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Abstract: We show that in S. cerevisiae the metabolic diauxic shift is associated with a H3 lysine 4
tri-methylation (H3K4me3) increase which involves a significant fraction of transcriptionally induced
genes which are required for the metabolic changes, suggesting a role for histone methylation in
their transcriptional regulation. We show that histone H3K4me3 around the start site correlates with
transcriptional induction in some of these genes. Among the methylation-induced genes are IDP2
and ODC1, which regulate the nuclear availability of α-ketoglutarate, which, as a cofactor for Jhd2
demethylase, regulates H3K4 tri-methylation. We propose that this feedback circuit could be used to
regulate the nuclear α-ketoglutarate pool concentration. We also show that yeast cells adapt to the
absence of Jhd2 by decreasing Set1 methylation activity.

Keywords: H3K4 tri-methylation; diauxic shift; transcriptional regulation

1. Introduction

Chromatin structure governs several aspects of cell metabolism. Histone N-terminal
tails are subjected to several covalent modifications which form a sophisticated combinatory
code interpreted by a plethora of regulatory protein complexes [1,2]. Among the various
modifications, Lysine (K) methylation is particularly interesting, due to its widespread
roles in transcriptional regulation, DNA repair and epigenetic inheritance. In S. cerevisiae,
three lysine methyl transferases, Set1, Set2 and Dot1, catalyze histone mono-, di- or tri-
methylation at K4, K36 and K79, respectively. These epigenetic marks, which are absolutely
conserved among eukaryotes, have been associated with actively transcribed loci [3],
although their roles in controlling transcription efficiency may be distinct and strongly
context-dependent [4]. H3K4 tri-methylation is enriched at the promoters and 5′ portions
of actively transcribed open reading frames (ORF) in both yeast and higher eukaryotes [5]
and seems to play multiple, variable and sometime conflicting roles in transcription [6–10].

Two families of histone demethylating enzymes (HDMs) have been identified in eu-
karyotes: the lysine-specific demethylase 1 (LSD1) family and the Jmjc-domain-containing
family [11]. Jumonji C domain-containing HDMs (JHDMs), 5 members in S. cerevisiae
and at least 28 members in H. sapiens, are Fe2+ and α-ketoglutarate-dependent hydrox-
ylases, and their reported substrate residues include H3K4, H3K9, H3K27, and H3K36
at all methylation states. The JHDM Jhd2 (encoded by YJR119c) purified from budding
yeast specifically removes H3K4 di- and tri-methylation [12,13]. Its deletion does not show
dramatic phenotypes, leading to a modest increase of H3K4me3 in bulk chromatin of
exponential growing cells [12]. This observation suggests that its action could be strictly
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regulated and required mainly in specific physiological states of the cell. Indeed, im-
portant regulative roles of Jhd2 have been demonstrated during sporogenesis [14] and
pseudohyphal differentiation [15] and in mitotic rRNA condensation [16]. Moreover
Radman-Livaja et al. [17] have previously shown that active demethylation is required to
erase H3K4me3 waves associated with wide transcriptional reprogramming in vivo. In
budding yeast, a major regulative transition is represented by the diauxic shift (DS), which
is triggered by glucose limitation and characterized by activation of glycogen catabolism
and slowing down of replication rate. This involves a global reprogramming of the cell
transcriptome characterized by a general repression of genes expressed during exponential
growth and activation of a selected set of genes [18,19]. The aim of this work was to
elucidate the role of H3K4 methylation level in this transcriptional reprogramming. We
show here that it is indeed in part associated with a H3K4 trimethylation increase and that
the methylation state regulates some of DS induced genes. We focused our analysis in
particular on IDP2 and ODC1, two genes which control the availability of α-ketoglutarate
in the nucleus [20,21] and may therefore influence the activity of Jhd2 itself.

2. Materials and Methods
2.1. Yeast Growth Condition

All yeast strains were grown in YP medium supplemented with 2% glucose (YPD) in
0.5 L flasks kept at 30 ◦C in agitation on orbital oscillators. Overnight cultures of S. cerevisiae
strains (Table 1) were used to inoculate 100 mL of fresh YPD medium at 0.1 A600. Cells were
grown to 2 × 107 (exponential growth—EG) or to 4 × 108 (diauxic cells—DS) cells/mL.

