Detoxification
Approach Specific Method Pros Cons References

Physical

Sorting Reduces aflatoxin contamination
level by up to 70–80%. Inefficient and laborious.

[72]
Extrusion

Reduces aflatoxin contamination
level by 50–80%. Causes a loss of nutritional ingredients in

the cereals.Reduces the toxicity of the
initial compounds.

Heat treatment

Kills molds attached to the surface
of the cereal.

Damages cereals’ nutritional values and
sensory quality.

[73]
Destroys some natural toxins
by 10–25%.

High energy consumption. Restricted by
the heat resistance and moisture of cereals.

Ultraviolet (UV)
radiation

Reduces aflatoxin concentration by
up to 40–45%.

Limitations, including low penetration
and narrow wavelength range, mean the
industry has not yet recognized the
patented process of UV inactivation
of aflatoxin.

[74]
Main degradation compound of AFB1
seems to retain residual toxicity when
exposed to UV light, requiring further
degrading into non-toxic forms.

Irradiation

High efficiency in eliminating
microorganisms and other
potential pathogens infecting
cereals (over 68.9% for AFB1, over
51% for OTA).

High-energy consumption. Destroys
water-soluble vitamins and proteins
in cereals.

[75]

Cold plasma

Does not cause heat damage to
processed food or affect the
protein content.

Plasma treatment of irregularly shaped or
bulk food materials can be challenging.

[76]The potential cytotoxic effect remains
unclear.

Amplification and continuous processing
are challenges of current plasma
equipment design.

Pulsed light

Potential substitute for traditional
technology which does not reduce
food quality.

Seldom able to penetrate the cereal, so it is
difficult to deal with mycotoxins deep in
the cereal.
Reduces the germination rate of the seeds.

[75]
Cost-effective non-thermal
technology leaves no residue on
food materials.
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Table 2. Cont.

Detoxification
Approach Specific Method Pros Cons References

Chemical

Fungicides and
pesticides

Minimize fungal infections or
insect damage to crops, reducing
mycotoxin contamination by up
to 55–75%.

Can produce residues hazardous to food
safety and the environment.

[77]

Fungicide concentrations tested in the
laboratory exceeded the maximum
solubility levels in aqueous media, so
effectiveness is unclear.

Long-term use will produce drug
resistance in molds if residue remains in
the cereals, thus affecting eating quality.

Ozone

Can inhibit the growth, spore
formation, and germination
of fungi.

Antibacterial activity largely depends on
the type of vegetable/fungi, growth stage,
concentration, and exposure time. [78]

Loss of nutrition or sensory
quality in food/feed is negligible.

Degradation products formed by residues
are not yet fully determined.

Ammonia
Reducese AFs, FBs, and OTA to
undetectable levels and inhibits the
growth of toxin-producing molds.

Infrastructure is complex, and the
European community does not allow this
method to be used for human food.

[77]

Acid treatment Degradation of AFs
(barely detectable).

Causes chemical residues, limiting its
applicability in cereal due to safety concerns. [77]

During the storage of cereal, toxin-producing molds reproduce rapidly, allowing
mycotoxins to accumulate in cereals; this causes significant potential economic losses. For
example, one study tested 182 cereal samples from cereal silos in Hubei Province, China,
and showed that the average content of FB1 was 12.55 mg/kg [79]. To avoid the huge losses
caused by mycotoxins in cereals, the Chinese government has updated the thresholds for
common mycotoxins in cereals and other agricultural commodities. Manufacturers in food
and feed processing should follow the relevant standards in Table 3. In 2019–2020, the
Ministry of Agriculture of China issued the National Agricultural Product Quality and
Safety Risk Assessment Plan, which took the contamination of common mycotoxins in
cereals in different regions of China as a key assessment item. These decisions indicate
that mycotoxin contamination in the production and storage of cereals in China had
not been effectively controlled previously. Furthermore, in consideration of the serious
hazards caused by mycotoxins due to their high toxicity, scientists have recommended
enhanced mold protection from early planting to storage and the adoption of more effective
detoxification methods [43,80].

Table 3. Maximum tolerable level of mycotoxins in cereals and other agricultural commodities
in China.

