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Abstract: During the prenatal period, maternal and fetal cells compete for calories and nutrients.
To ensure the survival of the mother and development of the fetus, the prenatal hormonal milieu
alters the competitive environment via metabolic perturbations (e.g., insulin resistance). These
perturbations increase maternal caloric consumption and engender increments in both maternal fat
mass and the number of calories captured by the fetus. However, a mother’s metabolic and behavioral
phenotypes (e.g., physical activity levels) and her external environment (e.g., food availability) can
asymmetrically impact the competitive milieu, leading to irreversible changes in pre- and post-
natal development—as exhibited by stunting and obesity. Therefore, the interaction of maternal
metabolism, behavior, and environment impact the competition for calories—which in turn creates a
continuum of health trajectories in offspring. In sum, the inheritance of metabolic phenotypes offers
a comprehensive and consilient explanation for much of the increase in obesity and T2DM over the
past 50 years in human and non-human mammals.
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1. Introduction

Competition is inherent in all biologic phenomena—from mating to metabolism [1–5].
Thus, it is the ‘struggle for existence’ that distinguishes mere physicochemical objects from
organisms—molecules and mountains do not compete to survive and reproduce, but cells
and people do. Therefore, “nothing in biology makes sense except in light of competition” [2].

This assertion, in concert with evolutionary theory, reveals that multi-celled organ-
isms are the descendants of ancient single-cell creatures whose competitive success and
subsequent reproductive fitness were improved by aggregation—the grouping of cells
into coherent organisms [1]. Therefore, mammalian bodies can be viewed as ‘ecosystems’
comprising trillions of semi-autonomous cells competing for the nutrient-energy resources
necessary for survival (‘calories’; glucose, fatty- and amino-acid molecules).

This conceptualization—that the body is a competitive ‘ecosystem’ of cells—offers a
comprehensive framework for understanding the inheritance of metabolic phenotypes and
subsequent development of obesity, type-2 diabetes mellitus (T2DM), and cardiovascular
diseases (CVD) in human and nonhuman mammals. Yet, to grasp how the ‘competition
for calories’ between mother and fetus impacts inheritance across species, it is necessary to
understand the evolutionary foundation of the ‘Competition Model of Metabolism’ [1,2].

As such, this paper has three foci—presented in Sections 2–4. The first is a brief
summary of the evolution of the ‘competition for calories’ in mammals [1,2]. The second
is an explanation of how a mother’s environment, metabolism, and behavior impact
metabolic inheritance and the subsequent development of metabolic diseases [6]. The
third illustrates how ‘maternal effects’ (non-genetic mechanisms of inheritance [6–9] offer
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a comprehensive and consilient explanation for recent increments in the prevalence of
inherited (pediatric/childhood) obesity and adolescent T2DM [1,6,10].

2. The Evolution of the Competition for Calories

The functional unit in biology is the cell [1,2,11]—and because all cells require nutrient-
energy, the fundamental ‘problem’ in evolution was how a cell could acquire the ‘calories’
it needed for survival and reproduction. In the early stages of biologic evolution, this
problem was ‘solved’ by chemical gradients and diffusion—if a single-celled creature
was in the ‘right place at the right time’, nutrient-energy would simply diffuse across the
cell membrane. Yet, as the population of primordial cells increased, the competition for
resources intensified due to the zero-sum nature of nutrient-energy—‘calories’ are a finite
resource because a molecule of glucose cannot be in two cells at the same time. As a result,
over time, differences in cell phenotypes (physiology and behavior) led to differences in
caloric acquisition with concomitant differential survival and reproduction.

Therefore, it can be argued that the competition for calories, in concert with the heri-
tability of successful phenotypes, launched ‘Evolution by Natural Selection’ [5]. Nevertheless,
the evolutionary potential of unicellular organisms was limited by a lack of specialization—
single cells cannot multi-task efficiently (e.g., simultaneously move and capture calories).
Thus, the ‘arrival’ of multi-celled organisms via the grouping of cells with different phe-
notypes into coherent, self-contained ‘ecosystems’ was inevitable. As such, without the
‘competition for calories’, Earth would be populated solely by single-celled creatures.