Table 1. Yeast strain used.

Yeast Strain Genotype

BY4741 MATα his3∆ leu2∆0 LYS2 met15∆0 ura3∆0
W303 MATa, his3-11, ade2-1, leu2-3,112, ura3-1, trp1-D2, can1-100

∆jhd2 BY4741 MATa, his3∆ leu2∆0 LYS2 met15∆0 ura3∆0 YJR119c::kanMX4
∆set1 W303 MATa, his3∆ leu2∆0 LYS2 met15∆0 ura3∆0 YJHR119w::kanMX4
over-JHD2 as BY4741 with plasmid pDPM2

2.2. Chromatin Immuno-Precipitation on DNA Arrays (ChIP on Chip)

BY4741 cultures were fixed by adding 1% formaldehyde for 15 min at room temper-
ature. Fixation was stopped by adding 340 mM glycine and incubating for 5 min. Fixed
cells were harvested by centrifugation and washed twice with TBS. Microarray slides were
kindly provided by ENS transcriptomic platform (Paris, France) and ChIP on chip proce-
dures were described in [22]. Briefly, ChIP samples were incubated with anti-H3K4me3
(Cell Signaling, Danvers, MA, USA, rabbit polyclonal, 1:1000), coupled to 20 µL of proteinA-
agarose, previously equilibrated in Wash buffer (10 mM Tris-HCl pH8, 0.25 M LiCl, 0.5%
NP-40, 0.5% sodium deoxycholate, 1 mM EDTA) and recovered by centrifugation. Microar-
rays were scanned using a double-laser scanner (Packard BioChip Technologies, Billerica,
MA, USA) and fluorescence ratios were determined with GenePix Pro software version 5.1
(Axon Instruments, Scottsdale, AZ, USA). Local background signal was subtracted from
the intensity of the spots signal. The arrays were within-normalized using the print-tip
loess normalization. Log2(IP/WCE) was calculated for each DNA sequence. Only loci with
a significant signal in both experiments were considered. The IP/Input ratios obtained in
the two experimental points were ordered in percentile rank and compared in order to find
differences in rank between them. The genomic regions showing a remarkable increase,
average of over 20 percentiles in their rank between DS and exponential cells were collected
in a list containing 86 ORF and 85 intergenic regions.

2.3. Western Blot Analysis

Yeast extracts for western blot analysis were prepared using standard glass bead
disruption into a buffer A (50 mM Tris HCl at pH7.5, 2 M Sucrose, 5 mM MgCl2, 1mM DTT,
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Complete protease inhibitor cocktail from Roche, Basel, Switzerland), 45 min at 4 ◦C. Lysed
cells were centrifuged at 3100 rpm for 15 min at 4 ◦C and pellets were resuspended in
buffer B (20 mM HEPES pH 7.5, 1.5 mM MgCl2, 0.5 M NaCl, 0.2 mM EDTA, 20% Glycerol,
1% Triton X-100, 1 mM DTT, Complete protease inhibitor, Roche, Basel, Switzerland).

Yeast extracts were loaded on 15% (histones) or 10% SDS-PAGE polyacrylamide gels
and after the run transferred on nitrocellulose membranes (Whatman, Little Chalfont, UK)
by TransBlot method (Bio-Rad, Hercules, CA, USA) in 25 mM Tris, 192 mM Glycine, 29%
Methanol, 1 h, 100 V at 4 ◦C.

Membranes were hybridized with the following antibodies: H3 (Active Motif, Carls-
bad, CA, USA, rabbit polyclonal 1:1000); anti-tri-methyl H3K4me3 (Cell Signaling, rabbit
polyclonal, 1:1000); anti-di-methyl H3K4me2 (Active Motif, rabbit monoclonal, 1:1000);
TAP-tag Antibody (GeneScript, Rijswijk, The Netherlands, rabbit polyclonal, 1:1000); anti-
Set1 (Santa Cruz Biotechnology, Dallas, TX, USA sc-101858, mouse monoclonal 1:1000).
Chemiluminescence signals intensity ratios were quantified by chemiluminescence imaging
with the ChemiDoc™ XRS (Bio-Rad).