Product Name
Mycotoxin Limit (µg/kg) a

AFB1 DON OTA ZEN T-2 FB1 + FB2

Food category

Maize, cornmeal, maize products ≤20

≤1000
≤5.0

≤60

Rice, brown rice ≤10

Wheat, barley, other hulled cereals ≤5.0 ≤60

Beans, bean products ≤5.0

Peanut, peanut products ≤20

Vegetable oils (except peanut and maize oil) ≤10

Peanut oil, maize oil ≤20
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Table 3. Cont.

Product Name
Mycotoxin Limit (µg/kg) a

AFB1 DON OTA ZEN T-2 FB1 + FB2

Feed raw material

Cereals, processed products ≤30

≤500 ≤100

≤1000

≤500

Processed maize products ≤50 ≤500 ≤60,000

Vegetable oils (except peanut and maize oil) ≤10

≤1000Peanut oil, maize oil ≤20

Other vegetative feed raw materials ≤30

Feed products
Compound feed for piglets and young birds ≤10 ≤1000

≤150 ≤500

Supplementary feed for calves and lambs ≤20 ≤500
≤2000

Other compound feed ≤20 ≤3000 ≤100 ≤500
a: information from GB2761-2017 and GB13078-2017.

3. Microbial Methods of Inhibiting Mycotoxin Growth and Detoxifying Mycotoxins
3.1. Decontamination Methods Based on Microorganisms

The most recent research focus in the field of cereal contamination is the use of
microbial methods to inhibit the growth of toxin-producing molds and detoxify mycotoxins.
The microorganisms employed include yeasts, lactic acid bacteria, bacilli, non-toxic molds,
and marine microorganisms. The microorganisms that play a crucial role in the prevention
and control of toxic mold and mycotoxin production in cereals are discussed here, and they
are classified according to their different mechanisms.

3.1.1. Adsorption and Binding Using Microorganisms

The physisorption of some microorganisms, especially Saccharomyces cerevisiae strains,
can reduce certain mycotoxins in feed and cereals. Stanley et al. [81] demonstrated im-
proved poultry growth after the addition of yeast to AF-contaminated feed. Another
study [82] pointed out that the active component of yeast for mycotoxin adsorption is
the glucomannan in the yeast cell wall, so both yeast [83] and the isolated yeast cell wall
can act as mycotoxin adsorbents. In addition, the modification of yeasts can increase the
noncovalent interaction between the side chains of cell walls and toxin molecules. One
study demonstrated that yeast modified with β-1,3-glucan adsorbed 81.6%, 27.8%, and
25.6% of AFB1, T-2, and OTA, respectively [84]. Yiannikouris et al. [85] extracted yeast
cell walls and tested their adsorption capacity using S. cerevisiae as the raw material. They
observed that the affinity of β-D-glucan for different toxin molecules was in the order of
AFB1, DON, and OTA from high to low. Similarly, some yeasts modified by the crosslinking-
esterification of alkyl ammonium ion glucan compounds had a high adsorption capacity
for ZEN (183 mg/g) and T-2 (10 mg/g) [86]. Accordingly, various mycotoxin adsorbents
have been developed using yeast cells to reduce the harmful effects of mycotoxins.

Scientists have conducted many studies on the binding sites of lactic acid bacteria and
probiotics to mycotoxins, as lactic acid bacteria and several probiotics can be powdered and
added to mycotoxin-contaminated cereals to remove mycotoxins [87]. An in vitro compari-
son of AFB1 binding to Lactobacillus and Propionibacterium revealed that Lacticaseibacillus
rhamnosus GG and L. rhamnosus LC705 could bind nearly 80% of AFB1 (5 µg/mL) within
one hour at 1010 cfu/mL [88]. After heat inactivation and acid treatment, the two Lactobacil-
lus strains are more effective in reducing AFB1 and exhibit a better binding capacity for
ZEN and its derivative α-ZOL [89]. Accordingly, heating and acid treatment may affect
the binding sites of probiotics, thereby increasing their binding affinities for AFB1 and
reducing its accumulation. Niderkorn et al. [90] found that L. rhamnosus GG, L. delbruekii
ssp. bulgaricus R0149, and Leuconostoc mesenteroides R1107 could detoxify ZEN, FB, and
several trichothecenes (DON, nivalenol, and T-2), revealing that peptidoglycans in the
bacterial cell wall are binding sites for Aspergillus toxins. Other researchers demonstrated
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that the peptidoglycans of L. rhamnosus GG [91] and the teichoic acid of the Lacticaseibacillus
casei strain Shirota [92] are indispensable components for their cell walls binding to AFB1.
They are involved in the formation of a reversible complex between the mycotoxin and the
microbial surface, and participate in the process of mycotoxin binding and release [93].

