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Abstract: The kynurenine pathway (KP) is the primary route for the catabolism of the essential amino
acid tryptophan. The central KP metabolites are neurologically active molecules or biosynthetic
precursors to critical molecules, such as NAD+. Within this pathway are three enzymes of interest,
HAO, ACMSD, and AMSDH, whose substrates and/or products can spontaneously cyclize to form
side products such as quinolinic acid (QA or QUIN) and picolinic acid. Due to their unstable nature
for spontaneous autocyclization, it might be expected that the levels of these side products would
be dependent on tryptophan intake; however, this is not the case in healthy individuals. On top of
that, the regulatory mechanisms of the KP remain unknown, even after a deeper understanding of
the structure and mechanism of the enzymes that handle these unstable KP metabolic intermediates.
Thus, the question arises, how do these enzymes compete with the autocyclization of their substrates,
especially amidst increased tryptophan levels? Here, we propose the formation of a transient
enzyme complex as a regulatory mechanism for metabolite distribution between enzymatic and non-
enzymatic routes during periods of increased metabolic intake. Amid high levels of tryptophan, HAO,
ACMSD, and AMSDH may bind together, forming a tunnel to shuttle the metabolites through each
enzyme, consequently regulating the autocyclization of their products. Though further research is
required to establish the formation of transient complexation as a solution to the regulatory mysteries
of the KP, our docking model studies support this new hypothesis.

Keywords: tryptophan metabolism; enzyme complexation; protein structure; protein–protein inter-
action; enzymology; catabolic pathway; metabolic intermediates

1. Introduction

Tryptophan is an essential amino acid used for protein synthesis and is a precursor
for generating metabolites with diverse biological activities throughout the body [1–4]. In
humans, the bulk of L-tryptophan (L-Trp) is catabolized through the kynurenine pathway
(KP). For years, this pathway has been known to be linked to depression and inflam-
mation and is part of the depression theory known as the “kynurenine hypothesis” [5].
The KP metabolites are now recognized as etiological factors of depression after it was
realized that the L-Trp level in the brain is not significantly altered, as stated in the initial
proposal [6,7]. In T-cells, the KP enzymes and metabolites play an immunosuppressant
role at checkpoints [8]. Many cancers hijack this regulation mechanism and overexpress
the enzymes involved in the first step of the KP, indoleamine-2,3-dioxygenase (IDO) and
tryptophan-2,3-dioxygenase (TDO), for immune escape [8–11]. Thus, IDO/TDO are among
the most promising cancer immunotherapy targets pursued extensively in recent decades.

Other than the first side product, kynurenic acid, a neuroprotective compound, the
center of the catabolic route produces a series of neurologically active compounds such as
3-hydroxy-anthranilic acid (3-HAA), 3-hydroxykynurenine, kynurenic acid, and quinolinic
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acid (QA or QUIN) [12,13]. The center of the KP (Figure 1) branches out at several junctions
due to the intrinsic instability of the metabolic intermediates 2-amino-3-carboxymuconate-
6-semialdehyde (ACMS) and 2-aminomuconate semialdehyde (2-AMS) [14]. They sponta-
neously produce QA and picolinic acid (PA), respectively. To date, no allosteric regulation
mechanisms are known for any of the KP trio systems, and based on measured mRNA
profiling in a yeast system, the expression levels of the KP enzymes are not expected
to vary based on L-Trp load [15]. In the absence of such mechanisms, the production
of non-enzymatic products, QA and PA, should depend entirely on fluctuations in food
intake. However, it has been shown in healthy individuals that the basal level of QA is
maintained at low nanomolar concentrations despite L-Trp concentrations varying from
sub-micromolar to hundreds of micromolar depending on the metabolic state [16–22]. In
fact, QA becomes toxic to cells as its concentration exceeds this basal level, causing damage
to spinal neurons at only 100 nM and to human central neurons at 350 nM [22]. This toxicity
of QA can produce axon-sparing lesions analogous to those observed in Huntington’s
disease [23,24]. Increased QA levels up to 20-fold are seen in HIV-infected patients’ cere-
brospinal fluid (CSF), with even higher levels observed in those with HIV-1-associated
encephalopathy [25]. Additionally, at heightened concentrations, QA can act as an endoge-
nous agonist at N-methyl-D-aspartate (NMDA) receptors. Once activated, QA can cause
abnormally long-lasting activity of the receptors, triggering an excessive influx of calcium
ions into neurons, which can then provoke processes leading to neuronal damage, including
the activation of proteases, formation of free radicals, and production of nitric oxide [22].
Considering the drastic impact of elevated QA levels on the body, further understanding
of its regulation may prove useful for treating several neurological disorders. Since the
concentrations of QA and PA are shown to be independent of metabolic state changes in
healthy individuals but elevated in disease states, an intriguing question arises as to how
the KP controls the production of non-enzymatically derived side products independent of
metabolic state changes [26,27].
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Figure 1. The L-tryptophan kynurenine pathway (KP) and the bacterial 2-nitrobenzoic acid (2-NBA)
biodegradation pathway converge at the KP trio: HAO, ACMSD, and AMSDH.