2.4. Chromatin Immunoprecipitation (ChIP)

Yeast cells grown as described above were cross- linked with 1% formaldehyde for
30 min before chromatin was extracted. The chromatin was sonicated (20 cycles, 60 s
on/off, high setting) to yield an average DNA fragment of 500 bp. H3K4me3 (Cell Sig-
naling, rabbit polyclonal, 1:1000) were coupled to 20 µL of proteinA-agarose, previously
equilibrated in Wash buffer (10 mM Tris-HCl pH8, 0.25 M LiCl, 0.5% NP-40, 0.5% sodium
deoxycholate, 1 mM EDTA). After reversal of the crosslinking and DNA purification, the
immuno-precipitated and input DNA was analyzed by quantitative real-time PCR.

An amplicon designed in the coding region of ZRT1, a gene not regulated by DS,
which showed no H3K4me enrichment between DS and exponential cells (ChIP on chip
data) has been used as endogenous calibrator.

2.5. Real Time RT-PCR

One microgram of RNA from samples was reversed transcribed using SuperScript™
III RT (Invitrogen, Waltham, MA, USA, Cat. Num. 18080-044 200 units/µL) with 1 µL of
oligo(dT)20 (50 µM) according to the manufacturer protocol. The cDNA served as template
for subsequent Real Time RT-PCR reactions that were set up in duplicate for each sample
using the Sensimix SYBR Real Time Mix (Bioline, London, UK, Cat. Num. QT-606) using
an Applied Biosystems Prism 7300 Sequence Detector (Thermo Fisher Scientific, Waltham,
MA, USA). The reaction mixtures were kept at 95 ◦C for 10 min, followed by 40 cycles at
95 ◦C for 15 s and 60 ◦C for 1 min. The level of transcripts was evaluated by primers
reported in Table S1.

Fluorescence output was analyzed using Sequence Detection Software, version 1.2
(Thermo Fisher Scientific, Waltham, MA, USA). Relative quantification was carried out with
the 2−∆∆Ct method, using the abundance of Taf10 (a gene not significantly regulated through
DS) or ACT1 as endogenous house-keeping control. Data were statistically analyzed by
Student’s t-test.

2.6. Statistical Analysis

Data were analyzed using R version 4.2 and Microsoft Excel version 16. Statistical
analysis was conducted using unpaired two-sided Student’s t-test.

3. Results
3.1. Expression of Jhd2 and Set1 in Different Phases of Yeast Growht

Both Set1 and Jhd2, the enzymes which control the methylation state of H3K4, were
previously shown to be expressed during Diauxic Shift (DS) and early stationary phase
(ref. [18,19] and Figure S1A) suggesting a specific role for their histone modification action
in transcriptomic reprogramming. In particular: JHD2 mRNA increases prior to DS and
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remains very abundant until post-diauxic phase, while SET1 mRNA shows a bimodal
accumulation, peaking in exponential phase and at the end of DS (Figure S1). This suggests
a possible prominent role of Set1 in regulating genes important for DS onset and of Jhd2 for
balancing this action. We therefore asked how was JHD2 regulated at the exit of DS, when
fresh glucose rich medium is given back to the cells. The experiment, reported in Figure
S1B, confirms that JHD2 mRNA is present during DS (contrary to ribosomal proteins (RP)
mRNAs which are completely absent) but is strongly induced at 30 min from DS exit, when
fresh medium with glucose is added to the cell culture. Western blots performed with the
Tap-tagged Jhd2 strain shows that the protein follows the same trend of the mRNA, being
present in DS and further accumulated immediately after addition of fresh medium (Figure
S1C). These results indicate that the Jhd2 demethylase could have a specific role at DS entry
and exit.