Although the addition of appropriate probiotics to cereals can reduce the number
of mycotoxins [94], the application of this approach in food and other commodities is
limited. This is because many lactic acid bacteria that are generally regarded as safe
(GRAS) as bioconjugates require strict anaerobic characteristics and abnormal culture
conditions. It is clear that the future development of multiple safe strains for incorporation
into contaminated cereals remains challenging. Additionally, more microbial adsorption
and binding mechanisms need to be investigated to enable the further exploration of more
efficient microbial detoxification pathways.

3.1.2. Biocompetitive Inhibition Using Microorganisms

Biocompetitive inhibition is based on the inoculation of highly competitive non-toxic
strains in the soil where the cereal grows, competing with the toxin-producing molds.
The non-toxic strains, which are generally from the same species as the toxic strains,
are able to reduce or inhibit mycotoxin production to some extent, thus reducing the
probability of cereal infection. Such biocompetitive methods were first used by the ARS
laboratories in the USA to reduce AFs in cereals [95]. Since then, numerous studies have
also demonstrated that non-toxic Aspergillus spp. can be used to reduce Afs in cereals
and crops by competing biologically with AF-producing species and inhibiting the latter’s
metabolism. Dorner et al. [80] used competition among microorganisms to inoculate
the non-toxic A. parasiticus into peanut-producing land to reduce AFB1 content in edible
peanuts by 83–98%. Considering the biocompetitive relationships among microbes, another
study [96] introduced the Aspergillus strain (atoxigenic) into the soil, which decreased
AFB1 content in cotton seeds compared to the control group. The inoculation of corn with
non-toxigenic A. flavus K49 and CT3 reduced AFs by 65–94% [97]. Additionally, non-toxic
A. flavus NRRL 18543 and NRRL 21882 are also commercially produced nowadays, due to
their highly effective removal of mycotoxins from cereals including corn [97–99]. Moreover,
antagonistic bacteria can inhibit the growth and infection of toxic fungi. For example,
Bacillus subtilis and some species of the genus Streptococcus were employed to control
wheat scab, and Bacillus polymyxa AFR0406 was shown to prevent wheat scab and sheath
blight [100]. Such strains are highly effective in inhibiting mycotoxin production. Although
they are able to inhibit the growth of toxin-producing molds under laboratory conditions,
their ability to achieve good results in cereals and foods is limited due to the difficulty of
bringing bacterial cells to the site of infection. On the other hand, although the purpose of
using the biocompetitive method is to find more favorable strains than toxigenic molds,
the competition mechanism is still unclear, making it impossible to determine the amount
of inoculum required and the suitable treatment conditions.

3.2. Microbial Active Substance Decontamination Methods

Microorganisms can purify cereals by generating active substances or degrading
mycotoxins into less toxic or non-toxic substances. The following sections describe these
two processes, providing theoretical support for this approach to reducing mycotoxins
in cereals.