Although this pathway has been well-established for its biological significance, regula-
tory mechanisms of the KP have remained elusive. Several bacterial systems possess the
gene clusters encoding the KP proteins for aerobic tryptophan degradation [28,29]. This
enzymatic junction solicits interest, considering that in bacteria, the 2-nitrobenzoic acid
(2-NBA) degradation pathway converges with the KP at this trio [30]. The structural and
mechanistic understanding of the individual enzymes first came from the bacterial en-
zymes and later extended to their human counterparts. This paper discusses the molecular
mechanism for regulating the KP, highlighting the competition between enzyme-mediated
reactions and the non-enzymatic autocyclization of their substrates and products by fo-
cusing on the activity of a unique subset of the KP enzymes (Figure 1), hereafter referred
to as the KP trio. These are (i) a non-heme iron-dependent dioxygenase HAO (E1), (ii) a
Zn-dependent decarboxylase ACMSD (E2), and (iii) an NAD+-dependent semialdehyde
dehydrogenase AMSDH (E3). In what follows, the latest comprehension of the structure
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and mechanism of each trio enzyme will be summarized, followed by a new hypothesis on
how the non-enzymatic products might be maintained at high levels of KP metabolites in a
metabolic-independent manner.

2. HAO: The Phenyl Ring-Breaking Oxygenase in the KP Trio

The first enzyme of the KP trio, HAO, is a non-heme iron-dependent enzyme that
produces an unstable metabolite ACMS [31], whose chemical structure has only recently
been structurally determined to be in the 3E,5Z,2t,4t conformational state among the
32 possible enol and keto tautomers [32]. ACMS can either spontaneously cyclize to form
QA or be decarboxylated to form 2-AMS via an ACMSD-mediated reaction [33,34]. This
reaction is eye-catching as QA is one of the only known endogenous metabolites, the other
being kynurenic acid, capable of explicitly modulating the activity of NMDA receptors
when its concentration is above the basal level [1,17–23,35,36]. Elevated levels of QA in the
CSF are seen in patients with neuropsychiatric and neurodegenerative diseases, including
anxiety, depression, Alzheimer’s, and Huntington’s diseases [23,24,37–44]. Additionally,
QA is the universal precursor for NAD+ biosynthesis, and further understanding of the
formation of QA may provide much-needed insight into the regulation of NAD+ de novo
synthesis [28,32,45]. As NAD+ is known to enhance mitochondrial function and improve
health, this proves to be an attractive avenue of research within the KP [4].