3.2. H3K4 Tri-Methylation Level during DS

The previous observations suggest that H3K4 methylation balance could be involved
in the DS transition. We therefore tested H3K4 tri-methylation levels in bulk chromatin
before and after DS. Cells from strains BY4741 and W303 were grown in YPD and samples
were taken during exponential growth (EG) and two hours after DS (defined as the time
at which growth plateau is reached). Total histones were acid-extracted and analyzed
by western blot with anti-H3K4me2 and H3k4me3 antibodies. Figure 1A,B show that in
both wild type strains analyzed (BY4741 and W303) there is an evident increase of H3K4
tri-methylation at 4 h after DS as compared with exponential growth. H3K4me2 level
appears modestly increased too (Figure 1C). We also analyzed two BY4741-derived strains
carrying deletions in JHD2 and SET1, respectively. While the ∆SET1 obviously does not
show any H3K4 tri-methylation, the result for the ∆JHD2 is quite unexpected: the level of
H3K4 di- and tri-methylation tends to decrease in DS (Figure 1A,C).
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Figure 1. (A) Western blot showing H3K4me3 level in wild type (BY4741, W303) and mutant (∆JHD2,
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To identify which genomic regions show an increase of H3K4-trimethylation at DS
we performed a global screening by ChIP on chip using microarray slides containing the
whole repertoire of S. cerevisiae ORFs and intergenic sequences (see Section 2). We immuno-
precipitated chromatin from exponential and diauxic shifted cells of the BY4741 wild type
strain. IP and Input samples were amplified and labelled with Cy5 e Cy3 respectively,
in order to test the H3K4me3 enrichment on ORFs and intergenic regions of the whole
genome. The IP/Input ratios obtained in the two experimental points were compared to
find differences in the enrichment between them. The genes showing an average increase
of H3K4 tri-methylation at least 20 in percentile ranking between DS and EG either in the
ORF or in the upstream intergenic sequence were selected in a list (Table S2) containing
86 ORF and 85 intergenic regions. This list (DS-hypermethylated) was compared with a list
containing the genes significantly induced at least 3-fold during diauxic shift as compared
to exponential phase (DS-induced, ref. [19]). We found a significant (p < 0.001) overlapping
between the two lists (45 genes), 5-fold higher than expected by chance (9 genes). Several
of these genes are involved in the change of metabolism imposed by DS. Notably, IDP2 and
ODC1, two genes which regulate the nuclear concentration of α-ketoglutarate, the Jhd2
demethylase cofactor, are among the 15 most tri-methylated genes (reported in Table 2)
ranking 1 and 7, respectively. We found a much lower number of genomic loci showing an
evident decrease of H3K4 tri-methylation (Table S2) containing genes repressed at DS.

Table 2. Genes involved in the change of metabolism imposed by DS.

Gene Description Rank Difference (DS-EG) p

IDP2 Isocitrate dehydrogenase (NADP+), cytosolic 0.78 <0.001

MLS1 Malate synthase 1, functions in glyoxylate cycle, has near
identity to Dal7p 0.57 <0.01

ECM13 Protein possibly involved in cell wall structure or biosynthesis 0.55 <0.01

GND2 6-Phosphogluconate dehydrogenase, decarboxylating, converts
6-phosphogluconate + NADP to ribulose-5-phosphate + NADPH + CO2

0.49 <0.001

PXA1

Protein required for long-chain fatty acid transport across the
peroxisomal membrane, member of the ATP-binding cassette
(ABC) superfamily, has similarity to a human gene associated

with adrenoleukodystrophy

0.49 <0.001

YPT53
GTP-binding protein involved in endocytosis and transport of

proteins to the vacuole, member of the rab family in
the ras superfamily

0.48 <0.01

ODC1
2-Oxodicarboxylate transporter, has specificity for 2-oxoadipate
and 2-oxoglutarate, member of the mitochondrial carrier (MCF)

family of membrane transporters
0.48 <0.05

ATH1 Vacuolar acid trehalase, converts alpha, alpha-trehalose to glucose 0.47 <0.001

GPX1 Glutathione peroxidase, involved in cellular protection against
lipid and non-lipid hydroperoxides 0.45 <0.05

MTH1 Repressor of hexose transport genes 0.45 <0.05

ADY2 Protein required for proper ascus formation, has strong similarity
to Ydr384p and Ynr002p 0.44 <0.05

HSP26
Heat shock protein of 26 kDa, expressed during entry to stationary
phase and induced by osmostress, may be required for resistance

to ethanol and acetaldehyde
0.42 <0.001

LEE1 Protein containing two CCCH-type zinc finger domains, which
bind DNA or RNA 0.4 <0.001

TRX3 Mitochondrial thioredoxin, has similarity to cytoplasmic
thioredoxins Trx1p and Trx2p 0.38 <0.05

CRC1 Mitochondrial carnitine carrier, member of the mitochondrial
carrier family (MCF) of membrane transporters 0.38 <0.001