3.2.1. Inhibition Using Microbial Active Substances

Microorganisms inhibit the growth of toxin-producing molds, and mycotoxins exert
toxicity by producing active substances such as secondary metabolites. Table S1 lists many
active substances and their action conditions, including polypeptides, small molecular
substances, enzymes, and organic acids [101]. Some metabolites of yeast and lactic acid
bacteria (e.g., 2-phenylethanol, phenyllactic acid, and indole lactic acid) have antagonistic
effects [102–108]. Multiple antifungal compounds contained in the supernatant of Lacti-
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plantibacillus plantarum K35 completely inhibit the growth and AF production of A. flavus
TISTR3041 and A. parasiticus TISTR3276 [108]. Munimbazi et al. [109] found that the fermen-
tation broth of B. pumilus inhibited the production of AF. Later, the same authors identified
cyclic polypeptides or nonpeptide compounds in the broth as the active ingredient isolated
from B. pumilus [110]. When the concentration of the active substance was 0.2 mg/mL,
its inhibition rate of OTA and A. ochraceus NRRL 3174 hyphae was approximately 71%
and 76%, respectively. Futhermore, aflastatin, an active substance with antibiotic effects
extracted from Streptomyces, was able to prevent the production of Afs by A. parasiticus at
a concentration of 0.5 µg/mL [111]. In addition to the active substances extracted from
microbial cultures, volatile compounds produced during the metabolism of certain microor-
ganisms can also purify cereals. For example, phenyl ethanol and 1-pentanol, produced by
Enterobacter asburiae Vt-7, have been shown to downregulate the expression of AF genes
and thus significantly reduce A. flavu contamination of cereals [112]. Studies have also
demonstrated that the main volatile compound produced by the four yeasts (Cyberlindnera
jadinii 273, Candida friedrichii 778, Candida intermedia 235, and Lachancea thermotolerans 751)
is 2-phenylethanol, which makes a significant contribution to the inhibition of growth and
OTA production by A. ochraceus and A. carbonarius [102]. Interestingly, the mechanism of
inhibition by 2-phenylethanol is similar to that of some Streptomycete spp. in that it inhibits
the spore production of toxin-producing molds [107]. Although various microorganisms
produce active substances that can inhibit the growth of toxin-producing molds and halt
mycotoxin production, the conditions of action for these active substances are complex and
varied, posing a significant challenge to the practical application of such substances.

3.2.2. Detoxification Using Microbial Active Substances

In addition to inhibition, detoxification with microbial active substances is one of
the main strategies for reducing the contamination of cereals with mycotoxins [113–122].
Table 4 lists the detoxification conditions and products and detoxification efficiency of
various microorganisms. According to the study conducted by Takahashi-Ando et al. [123],
the lactone hydrolase ZHD101 produced by Clonostachys rosea IFO 7063 can bind and break
the lactone ring of zearalenone. Meanwhile, monooxygenases can oxidize the 12,13-epoxy
group of deoxynivalenol. The functional group of mycotoxins are cleaved to form new
metabolites that are more easily excreted by the digestive system, which significantly
reduces their toxic effects. The active substances produced by specific microorganisms,
such as epoxidase, extracellular xylanase, proteases, and esterases, can detoxify DON and
ZEN [124,125]. Other active components in cell-free cultures have also been confirmed to
detoxify mycotoxins [126–128]. According to Teniola et al. [103], cell-free extracts of four
species of bacteria (Rhodococcus erythropolis DSM 14303, Nocardia corynebacterioides DSM
12676, Nocardia corynebacterioides DSM 20151, and Mycobacterium fluoranthenivorans sp. nov.
DSM 14304) substantially detoxified AFB1 at 30 ◦C, pH = 7.0. There are relatively few
studies on the use of active microbial substances for detoxification, leading to limitations in
the further development of efficient detoxification procedures using this approach.

Table 4. Sources of active microbial substances that detoxify mycotoxins and their conditions
of detoxification.

Microbial
Source

Detoxification Active
Substances

Target
Mycotoxin

Mycotoxin
Detoxification (%)

Detoxification
Conditions

Detoxification
Products Reference

Bacillus
shackletonii L7

Bacillus
aflatoxin-degrading

enzyme (BADE)

Aflatoxin B1 92.1

37 ◦C - [129]Aflatoxin B2 84.1

Aflatoxin M1 90.4

Bacillus subtilis
UTBSP1 Extracellular enzymes Aflatoxin B1 85.66 35–40 ◦C - [130]

Bacillus
aryabhattai DT Extracellular enzymes Aflatoxin B1 78 37 ◦C - [131]
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Table 4. Cont.