However, the evolution of multicellularity introduced two novel, existential ’problems’.
First, by what mechanisms could the organism gauge and subsequently acquire the calories
needed to support all the cells in its ecosystem? Second, given that specialized cells have
unique phenotypes (physiology and behavior) and concomitant caloric requirements—by
what mechanisms could each cell-type acquire the calories it needed while competing
against every other cell?

Axiomatically, the problems of the acquisition and timely distribution of nutrient-
energy were solved by all modern plants and animals—as evidenced by their continued
existence. Yet, as detailed below, the evolution of mammals revealed one of Nature’s most
elegant yet simple solutions [1,2].

2.1. The Mammalian ‘Ecosystem’

In mammals, the question of caloric acquisition was answered by the organismal
(whole-body) behaviors of eating and drinking, whereas the question of the timely distri-
bution of calories to each cell in the ecosystem was answered by the circulatory system in
concert with cell-type-specific competitive behaviors (acquisition ‘strategies’).

2.2. Organismal Behavior: Consumption and ‘Effective Caloric Intake’

To meet the metabolic demands of all cells in their ecosystems, humans and other mam-
mals developed sensorimotor-cells in the liver and brain that, when depleted of calories,
initiate consumption (eating and drinking) [1,2]. These sensorimotor-cells are similar to
other neuromuscular networks that coordinate sensation and bodily movement for survival
(e.g., somatic reflexes and the ‘orienting response’ [12]). Because the sensorimotor-cells—
like all cells in the body—compete for calories, their relative deprivation is indicative of
the sufficiency of caloric intake for the entire organism. This simple but plastic mechanism
ensures that when food is available, dietary consumption is sufficient for the maintenance
of body mass and blood glucose levels.

To advance the understanding of the initiation of eating and drinking, we coined the
term “effective caloric intake” to denote the number of calories required to inhibit consump-
tion via the saturation of the sensorimotor-cells [1]. Specifically, when competition from
other cells renders the ‘effective caloric intake’ insufficient, the sensorimotor-cells become
depleted and consumption is initiated to reduce the deficit [1,2,13]. Conversely, when these
cells are saturated, consumption is diminished.
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There are several physiologic contexts in which the deprivation of the sensorimotor-
cells occurs. These include negative energy balance (inadequate consumption relative to
expenditure), physiologic and pathologic insulin resistance (IR), and excessive adipogenic
partitioning (the capture, storage, and sequestration of calories in ‘fat-cells’, i.e., adipocytes).
As detailed in later sections, physiologic IR occurs naturally as a result of increased growth-
hormone (GH) secretion during puberty and pregnancy [6,14–18], whereas pathologic IR is
a morbid condition induced via inadequate physical activity (PA) causing reductions in
skeletal muscle-cell metabolism, insulin sensitivity, and glycogenesis—the storage of blood
glucose as glycogen [1,2,10,13].

Importantly, all deficits of the sensorimotor-cells—independent of the cause—lead to
increased consumption. However, because deficits caused by inadequate caloric consump-
tion relative to expenditure (negative energy balance) threaten the survival of the organism,
they generate levels of caloric intake sufficient to maintain body and fat mass. Conversely,
deficits caused by IR or excessive adipogenic partitioning do not threaten the survival
of the organism. As a result, these deficits lead to levels of consumption that engender
positive energy balance (hyperphagia), with concomitant gains in body and fat mass.

As detailed in Sections 3 and 4, the physiologic IR of pregnancy and concomitant
overconsumption are essential for fetal growth and development, whereas pathologic IR
perturbs the competition for calories between mother and fetus and irreversibly alters
offspring metabolic phenotype and health trajectories.

2.3. Cell-Type-Specific Behavior

The survival of multi-celled organisms required that all cells in the ‘ecosystem’ capture
the calories needed to meet the demands of their phenotype (physiology and behavior).
This requirement led to the evolution of cell-type-specific competitive behaviors. Although
all cell-types impact the competitive milieu by removing nutrient-energy molecules from
the blood, skeletal muscle- and fat-cells are unique in their effects.

2.4. Skeletal Muscle-Cells

Humans and non-human mammals evolved in environments in which survival re-
quired voluminous amounts of bodily movement (physical activity, PA) despite uncertain
food availability [19–24]. Given that the musculoskeletal system generates the PA neces-
sary for survival and reproduction—acquiring food and water, avoidance of predators
(fight/flight), and mating—it follows that skeletal muscle-cell metabolism is the most
important and variable component of the competitive milieu. For example, skeletal muscle-
cells are responsible for 44–55% of total daily energy expenditure whereas the brain is
responsible for 20–25% [2,25–31].