Aside from being a promising drug target, HAO participates in exciting chemistry.
This enzyme cleaves the aromatic ring of 3-hydroxyanthranilate (3-HAA) adjacent to the
substitution groups and activates and inserts dioxygen between C3 and C4 by a non-heme
iron center [46]. Despite relatively low local O2 concentrations and diffusion rates, HAO
can rapidly bind O2 by undergoing a substantial conformational change and possessing
significant loop dynamics during catalysis [47]. By doing so, the enzyme can quickly and
efficiently bind the hydrophilic substrate 3-HAA, and then, the hydrophobic substrate O2.
This novel feature of loop dynamics is not limited to only class III estradiol dioxygenases
such as HAO. It may have broad implications for understanding how enzymes work at a
high turnover rate while accommodating two substrates for rapid binding with disparate
polarities [47]. A deeper understanding of the mechanism of enzyme action has been
achieved through time-resolved reactions performed in crystallo and monitored by single-
crystal spectroscopies and X-ray diffractions to trap and characterize intermediates unseen
in the solution-state reaction [32]. A total of seven crystal structures of sequentially observed
reaction intermediates provided step-by-step information on how 3-HAA interacts with
the catalytic Fe center during the initial stages of catalysis, leading to a fuller view of the
HAO catalytic cycle (Figure 2). The catalytic pathway begins with monodentate and then
bidentate 3-HAA coordination, binding, and activation of dioxygen, O–O bond cleavage,
oxygen insertion, Criegee rearrangement causing ring expansion, a second oxygen transfer
with ring opening, and finally, an enzyme-assisted change of the product conformation [32].
Prior to this work, the exact conformation of ACMS produced by HAO remained unknown
for decades due to its short lifetime and 32 possible conformers. However, the crystal
structures of the catalytic cycle intermediates reveal that HAO possesses in situ isomerase
activity immediately after the dioxygenase function, so it may be able to maintain ACMS
in a more stable conformation. As such, HAO counteracts autocyclization, preserving a
portion of the metabolic flux for other downstream enzymes in the pathway.
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Figure 2. The HAO catalytic reaction cycle is characterized by in crystallo chemical reaction. The
structurally characterized intermediates include monodentate E•S complex, bidentate E•S com-
plex, Fe-bound superoxo, alkylperoxo, ε–lactone, monodentate, and the reaction product bidentate
3E,5Z,2t,4c–enol tautomer of ACMS, as well as bidentate 3E,5Z,2t,4t–enol tautomer of ACMS. The
(E•Int) radical intermediates are implicated by the single-crystal EPR spectroscopy, although not
structurally resolved. The inset shows the overall structure and dynamic loop change near the
catalytic site which occurs during catalysis. The loops of substrate-free, bidentate E•S complex,
and subsequent intermediates are colored in blue, red, and yellow, respectively. For more details
regarding the catalytic pathway intermediate structures and loop dynamics, see References [32,47].

Three loop regions surround the catalytic iron center, which forms “open” and “closed”
conformations at the HAO active site to carry out its dynamic chemistry (Figure 2 inset).
These active site loops move upon substrate binding and are implicated as potential interac-
tion surfaces with ACMSD. These loops facilitate the binding of a considerably hydrophilic
substrate and enable dynamic shifting to create a more hydrophobic environment to capture
molecular oxygen [32]. Substrate and product exchange when HAO is in its “open” state,
and oxygen is incorporated in the “closed” state [47]. The substrate analog 4-Cl-3-HAA
has been shown to be an effective suicide inhibitor of HAO [48]. Its binding locks HAO
in the closed conformation [47]. The locked HAO conformation is hypothesized to facil-
itate protein–protein interactions with ACMSD, showing a dose-dependent decrease in
extracellular QA concentration over time [49].

3. ACMSD: A Novel Metal-Dependent Non-Oxidative Decarboxylase

ACMSD is a zinc-dependent decarboxylase at the heart of the KP [34,50,51]. ACMSD is
most expressed in kidney and liver cells, and its inhibition enhances mitochondrial function
and increases cellular levels of NAD+ and NADH [33]. It performs a metal-dependent,
non-oxidative decarboxylation of its substrate ACMS [52,53], proceeding through a metal-
bound hydroxide with the assistance of non-covalent interactions with arginine residues
in the active site. ACMSD competes with the non-enzymatic cyclization of ACMS into
QA by removing the β-carboxylic group of ACMS to form 2-AMS, which is converted to
glutaryl-CoA and acetate through a series of glucogenic and ketogenic reactions before
continuing to the citric acid cycle for oxidation and energy production. ACMSD holds a
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key position at the juncture of the autocyclization and KP and controls the fluctuation of
the metabolites in both pathways. A significant trait of the ACMSD reaction is that the
substrate and its product are unstable, which has made studying its reaction mechanism
complex [31]. Therefore, QA levels are directly affected and regulated by ACMSD and
could be elevated by inhibition of ACMSD [4,54,55]. QA is an essential precursor to the
universal biological oxidant NAD+ and the reductant/energy carrier NADH. However,
QA is an agonist of the NMDA receptors, and elevated cellular levels of QA are related
to neuronal excitotoxicity and apoptosis. Therefore, its production is highly regulated in
cells [44,56–58]. Further study on the regulation and inhibition of ACMSD and its role in
QA levels and inflammatory response could elucidate the cause of many neurodegenerative
diseases [13].