Microbial
Source

Detoxification Active
Substances

Target
Mycotoxin

Mycotoxin
Detoxification (%)

Detoxification
Conditions

Detoxification
Products Reference

Bacillus
licheniformis

BL010

Two degrading
enzymes (Chia010 and

Lac010)
Aflatoxin B1 89.1 30 ◦C

Molecular
formula is
C12H14O4

[132]

Bacillus velezensis
DY3108

Extracellular proteins
or enzymes Aflatoxin B1 91.5 80 ◦C, pH = 8 - [133]

Bacillus pimilus
E-1-1-1 Extracellular extracts

Aflatoxin M1 100
37 ◦C - [134]

Aflatoxin B1 89.55

Candida versatilis
CGMCC3790

Intracellular
components Aflatoxin B1 70 25 ◦C, pH = 5.0

Molecular
formulas are

C14H10O4,
C14H12O3,
C13H12O2,
C11H10O4

[116]

Escherichia coli
CG1061 Heat-resistant protein Aflatoxin B1 93.7 55 ◦C, pH = 8.5

Molecular
formula is
C16H14O5

[120]

Cladosporium
uredinicola
CCTCC M

2015181

Extracellular enzymes Aflatoxin B1 84.50 ± 5.70 37 ◦C - [135]

Pseudomonas
aeruginosa N17-1

Extracellular enzymes

Aflatoxin B1 82.8

37 ◦C - [136]Aflatoxin B2 46.8

Aflatoxin M1 31.9

Pseudomonas
putida MTCC

2445
Intracellular enzymes Aflatoxin B1 80 50 ◦C, pH = 7.0 - [137]

Bacillus
licheniformis CotA laccase Aflatoxin B1 96 37 ◦C, pH = 8.0

Aflatoxin Q1
and

epi-aflatoxin
Q1

[114]

Mycobacterium
smegmatis

MSMEG 5998
(aflatoxin-degrading
F420H2-dependent

reductase)

Aflatoxin B1 31 22 ◦C - [138]

Pseudomonas
putida 12-3

Intracellular enzymes

Aflatoxin B1 83.3

30 ◦C, pH = 8.0 - [139]
Escherichia coli

12-5 Aflatoxin B1 63.8

Tetragenococcus
halophilus

CGMCC 3792
Intracellular enzymes Aflatoxin B1 82.8 55 ◦C

Molecular
formula is
C14H20O2

[115]

Fusarium sp.
WCQ3361 Protein Aflatoxin B1 95.38 30 ◦C - [133]

Lacticaseibacillus
acidophilus PTCC

1643
- Aflatoxin M1 100

21 ◦C

- [140]
Lactiplantibacillus
plantarum PTCC

1058
37 ◦C
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Table 4. Cont.

Microbial
Source

Detoxification Active
Substances

Target
Mycotoxin

Mycotoxin
Detoxification (%)

Detoxification
Conditions

Detoxification
Products Reference

Flavobacterium
aurantiacum Crude protein extracts Aflatoxin B1 74.5 30 ◦C, pH = 7.0 - [141]

Phanerochaete
sordida YK-624

Manganese
peroxidase (MnP) Aflatoxin B1 86 30 ◦C, pH = 4.5 AFB1-8,9-

dihydrodiol [119]

Rhodococcus
erythropolis DSM

14303

Cell-free extract Aflatoxin B1

95

30 ◦C, pH = 7.0 - [127]

Nocardia
corynebacterioides

DSM 12676
70

Nocardia
corynebacterioides

DSM 20151
100

Mycobacterium
fluoranthenivorans

sp. nov. DSM
14304

100

Stenotrophomonas
maltophilia 35-3 Extracellular enzymes Aflatoxin B1 82.5 37 ◦C, pH = 8 - [142]

Bacillus
licheniformis CK1

Extracellular xylanase,
CMCase and protease Zearalenone 97 20 ◦C - [143]

Clonostachys rosa
IFO 7063

Lactonohydrolase
ZHD101 Zearalenone - pH = 7–10

1-(3,5-
dihydroxy-
phenyl)-10-
hydroxy-1-

undecen-6-one

[123]

Bacillus subtilis
168

Culture extract

Zearalenone 81

30 ◦C, pH = 8.0 - [128]
Bacillus natto
CICC 24640 Zearalenone 100

Aspergillus niger
FS10 Protease Zearalenone 89.92 37 ◦C - [144]

Pseudomonas
putida ZEA-1 Cell-free extract Zearalenone 100 30–37 ◦C,

pH = 7.0–8.0 - [126]