Next, we validated some of the data by ChIP followed by real time quantitative PCR,
using amplicons designed in the ORF and in the promoter of genes selected among those
reported in Table 2. In all cases after DS the wild type BY4741 strain shows a significant
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increase (at least two-fold) of H3K4me3 in the proximal (within the first 500 bp) segment of
the ORF (Figure 2).Strikingly, when we repeated the experiments with the strain deleted
in JHD2 we did not observe any significant increase in H3K4 trimethylation, exactly as
observed for a strain carrying a multicopy plasmid over-expressing the Jhd2 demethylase
(Figure 2). This paradoxical result is coherent with the previously shown general decrease
of H3K4me3 level in bulk histones of the strain lacking the Jhd2 demethylase and suggests
the existence of a mechanism of adaptation of the deleted strain to histone methylation
imbalance (discussed below). We also tested HAS1, one of the few genes which showed a
strong H3K4 trimethylation decrease in the ChIP on chip screening which confirmed to be
extensively demethylated at DS in the WT strain but did not show significant difference in
the ∆JHD2strain (Figure S2).
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Figure 2. H3K4 trimethylation in the proximal ORF portion of HSP26, IDP2, GIP2, SPG4, CRC1 and
ODC1 at EG and DS in the wild type strain BY4741; in the isogenic ∆JHD2 strain and in a strain
overproducing Jhd2 (over-JHD2, see Table 1). * = p < 0.05; ** = p < 0.01 according to Student’s t-test.

3.3. H3K4 Methylation Stimulates Gene Transcription Induction at DS

In order to test the effect of H3K4 methylation on gene transcription induction at
DS, we grew cells from the wild type BY4741 and from ∆JHD2, or Jhd2 over-expressing
strains, respectively. We purified total RNA from cells collected 6 h after DS and tested
the mRNA level of SG4, IDP2 and ODC1. The results (Figure 3) show a consistent (around
50%) reduction in the induction level of all three genes in the ∆JHD2 strain and a very
low expression in the Jhd2 over-expressing strain, which shows a 20-fold increase of JHD2
mRNA at DS (Figure S3). These results confirm the hypothesis that an increase in the level
of H3K4 tri-methylation at the proximal portion of the genes’ coding region is required
for an efficient induction at DS. The stronger effect observed upon Jhd2 over-expression
would suggest that in this case an active demethylation of a larger chromatin domain
could be involved.

We also tested the kinetics of induction in the ∆SET1and in the ∆JHD2strains as
compared with their isogenic wild type strains. Samples were taken during exponential
growth, at DS and at different times after DS. Figure 4 shows data obtained by real time
RT-PCR for IDP2 and ODC1 genes. Strikingly, the induction of IDP2 is strongly reduced
also in the ∆JHD2strain, coherently with the lack of H3K4 tri-methylation observed. For
ODC1 the reduction of transcriptional induction is less evident (Figure 4A). Results show
that both genes are poorly induced in the ∆SET1 strain as compared with the wild type
(Figure 4B).
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Figure 4. (A) Real time RT-PCR quantitation of the time course of induction of IDP2 and ODC1 in the
W303 wild type and ∆SET1 strains. Data are the average of three independent experiments. Standard
deviation is indicated. ns = not significant, * = p-value < 0.05; ** = p-value < 0.01; ***= p-value < 0.001
according to Student t-test. (B) Real time RT-PCR quantitation of the time course of induction of IDP2
and ODC1 in the BY4741 wild type and ∆JHD2 strains. Data are the average of three independent
experiments. Standard deviation is indicated. * = p < 0.05; ** = p < 0.01; *** = p < 0.001 according to
Student’s t-test.
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Since experiments with genetic variants could be misleading (i.e., the ∆SET1 strain
grows much slower than the wild type and has a different metabolism; Set1 has H3-K4
methylation-independent functions) we tested the effect of H3K4 tri-methylation on IDP2
induction making use of the small molecule RS3195 which has been previously shown to
inhibit the catalytic activity of Jhd2 in yeast and of its orthologues Jarid HDMs in mam-
malian cells [23,24]. We grew wild type cells to late exponential phase and split the culture
in two aliquots: one treated with DMSO (solvent of RS3195) and the other with the RS3195
inhibitor. Then we collected cells after 2 h and purified total RNA. Figure 5A shows that
the Jhd2 demethylase inhibitor promotes an anticipated induction of IDP2. Control ChIPs
show a slight but significant increase of H3K4 tri-methylation in the IDP2 ORFs (Figure 5B).
A similar trend, although not statistically significant due to high variability, is observed for
ODC1 (Figure S4). So, in the case of a wild type strain in which both the methylase and
the demethylase activities are present, perturbing their dynamic equilibrium toward an
early methylation increase leads to an anticipated transcriptional induction. Something
that does not happen when the demethylase activity is absent from the beginning.
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Figure 5. (A) Real time RT-PCR quantitation of IDP2 cDNA 2 h after addition of 15 µM RS3195 or the
solvent 1% DMSO. The histogram reports the expression level normalized to the endogenous calibra-
tor (ACT1 mRNA) and to the untreated sample (∆∆Ct). Data are the average of three independent
experiments. Late EG = 0.8–1 OD 600. (B) Real time quantification of ChIP experiments determining
the level of H3K4 trimethylation of IDP2 proximal ORF portion in the presence of the Jhd2 inhibitor
RS3195. The histogram represents the H3K4me3 level of IDP2 in the presence of 15 µM RS3195 or 1%
DMSO, normalized to the endogenous calibrator (ZRT1 ORF) and to the untreated sample (∆∆Ct).
Data are the average of three independent experiments. Standard deviation is indicated. * = p < 0.05
according to Student’s t-test, two sided, in comparison to NT.
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3.4. Active Demethylation Is Not Required for DS Genes Repression following Refreshing