As stated previously, ACMSD is a zinc-containing protein (Figure 3A). It is catalyt-
ically active in other divalent metal ions, such as cobalt(II) or iron(II), albeit at different
efficiencies [34]. An active-site histidine functions as an acid-base catalyst to help generate
a nucleophilic zinc-bound hydroxyl group that attacks the ACMS substrate, opens its C2
and C3 double bond, generates a C3-centered tetrahedral intermediate, and destabilizes
the carboxyl group associated with C3 (Figure 3B) [59,60]. ACMSD can exist in solution
as a tetramer, dimer, and monomer before degradation, and its activity is oligomeric-state
dependent [60,61]. The monomer is catalytically inactive due to the requirement for neigh-
boring arginine residues in its active site [60–62]. Even though ACMS is a metal chelator,
mechanistic studies suggest that it does not directly ligate to the zinc ion but binds to
the active site through non-covalent interactions with two arginine residues [60,62]. Each
monomer only contains half of the necessary active site arginine residues, which would
explain why the monomer is inactive [60]. When the enzyme is in its dimeric form, the
neighboring arginine residues can work together to bind the substrate [62]. Mutation of
either arginine residue from the neighboring protomer in the monomer–monomer inter-
face eliminates the activity of the enzyme, which could explain the requirement of the
dimeric and higher-order oligomers for catalytic activity and regulation of its unstable
substrate and product [61]. ACMSD can self-assemble into its homodimer, tetramer, and
higher-order structures. The dimer is the active unit, but the tetramer and higher-order
structures show more specific activity [61]. This dynamic oligomerization, which poten-
tially regulates ACMSD activity, is affected by pH, ionic strength, and other electrostatic
interactions [13,61]. The homodimer of ACMSD utilizes “half-of-sites” reactivity, meaning
that one of its active sites is well ordered and performs more efficiently than the other.
The tetramer and higher-ordered structures may function to stabilize both active sites
of the dimer. ACMSD’s ability to self-assemble into multi-oligomeric states provides in-
sight into how it can efficiently regulate the branching of two metabolic pathways while
maintaining an unstable substrate [61]. Recently, a potent inhibitor of the enzyme, 3-[[[5-
cyano-1,6-dihydro-6-oxo-4-(2-thienyl)-2-pyrimidinyl]thio]methyl]phenylacetic acid (also
known as TES-1025), has been identified, which provides a powerful utility for evaluation
of the therapeutic potential of ACMSD inhibition in treating disorders with perturbed
NAD+ homeostasis or supply [4,54,63]. The phosphorylated glycolytic intermediates 1,3-
dihydroxyacetonephosphate (DHAP) has been found to be an inhibitor of ACMSD and a
structural study reveals it binds to human ACMSD, and hence, a regulatory link between
de novo NAD+ biosynthesis and glycolysis is suggested [64]. However, the structure is in a
catalytically incompetent monomeric form. In the absence of biochemical data, it remains
unestablished for the proposed link to glycolysis.
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4. AMSDH: An NAD+-Dependent Dehydrogenase in the KP Trio

The final enzyme of the KP trio is the previously elusive human AMSDH, an NAD+-
dependent semialdehyde dehydrogenase that catalyzes the oxidation of 2-AMS to 2-AM.
AMSDH is the first energy-harvesting step of the KP, which facilitates the NAD+-dependent
oxidation of 2-AMS to 2-AM and competes with the spontaneous non-enzymatic cycliza-
tion of 2-AMS to PA, whose overproduction is toxic [65]. Until 2018, the last gene and
corresponding enzyme identified in the KP was ACMSD, leaving ten missing steps after
product 2-AMS. Previously, the gene encoding human protein was ALDH8A1, which was
misassigned to that of retinal dehydrogenase in a previous study based on its ability to
oxidize 9-cis-retinal faster than all-trans-retinal. Thanks to a thorough characterization of
the bacterial version of AMSDH [66,67], the human protein ALDH8A1 was reexamined.
A recent study utilizing a coupled enzyme assay verified by 2D-NMR and a stable alter-
native substrate, 2-hydroxymuconic 6-semialdehyde (2-HMS), demonstrates ALDH8A1’s
ability to catalyze the dehydrogenation of semialdehyde substrates better than cis-retinal.
These findings are compared to the oxidation product of the natural substrate 2-AMS, and
resonances and cross-peaks establish ALDH8A1 as human AMSDH [14].