To meet these demands, skeletal muscle-cells developed strategies that allow them to
capture and exploit all major nutrient-energy molecules (e.g., glucose, fatty- and amino-
acids). These strategies include insulin- and contraction-mediated glucose and fatty-acid
metabolism. For example, during intense exercise and the post-prandial period (when fed),
skeletal muscle-cells account for 70–85% of glucose uptake, whereas during low levels of
PA and the post-absorptive period (when fasted), skeletal muscle-cells are a major site of
fatty-acid oxidation [32,33].

As detailed elsewhere (see [1,2,6,13]), because physical movement directly impacts
skeletal muscle-cell metabolism and the subsequent partitioning of calories to skeletal
muscle-cells (e.g., glucose and fatty-acid storage), adequate levels of PA are required to
maintain insulin sensitivity, and metabolic capacity and control. Consequently, insufficient
PA engenders a loss of metabolic control (e.g., pathologic IR) that leads to hyperinsulinemia
(high blood insulin levels), hyperphagia (overconsumption), and excessive adipogenic
partitioning (the disproportionate capture, storage, and sequestration of calories in fat-cells).

As detailed in Sections 3 and 4, given the role that skeletal muscle-cell metabolism
plays in the maintenance of insulin sensitivity and metabolic control (e.g., glucose storage),
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it is not surprising that maternal PA directly alters fetal development and the inheritance of
metabolic phenotypes.

2.5. Fat-Cells

From an evolutionary perspective, a fat-cell’s role in the mammalian ecosystem is to
store calories during the post-prandial period (when fed) that can be used by other cell-
types during the post-absorptive period (when fasted) [32]. As a result, fat-cells evolved
unique insulin-dependent strategies that allow them to capture, store, and sequester (retain)
calories well beyond organismal and cellular metabolic demands by increasing in size
(hypertrophy) and number (hyperplasia) [2,13].

Specifically, as insulin levels rise during and immediately after meals, fat-cells remove
glucose and fatty-acids (calories) from the blood. This causes them to increase in size
(hypertrophy). Under conditions of neutral energy balance (calories ‘burned’ equal calories
consumed), the stored calories are released to other cell-types during the post-absorptive
period (e.g., over night) [32]. This reduces hypertrophy. Thus, fat-cells ‘grow’ when
calories are consumed and ‘shrink’ when those calories are released and burned by other
cell-types—primarily skeletal and cardiac muscle-cells [1,2,32–37].

However, under conditions of chronic positive energy balance (fewer calories ‘burned’
than consumed) and concomitant hyperinsulinemia, fat-cells increase in both size and
number (hypertrophy and hyperplasia, respectively) [1,2,34,35,38–40]. The confluence of
hyperinsulinemia and hyperplasia (increased number) allow fat-cells to capture, store, and
retain an excessive number of calories after each meal. This chronic adipogenic partitioning
decreases the ‘effective caloric intake’ of meals—which in turn increases consumption and
engenders exponential increments in body and fat mass [1,2,10,13].

As detailed in Sections 3 and 4, maternal insulin sensitivity, fat mass, and fetal fat-cell
hyperplasia play decisive roles in the inheritance of metabolic phenotypes.

3. The Inheritance of Metabolic Phenotypes

Mammalian pregnancy—the development of a fetal ecosystem within the maternal
ecosystem—necessitated the evolution of mechanisms to meet the caloric demands of
both the mother and the developing fetus. However, because pregnancy evolved in
prehistoric environments that necessitated voluminous amounts of PA despite uncertain
food availability, the most critical determinant of appropriate fetal development is the
balance between the number of calories consumed by the mother and those captured by
maternal skeletal muscle-cells and the fetal ecosystem.

As detailed below, although the maternal–placental–fetal triad can withstand a wide
range of perturbations, excessive or inadequate maternal PA can engender impoverished
or over-nourished intrauterine environments that irreversibly alter pre- and post-natal
development and the subsequent health trajectories of offspring.