Since we showed that H3K4 tri-methylation is required for full activation of several
DS induced genes, we tested if demethylation was required for their repression following
addition of fresh medium with glucose. We grew WT or ∆JHD2strains and collect cells in
exponential growth and two hours after the growth plateau. Then we resuspended part of
cells in fresh medium with glucose and took samples at 30′, 1 and 2 h. Figure S5 shows that
although IDP2 is less induced after DS in the ∆JHD2strain, it is promptly repressed as the
wild type, ruling out a role for the Jhd2 demethylase in repression.

4. Discussion

This work started with the observations that both genes coding for the H3K4 methy-
lase Set1 and for the demethylase Jhd2 are induced before and expressed during DS and
that the Jhd2 protein is present at DS and accumulates immediately after DS exit. This
suggests a role for H3K4 methylation in regulating gene expression during DS. Indeed,
we observed an evident increase of H3K4 tri-methylation in two different wild type ge-
netic contexts when the cells enter DS. Thus, we performed a genome-wide ChIP on chip
screening to identify genomic loci which show a H3K4 tri-methylation increase of at least
20 percentile ranks. We identified 86 ORF and 85 intergenic regions. 45 of the 86 ORF corre-
sponded to genes highly transcriptionally induced in DS. Most of them code for proteins
involved in the change of cellular metabolism at DS. To understand if H3K4 tri-methylation
was a consequence of transcriptional induction of these genes or played a role in their
activation, we analysed the effects of perturbing the methylation balance by genetic or
pharmacological approaches.