Bacillus pumilus
ES-21 Esterase Zearalenone 95.7 40.1 ◦C,

pH = 7.60

1-(3,5-
dihydroxyphenyl)-
6′-hydroxy-l′-
undecen-l0′-

one

[118]

Aspergillus niger OTA hydrolytic
enzyme

Ochratoxin
A 99 37 ◦C, pH = 7.5 - [145]

Yarrowia
lipolytica Y-2 Carboxypeptidases Ochratoxin

A 97.2 28 ◦C Otα [146]

Acinetobacter sp.
neg1, ITEM

17016
Carboxypeptidases Ochratoxin

A 70 37 ◦C Otα [147]

Bacillus
amyloliquefaciens

ASAG1
Carboxypeptidase Ochratoxin

A 100 37 ◦C, pH = 7.0 - [148]



Metabolites 2023, 13, 551 12 of 22

Table 4. Cont.

Microbial
Source

Detoxification Active
Substances

Target
Mycotoxin

Mycotoxin
Detoxification (%)

Detoxification
Conditions

Detoxification
Products Reference

Aspergillus niger Crude lipase
(Amano A)

Ochratoxin
A 100 30 ◦C, pH = 7.5 Otα and

phenylalanine [117]

Aspergillus niger
W-35 Ochratoxinase Ochratoxin

A 85.1 37 ◦C - [149]

Alcaligenes
faecalis

N-acyl-L-amina acid
amidohydrolase

(AfOTase)

Ochratoxin
A - 50 ◦C, pH = 6.5 - [150]

Sphingopyxis sp.
MTA144

Recombinant
carboxylesterase

Fumonisin
B1

100 30 ◦C, pH = 8.0 - [151]

Bacterial
consortium

SAAS79
Intracellular enzymes Fumonisin

B1
90 28 ◦C, pH = 7.0 pHFB1a or

pHFB1b [121]

Bacterium ATCC
55552 Aminotransferase Fumonisin

B1
100 25 ◦C - [152]

3.3. Other Microbial Inhibition Methods

A great leap in molecular biology relates to the uncovering of the whole genome
sequences of ten important Aspergillus species: A. flavus, A. parasiticus, A. fumigatus, A.
sojae, A. nomius, A. tamarii, A. pseudotamarii, A. bombycis, A. oryzae, and A. sojae [153],
which allowed scientists to explore the biochemical mechanisms of mycotoxin synthesis.
A comparison of the genomes of toxin-producing molds with those of similar strains
without toxin-producing activity will help to identify the key toxin-producing genes and
corresponding enzymes and proteins. Then, the key genes involved in mycotoxin synthesis
can be removed by gene knockout, and the resulting non-toxic mold can replace the original
toxin-producing strain and alleviate mycotoxin contamination in cereals [154]. Cereals can
be genetically modified to enhance the expression of endogenous genes that resist toxin-
producing molds and mycotoxin contamination. Additionally, transgenic technology can
be used to introduce exogenous genes, thus equipping cereals with antimicrobial properties
and reducing mycotoxin contamination [155].

The practical production of the enzyme is difficult due to the complex separation and
purification process, its unstable activity, and the harsh survival conditions. This limitation
can be overcome by cloning detoxification genes with high activity and by achieving the
heterologous expressions of degrading enzyme genes in prokaryotic or eukaryotic engineered
strains [156,157] (more information on mechanism (5) is provided in Section 3.4).

Combination enzymes with microorganisms antagonistic to the toxic strain can also
increase enzymatic activity and improve the decontamination of mycotoxins [158]. Zuo’s
research demonstrates that the addition to chicken feed of probiotics and the AFBl de-
grading enzyme conjugates resulted in a reduction in toxic substances and a significant
improvement in the antioxidant capacity of chicken liver cells and the chicken production
performance [159]. However, only a few degradation enzymes have been found to be
efficient in degrading mycotoxins. In the future, a larger number of strains need to be
screened and studied in depth for their degradation ability, enabling scientists to isolate
and purify their degradation enzymes and find the genes that regulate these enzymes.
Then, these enzymes will be cloned into heterologous expression vectors so that they can be
efficiently used in the actual production of cereals and feed. Furthermore, since bioactive
enzymes are highly specific for mycotoxins, efforts should be made to explore appropriate
degrading enzymes for rare or even unknown mycotoxins [160,161].