3.1. ‘Normal’ Pregnancy and the ‘Competition for Calories’

During pregnancy, a mother’s cells compete for calories with the ever-growing pop-
ulation of fetal cells [1,6,13]. To ensure that the fetal ecosystem captures the calories
needed for development, pregnancy alters the hormonal milieu (e.g., increased growth
hormone (GH) secretion) [6,14,15]. Because GH reduces skeletal muscle-cell insulin sen-
sitivity [18]—and the consequent storage of blood glucose—increased secretion causes
physiologic IR [1,2,13,41,42].

This naturally occurring IR has several effects. First, higher levels of blood sugar
stimulate maternal pancreatic beta-cells to increase insulin production. [Note: females
who lack pancreatic beta-cell plasticity and cannot increase insulin production to meet the
demands of pregnancy develop gestational diabetes mellitus (GDM)]. Second, the resulting
hyperinsulinemia increases the competitive advantages of maternal fat-cells, which in turn,
leads to excessive adipogenic partitioning. Third, the IR-induced partitioning reduces the
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flow of calories through the sensorimotor-cells, thereby diminishing the ‘effective caloric
intake’ of meals. This stimulates maternal overconsumption (hyperphagia).

Together, as depicted in Figure 1, these metabolic perturbations lead to the gains in
maternal body and fat mass, and the positive energy balance necessary for appropriate
fetal growth and development [1,2,6,13].
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3.2. Pathologic Pregnancies
3.2.1. Intrauterine Growth Restriction

Intrauterine growth restriction (IUGR) occurs when a mother’s caloric consumption
and nutrient-energy stores (e.g., body fat) cannot meet the demands imposed by both her
cells and fetal development. In other words, the failure to create a consistent positive
energy balance in the fetus inhibits normal development and leads to ‘small for gestational
age’ (SGA) neonates.

For example, IUGR and SGA neonates are prevalent in subsistence farming commu-
nities because of high levels of maternal PA in concert with low food availability. To be
precise, high levels of PA engender competitive advantages in maternal skeletal muscle-cells
(e.g., elevated insulin sensitivity) that allow them to outcompete all other cells. Therefore,
if a mother fails to consume calories sufficient to meet the demands of her cells and those
of fetal development, the ensuing negative energy balance causes extreme fatigue in the
mother, inadequate gestational weight gain (GWG), and an impoverished fetal ‘ecosystem’
with fewer muscle-, bone-, and organ-cells.

The reduction in bone-cells leads to reduced child and adult height (stunting), whereas
reductions in skeletal muscle-cells causes lifelong decrements in muscle strength, PA, and
metabolic capacity and control. Together, as depicted in Figure 2, these metabolic sequelae
increase the risk of obesity, T2DM, and CVD as advanced by the ‘Barker Hypothesis’ [43–46]
and the more comprehensive ‘Maternal Resources Hypothesis’ [6,10,47–50].
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Importantly, IUGR occurs along a continuum of energy balance between mother and
fetus. As such, pregnant females with low fat mass who consume too few calories relative
to their PA levels will not have the resources necessary to buffer periods of increased fetal
demands. As such, females who diet and exercise excessively—move ‘too much’ and
eat ‘too little’—compromise the development of their fetuses by limiting the availability
of calories [6,51]. Therefore, IUGR and SGA are not limited to females in communities
with impoverished food environments but may also occur in industrialized nations where
maternal concerns about post-natal appearance are prevalent (e.g., weigh gain and striae
gravidarum, ‘stretch marks’ [52]).
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In sum, inadequate maternal caloric consumption relative to expenditure leads to an
impoverished fetal ‘ecosystem’ with fewer cells and reduced metabolic capacity and control.
In extreme contexts, negative energy balance in the fetus can result in spontaneous abortion.
In less severe cases, IUGR leads to SGA neonates who exhibit lifelong reductions in PA,
glucose tolerance, and an increased the risk of T2DM and CVD in adulthood [1,6,10,13].

3.2.2. Atypical IUGR: ‘Big’ Does Not Always Beget ‘Big’

As detailed in Section 4, maternal obesity (excessive fat-cell mass) and inadequate PA
play major roles in the ‘over-nourished’ intrauterine environment that leads to ‘large for
gestational age’ (LGA) neonates and inherited (pediatric/childhood) obesity [6]. However,
it is not uncommon for mothers with obese phenotypes to produce SGA neonates—‘big’
does not always beget ‘big’. As detailed below, this apparent paradox is explained by the
interaction of pre-existing pathologic IR and hyperplastic obesity.