We focused on two genes in particular: IDP2 and ODC1. The IDP2 gene codes for
the cytosolic NADP-specific isocitrate dehydrogenase that catalyses oxidation of isocitrate
to α-ketoglutarate [20]. Its levels are elevated during growth on non-fermentable carbon
sources and reduced during growth on glucose and the gene is strongly induced at DS.
Odc1 is a mitochondrial inner membrane transporter which transports 2-ketoglutarate from
the mitochondrion to the cytoplasm [21]. The two proteins have a key role in regulating
the nuclear α-ketoglutarate’s pool which in turn is the Jhd2 demethylase cofactor. It has
been shown that α-ketoglutarate concentration is important in determining chromatin
transcriptional state [25]. Moreover, recent studies revealed that oncogenic mutations in
human IDH1/2 genes result in the synthesis of 2-hydroyglutarate (2-HG) instead of the
normal α-ketoglutarate product and that 2-HG competitively inhibits JMJC-domain histone
demethylases, resulting in increased H3K9 methylation [26,27]. Crosstalk between histone
demethylation and hypoxic reprogramming is crucial in cancer metabolism [28,29]. Further,
levels of α-ketoglutarate are key for transcriptional and epigenetic processes in stem cell
maintenance [30]. Recent work by Meneghini’s group demonstrated that Jhd2′s role in
demethylation and transcription regulation becomes prominent in yeast fermenting cells
manipulated to contain an elevated α-ketoglutarate/succinate ratio and in respiratory
cells [31]. It is therefore expected that genes controlling α-ketoglutarate availability in the
nucleus may be subjected to a feedback control by methylating/demethylating enzymes.
We show here that H3K4 tri-methylation contributes to the transcriptional induction of
both IDP2 and ODC1. In particular: mRNA levels of IDP2 can be prematurely increased in
late exponential growth phase by inhibiting the catalytic activity of Jhd2 demethylase and
both IDP2 and ODC1 activation is impaired in strains deleted in SET1 or over-expressing
Jhd2. Based on this observation we propose a scenario in which the balance between
H3K4 methylase and demethylase activities in DS cells regulates the expression of genes
which control the available concentration of α-ketoglutarate in the nucleus, which in
turn regulates the demethylase activity in a feedback loop (Figure 6). This is a further
example of the metabolic epigenetic regulation which seems to be very relevant in several
eukaryotic biological systems. HMT and HDMs seem to be very sensitive to availability
of SAM and α-ketoglutarate, respectively, and H3K4 methyl state is partly determined
by their equilibrium [32]. Metabolic control of histone methylation in mammalian cells
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has profound implication on cancer development [33]. Several crosstalk circuits between
epigenetics and metabolism involving HDMs have been described in human cells [34].
For what regards yeast, recent work [10] showed that for most of the genes regulated
by H3K4 methylation during exponential growth a combined action of Set1 and Jhd2 is
required both for transcriptional induction and repression supporting the relevance of
a dynamic equilibrium of H3K4 methyl state for controlling gene regulation. Another
striking example is the glycolytic regulation of gene expression based on the crosstalk
between H3K4 trimethylation and H3K14 acetylation [35].
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Ketoglutarate availability in the nucleus.

In the course of this work, we found an interesting case of epigenetic adaptation:
the increase of H3K4 tri-methylation observed in WT strains at DS is not observed in a
strain deleted for Jhd2 demethylase. Indeed, the local increase of H3K4 tri-methylation at
DS induced genes is not observed in this strain with consequent reduction in the extent
of transcriptional induction. In search of a possible mechanism for this adaptation we
considered the possibility of a feedback regulation of the abundance of Set1 protein, as
recently observed [36]. On the contrary when we compared total cell extracts from ∆JHD2
strain with an isogenic WT strain we found similar quantities of Set1 both in exponential
growth and after DS (Figure S6). We could therefore speculate that the observed reduction
of H3K4 tri-methylation is due to a decreased recruitment of the Set1 methylase at the
specific transcription units in the absence of Jhd2. A local regulatory crosstalk between the
two enzymes has been previously suggested [10]. Recent work shows tight coordination of
Set1 complex and Jhd2 action, especially at promoters of genes involved in the oxidative
phase of the metabolic cycle [37]. Further work will be required to understand which
mechanism is involved in this adaptation.

In conclusion H3K4 tri-methylation appears to have an important role for the induction
of several genes involved in the metabolic changes required during DS. Other mechanism
besides the simple balance between methylase and demethylase activities were recently
shown to operate in defining the final methylation state of this category of genes [37,38]
which could contribute to their regulation, but we think that the α-ketoglutarate feedback
circuit which we described can be an important piece of the puzzle.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metabo13040507/s1, Figure S1: JHD2, IDP2 and SET1 levels during
various phases of growth; Figure S2: ChIP analysis of H3K4 trimethylation of HAS1 promoter in the
wild type BY4741 and isogenic Djhd2 strain; Figure S3: Real time RT-PCR analysis of JHD2 mRNA
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accumulation; Figure S4: Catalytical inhibition of Jhd2 causes an increase of H3K4 trimethylation and
an early transcriptional induction of ODC1; Figure S5: Time course of repression of IDP2 and ODC1
after release from DS for the wild type BY4741 and the isogenic ∆JHD2 strain; Figure S6: Set1 protein
levels in Jhd2 absence; Table S1: RT-PCR primers sequences; Table S2: selected list of ChIP on chip
results. Reference [19] is cited in Supplementary Materials.
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