These studies reveal that molecular biotechnology can identify the genes and enzymes
responsible for mycotoxin synthesis and transfer genes encoding good mycotoxin degra-
dation properties. Further understanding of the mechanisms of and interactions between
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toxins and microorganisms will provide a significant theoretical and practical basis for
controlling mycotoxins in cereals using biotechnology.

3.4. Mechanism of Mycotoxin Reduction Using Microbiological Methods

Figure 2 illustrates five mechanisms of mycotoxin reduction: (a) previous studies have
demonstrated a direct relationship between the cell walls of beneficial microorganisms (e.g., yeast
and lactic acid bacteria) and their adsorption and binding of mycotoxins [162,163]. Specifically,
the yeast cell wall consists of three layers: the outer layer with mannose oligosaccharides
and protein complexes, the middle layer with dextran, and the inner layer with chitin. Luo
et al. [164] reported that the structural framework formed by β-1,3-glucan and chitin in the
yeast cell wall provides more meshes for the adsorption of mycotoxins. The higher the density
of the meshes, the stronger the adsorption capacity. This structure provides various hydrogen
bonding, electrostatic, and hydrophobic interaction sites for mycotoxin adsorption, which
enhances the adsorption capacity, as well as contributing to the purification of cereals and
feeds. Similarly, peptidoglycans, polysaccharides, and S-layer proteins in the lactic acid bacteria
cell wall contribute to the mycotoxin-binding process [91,165], and they generate chemical
complexes with mycotoxins via hydrogen bonds, van der Waals forces, and hydrophobic
interactions [166,167]. (b) Biocompetition using non-toxic molds is shown in the figure. The
atoxigenic strains compete against the toxin-producing molds for nutrition, limiting the latter’s
access to appropriate spaces and exhausting nutrients in the wound site. This causes the toxin-
producing molds to stop growing due to a lack of nutrients. (c) Microbial active substances
can specifically bind to toxin-producing molds, induce oxidative stress, break biochemical
reactions, and block the physiological metabolism of certain sensitive fungi, thereby inhibiting
the conidial growth and mycotoxin production of these molds. (d) Detoxifying mycotoxins
using active microbial substances involves specific, affinity, and high-catalytic enzymes that
convert mycotoxins into small non-toxic or less toxic molecules. It involves acetylation, ring
cleavage, hydrolysis, glycosylation, deamination, and decarboxylation [143,144,151,152]. For
example, Yarrowia lipolytica Y-2, Acinetobacter sp. neg1 ITEM 17016, and B. amyloliquefaciens
ASAG1 produce carboxypeptidase, detoxifying ochratoxin under appropriate conditions and
producing the less-toxic OTα [146–148]. (e) The removal of key genes for mycotoxin synthesis
or the enhanced expression of degradation enzyme genes is another method for decreasing
mycotoxin levels in cereals. Zhd101 is a new gene encoding a hydrolase of inhibitory metabolites
for ZEN [168]; it can be introduced into Escherichia coli and S. cerevisiae to break down ZEN,
α-zearalol, and β-zearalol into non-toxic products within 24 h.
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4. Conclusions and Prospects

In recent years, an increasing amount of research has explored the methods for the
mycotoxin decontamination of Chinese cereals and agricultural products [169,170], indi-
cating that the problem still needs to be solved. This review discussed the status of cereal
contamination in China. The collected data from 2005 to 2021 show that mycotoxin levels in
many cereals still exceed national standards. This is due to the temperature and humidity
in China being favorable for the growth of toxin-producing molds, especially in south-
ern China, which has a variable climate and complex geography. Physical and chemical
decontamination methods have certain limitations, such as insufficient cereal nutrition,
poor safety, and high energy consumption. To further reduce the content of mycotoxins in
cereals and avoid the shortcomings of the established methods, it is imperative to develop
new methods. This paper presents a variety of practical approaches to biotechnological
detoxification, including the microbial adsorption and binding of mycotoxins, the competi-
tive inhibition of the growth of toxin-producing molds or mycotoxin production, or the
specific screening of certain microorganisms or enzymes to detoxify or produce non-toxic
degradation products by destroying or modifying mycotoxins with the participation of
their secondary metabolites or secreted intracellular and extracellular enzymes [171,172].
Furthermore, some previous studies were used to systematically summarize the mech-
anisms of various biotechnological detoxification methods, providing a more intuitive
reference for preventing and controlling cereal contamination in China. Combining these
findings with the specific conditions of the Chinese environment is expected to reduce
mycotoxin contamination in grains during processing, transportation, and storage. This
will reduce the health risks to consumers and the economic losses to the feed industry and
animal husbandry.