3.2.3. Maternal Fat-Cells Outcompete Fetal-Cells

Individuals with severe (hyperplastic) obesity—a body mass index (BMI) greater than
40—have an excessive number of fat-cells. As such, the larger population of fat-cells will
habitually outcompete all other cells—including those in the fetal ecosystem [1,6]. Normally,
this is not a problem for fetal development because the excess adipogenic partitioning and
storage reduce the ‘effective caloric intake’ of meals and increase consumption to prevent
negative energy balance.

However, if a severely obese female is also sedentary, she may be exhibiting hyperinsu-
linemia due to the pathologic IR induced via physical inactivity. Therefore, the physiologic IR
of pregnancy may not increase caloric consumption enough to overcome the competition
from a large population of maternal fat-cells acting in concert with hyperinsulinemia. In
other words, a large population of maternal fat-cells can ‘starve’ fetal-cells of calories and
nutrients. This engenders IUGR along a continuum from fetal death to developmentally
compromised neonates—as evidenced by the increased prevalence of spontaneous abortion
and congenital (structural) abnormalities [53–60].

Importantly, this shows that GWG does not accurately reflect the number of calories
captured by the fetus. In other words, in the context of maternal hyperplastic obesity and
pre-existing pathologic IR, GWG is not a valid indicator of fetal development [61,62]. Recent
research supports this hypothesis: “[i]n women with pre-pregnancy obesity, GWG seemed to
be negatively related to birth weight . . . [and] . . . “[c]ompared with GWG, pre-pregnancy BMI
has greater influence on the birth weight and maternal and infant complications, and may even
compromise the benefits of weight control during pregnancy.” [62].

In sum, maternal hyperplastic obesity in concert with inactivity-induced pathologic IR
may ‘starve’ a fetus of the calories and nutrients it needs for development.

3.2.4. Sitting-Induced IUGR

In animal research, IUGR can be experimentally produced via ligation of the utero-
placental vessels. This research shows that limiting the supply of oxygen and nutrients
to a developing fetus leads to developmental abnormalities such as reduced neurologic,
musculoskeletal, and metabolic capacity (e.g., glucose storage) [63].

In humans, maternal obesity in concert with extended periods of sedentary behavior
may also lead to IUGR via compression of the uteroplacental vessels. To be precise,
higher body mass and sitting increase intra-thoracic, intra-abdominal, and intra-pelvic
pressures [64]—and increased pressure correlates with comorbidities [65]. Thus, when
the intra-abdominal and intra-pelvic spaces are crowded by excessive fat mass, the act of
sitting compresses the uterus, placenta, and supporting vasculature—potentially leading to
placental and fetal ischemia. This risk may be similar to that exhibited by pregnant women
with heart disease [66].

Although transient sedentary behavior is not problematic, long periods of uninter-
rupted sitting potentially convey significant risks [24,67–70]. Importantly, the average preg-
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nant woman spends more than 50% of waking hours sitting—and over 15% of pregnant
women spend >5 h/day using sedentary screen-based media in addition to occupation-
based sedentary behaviors [71,72]. This volume and frequency of sedentary behaviors
represents a potential risk for fetal ischemia in women with obese phenotypes.

4. Inherited Obesity

In the previous section, we showed how inadequate caloric consumption relative to PA
levels led to IUGR and SGA neonates. In this section, we explain how inadequate PA leads
to an over-nourished intrauterine environment, ‘large for gestational age’ (LGA) neonates,
and inherited (childhood/pediatric) obesity. However, to understand our use of the term ‘in-
herited’, it is necessary to grasp the distinction between genetic and nongenetic inheritance.

4.1. Nongenetic versus Genetic Inheritance

We have written extensively on how the conflation of the term ‘inherited’ with ‘genetic’
led to confusion about the role of ‘genes’ in obesity and metabolic diseases. Given that a
detailed exposition of this work is beyond the scope of this review, we offer an overview
below and direct readers to select publications for greater detail [6,10,11,48,49].