Based on the expectations outlined in the previous section, the following recommen-
dations are made to ensure that the detoxification process becomes more effective and
environmentally friendly: (1) the summer season in southern China is characterized by
a temperature of ~30 ◦C and relatively high humidity, creating the right conditions for
active substances. Therefore, depending on the temperature and humidity of the environ-
ment, different kinds of microorganisms can be cultivated, and many active substances are
produced, which in turn detoxify or inhibit the production of mycotoxins, thus reducing
the contamination of cereals. (2) Northern regions of China such as the Liaoning and Jilin
Provinces have a dry climate and low temperatures. In these regions, more Spirulina sp.
and B. pumilus can be used for cereal detoxification, considering the inhibition conditions
of microorganisms presented in Tables S1 and 4; they will have a good detoxification effect
on the main mycotoxins. (3) The typical climatic characteristics of the area north and east
of the Qinling–Huaihe line limit the main cereals grown to wheat and corn, which are
susceptible to AF and DON infections, respectively. Therefore, spraying active microbial
substances produced by Bacillus sp. and Spirulina sp. on cereals will likely yield more
effective detoxification effects. (4) Given that the southern region is contaminated with
multiple mycotoxins due to the diversity of cereal varieties and frequent rainy seasons, it
may be impractical to utilize active substances that specifically degrade one mycotoxin.
This prompts the use of multiple probiotic microorganisms to achieve detoxification by
the biocompetitive inhibition of toxin-producing molds or adsorption of mycotoxins by
beneficial bacteria, such as by using yeast in agricultural fields or barns.

The development of mycotoxin biodegradation and the inhibition of toxin-producing
molds has positive effects on the detoxification of cereals and other agricultural commodi-
ties. However, several challenges and limitations remain: (1) the current research on
microorganisms for adsorption and combined detoxification mainly focuses on yeast and
its cell wall, lactic acid bacteria, and other strains, which still cannot meet the needs of
cereal food safety. (2) The mode of action of antagonistic microorganisms is unknown,
limiting the use of these organisms in field conditions. (3) The complex and diverse condi-
tions of the inhibition of active substances produced by various microorganisms and the
relatively few studies that use them for detoxification pose challenges to the effectiveness
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of cereal detoxification and the further development of efficient detoxification products.
(4) There are few studies on degradation enzymes that effectively degrade mycotoxins,
posing a challenge to the isolation and purification of degradation enzymes released by
microorganisms. In conclusion, much work needs be done to address the current limitations
and challenges so that microbial detoxification techniques can be fully used to detoxify
cereals and agricultural products. First, since strains have different detoxification effects
on different mycotoxins, using a single strain often does not achieve the desired effect.
Therefore, it is possible to further improve the detoxification effect by combining multiple
strain detoxification methods in future research. Second, most strains currently screened
in the natural environment have detoxification effects on cereals but still do not meet the
GRAS Act standards. Scientific safety studies could be conducted on the strains known
to have detoxification effects so that most strains can be legally added to cereals as soon
as possible. Finally, a large number of strains with detoxification abilities can be further
screened, the mechanism can be studied in depth, the degradation enzymes released by the
strains can be further isolated and purified, the genes regulating the degradation enzymes
can be searched for, and then further cloning can be performed to finally achieve efficient
expression in vector. In the future, we hope to combine scientific research with Chinese
environmental conditions and cereal storage methods to solve the problem of the mycotoxin
contamination of cereals and crops as early as possible.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metabo13040551/s1, Table S1: Sources of active microbial substances
inhibiting toxin-producing molds and mycotoxins and their conditions of action [102–105,107–112].
References [173–197] are cited in the supplementary materials.
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