To begin, the functional unit in biology and biological inheritance is the cell—not DNA
molecules. Therefore, because each cell’s physiology and spatiotemporal context deter-
mines gene expression, it is essential in analyses of phenotypic development to distinguish
between cellular (nongenetic) inheritance and the two types of genetic inheritance (nuclear
and mitochondrial) [6,73–76]. This distinction is most readily apparent when examining
the prenatal development of identical and fraternal twins.

The fundamental difference between monozygotic (identical) and dizygotic (fraternal)
twins is inherent in the terminology—identical twins develop from a single cell (a fertilized
egg) with a single placenta (usually), whereas fraternal twins develop from two different
cells (two fertilized eggs) with two different placentas (always). As such, fraternal twins
differ in both cellular and genetic inheritance, and their in utero environments, whereas
identical twins do not. Thus, the greater phenotypic disparity of fraternal twins is due to the
sum of differences engendered by the gene expression induced by different cells developing
within different environments in concert with inter-twin differences in genomes [11].

Therefore, given the variation in the developmental competence (oocyte ‘quality’;
e.g., mitochondrial content) of every female’s population of eggs [77–81] and the irre-
versible impact of the intrauterine environment on developmental trajectories [6,48–50], the
functional distinctions between cellular, genetic, and environmental (in utero) inheritance
cannot be ignored.

Consequently, those who infer genetic causality from twin and adoption studies are
mistaken because offspring inherit a great deal more than genes from their mothers—
they inherit the entire cellular ‘machinery’ in which their genes are expressed. Therefore,
the genome is merely an “organ” [82] or ‘tool’ of the cell [6,48,49], and a ‘great deal of
biology’—both established and undiscovered—links an individual’s nuclear and mitochon-
drial genotypes, the cellular expression of those genotypes, and phenotypic development.

This suggests that there are no ‘genes for’ quantitative (non-discrete) phenotypes, and
that IUGR, stunting, SGA and LGA neonates, and inherited obesity are caused by adverse
intrauterine environments—independent of genotype [6,10,13,47–50]. In other words,
starve any pregnant mammal and she will abort or bear stunted offspring—independent of
her genome.

4.2. The Etiology of Inherited (Pediatric/Childhood) Obesity

Inherited obesity is caused by the failure of maternal skeletal muscle-cells to compete
with the developing fetal ecosystem and prevent excessive intrauterine positive energy
balance [1,6,13]. Specifically, because mammalian pregnancy evolved in prehistoric environ-
ments requiring voluminous amounts of bodily movement, appropriate fetal development
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requires a minimum level of PA to balance the number of calories consumed by the mother
and those captured by the maternal and fetal ecosystems.

As detailed earlier and elsewhere (see [1,2,6,13]), PA is essential in maintaining insulin
sensitivity and metabolic capacity and control (e.g., storage of blood sugar). Therefore,
insufficient PA engenders pathologic IR that—like physiologic IR—induces hyperinsuline-
mia, hyperphagia (overconsumption), and positive energy balance. Thus, in the context
of pre-existing pathologic IR, the physiologic IR of pregnancy can exponentially increase
maternal caloric consumption while decreasing the competitive advantages of maternal
skeletal muscle-cells.

The extreme hyperphagia (overconsumption), in concert with a lack of competition
from maternal skeletal muscle-cells, allows the developing fetal ecosystem to capture
an excess number of calories. As depicted in Figure 3, this ‘over-nutrition’ stimulates
growth in all fetal cells, but given the variability in plasticity, excess caloric capture causes
disproportionate increments in pancreatic beta- and fat-cell number (hyperplasia) in concert
with dysfunctional skeletal muscle-cell development (more structural and less contractile
elements) [6,13].
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These pathologic ‘maternal-effects’ (non-genetic mechanisms of inheritance [6–9]) are
irreversible and produce offspring who ‘eat more, store more, and move less’, independent
of genotype. Specifically, the excessive hyperplasia of fetal pancreatic beta-cells induces
life-long hyperinsulinemia that, in concert with the larger population of fat-cells, causes
excessive adipogenic partitioning—in adipose tissue and ectopically—with subsequent
hyperphagia and gains in body and fat mass [1,6,10,13].

Moreover, the dysfunctional development of fetal skeletal muscle-cells causes irre-
versible reductions in the contractile strength of muscle tissue with concomitant reductions
in strength-to-weight ratio. This leads to reductions in PA (weaker individuals move less
than stronger individuals) that further reduce the offspring’s metabolic capacity and control.

In sum, these pathologic ‘maternal-effects’ engender inherited obesity with life-long
decrements in PA and concomitant increments in adipogenic partitioning and metabolic
diseases (e.g., T2DM and CVD) [1,6,10,13].

4.3. ‘Grand-Maternal Effects’ and Trends in Obesity and T2DM

Our work shows that beginning in the 1950s, there was a substantial decline in the PA
of young women and mothers [71,72,83]; see also [84]. Because adequate PA is essential for
maintaining the metabolic control necessary for appropriate fetal development, the decades-
long decline—in concert with ‘grand-maternal effects’—produced multiple generations of
females with compromised metabolic phenotypes.

To be precise, ‘grand-maternal effects’ occur when female offspring recapitulate the
pregnancies of their mothers—phenotype begets phenotype [6,48,49]. Accordingly, these
effects impact at least three generations—the grandmother, her children, and her female
children’s children. For example, female offspring born to obese, sedentary mothers will
‘move less, store more, and eat more’ compared to those born to metabolically healthy mothers.
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As a result, these females will bear offspring with progressively deteriorating metabolic
capacity and control.

Consequently, ‘grand-maternal effects’ offer a consilient and comprehensive explanation
for the exponential increase in the prevalence of childhood obesity, severe obesity, and
adolescent T2DM over the past 50 years—and suggests that future increments are probable.
Furthermore, our work suggests that these non-genetic mechanisms of inheritance also
explain the increased prevalence of obesity, pathologic IR, and T2DM in nonhuman mammals
inclusive of dogs, cats, horses, and lab animals [1].

5. Summary and Conclusions

During pregnancy, a mother’s cells compete with those of her fetus. To ensure that
the developing fetal ecosystem captures the calories it needs for appropriate growth and
development, pregnancy induces physiologic IR that decreases the competitive advantages
of maternal skeletal muscle-cells and increases maternal caloric consumption. This leads to
the positive energy balance required for fetal development.

Importantly, because mammalian pregnancy evolved in environments that necessi-
tated voluminous amounts of PA, appropriate fetal development requires a minimum level
of PA to balance the number of calories captured by the maternal and fetal ecosystems.
Although the developing fetal ecosystem can withstand mild perturbations, excessive
maternal PA relative to caloric consumption or inadequate maternal PA with concomi-
tant pathologic IR negatively—and irreversibly—alter offspring metabolic phenotypes and
health trajectories.

Specifically, excessive PA relative to caloric consumption induces a negative intrauter-
ine energy balance that engenders an impoverished fetal ecosystem (SGA neonates) with
fewer skeletal muscle-cells and concomitant reduced metabolic capacity and control. This
IUGR leads to an increased risk of acquired (adult-onset) obesity, T2DM, and CVD as
posited by the ‘Barker Hypothesis’ [43–46] and the more comprehensive ‘Maternal Resources
Hypothesis’ [6,10,47–50].

Conversely, inadequate maternal PA induces pathologic IR that—in concert with the
physiologic IR of pregnancy—exponentially increases the number of calories captured by
the fetal ecosystem. This ‘over-nourishment’ causes LGA neonates with disproportion-
ate growth in fetal pancreatic beta- and fat-cells in concert with dysfunctional skeletal
muscle-cell development. The larger population of fat-cells acting in concert with chronic
hyperinsulinemia exponentially increases the number of calories captured, stored, and
retained in fat-cells after each meal. This extreme adipogenic partitioning reduces the
‘effective caloric intake’ of meals, thereby causing overconsumption and gains in body and
fat mass. Consequently, the offspring of physically inactive, metabolically compromised
mothers will ‘move less, store more, and eat more’ throughout their lives.

Importantly, female offspring born to obese, sedentary mothers will recapitulate
the pregnancy of their mothers, leading to progressive decrements in metabolic capacity
and control across generations. As such, the inheritance of metabolic phenotypes via
inactivity-induced ‘maternal-’ and ‘grand-maternal effects’ offers a consilient and comprehen-
sive explanation for much of the increase in obesity and T2DM over the past 50 years in
human and non-human mammals [1,2,6,10,13,50].
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