Crystallographic studies of AMSDH from its bacterial analog explicate some of the elu-
sive chemistry of aldehyde dehydrogenases. The first set of crystal structures for AMSDH
included the resting state, one binary (bound with co-substrate NAD+), two ternary com-
plexes (bound with NAD+ and the highly unstable primary substrate 2-AMS or an alternate
substrate 2-HMS), a covalent thioacyl intermediate, and a tetrahedral thiohemiacetal inter-
mediate [66]. These early crystal structures indicated an E/Z isomerization of the substrate
in the enzyme active site before an sp3-to-sp2 transition during enzyme-mediated oxidation
(Figure 4) [66]. The significance of a conserved asparagine, Asn-169, has been probed by
generating Ala, Ser, Asp, and Gln mutants. The results have been substantiated theoretically
and experimentally with a “pitcher-and-catcher” mechanism driving the isomerization
before dehydrogenation [67]. Similar to ACMSD, the active site of AMSDH contains two
arginine residues that help to stabilize the carboxyl group of its substrate. The active site
also includes a cysteine residue that acts as a catalytic nucleophile, a glutamate that acts as a
general base, and a conserved asparagine residue that is hypothesized as the oxyanion hole
by stabilizing the transition-state negative charge on the C6 oxygen of the substrate through
hydrogen bonding. This asparagine interaction appears to be essential in the rate-limiting
steps of the reaction but is not heavily involved in catalysis. Mutation of this asparagine
residue results in loss of dehydrogenase activity. The two arginine residues function as the
pitcher in the pitcher-and-catcher mechanism, driving the isomerization activity utilizing
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electrostatic interactions with the substrate. The asparagine residue functions as the catcher
in the mechanism, stabilizing the substrate in its necessary tautomeric conformation for
dehydrogenation. This isomerization decreases steric hindrance and the distance between
the C6 of the substrate and the sulfur of the cysteine residue for the subsequent step of the
reaction. The utilization of hydrogen bonding to stabilize the highly unstable substrate and
intermediates, coupled with an isomerization reaction to increase the efficiency of catalysis,
prevents the spontaneous autocyclization of the substrate inside the enzyme and allows
AMSDH to compete with the non-enzymatic production of PA [67].
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5. Transient Enzyme Complex as a Possible Pathway Regulatory Mechanism

In a healthy individual, the QA level remains at a steady basal level in the nanomolecu-
lar range [68,69]. It is independent of the metabolic cycle of absorptive (fed), postabsorptive
(fasting), and starvation. It has been reported that the ratio between ACMS-to-QA and
ACMS-to-2-AMS is 1:72 in healthy adults [27]. However, the paradox is that QA and PA
are formed non-enzymatically and are expected to depend on metabolic states. At the low
level of L-Trp in cells, ACMSD and AMSDH can effectively compete with the spontaneous
reactions of ACMS and 2-AMS when they are present at low levels. The substrate concen-
trations near the KM value of the enzymes can effectively tune the catalytic rate. In contrast,
these kynurenine metabolites should unavoidably produce more QA and PA at high levels.

The mechanistic enzymology of each enzyme of the KP trio has been extensively
studied. Still, a knowledge gap surrounding competition between enzymes and the non-
enzymatic autocyclization of their substrates and products. In a highly active metabolic
state, the three enzymes must be able to steer the metabolic flux towards the enzyme-
controlled route, preventing excessive accumulation of the side products. Adding to
the complexity, they must also allow a steady, low-level production of QA for de novo
biosynthesis of NAD+ in humans [1]. Few explanations emerge. One possibility is that
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these three enzymes are expressed in large quantities shortly after a meal and then broken
down in the fasting state. However, this would be highly resource-demanding, which is not
supported by the mRNA profiling study [15]. In fact, no data thus far show a significant
metabolic-state-dependent fluctuation of the KP enzyme levels. Another possible regulatory
mechanism is tuning the catalytic activity of the center enzyme of the KP trio, ACMSD.
As discussed above, its enzymatic activity depends on its quaternary structure, with
which it can be modulated through its oligomeric states from inactive (monomer) to active
(dimer) and even more active (tetramer and high-order structures) forms [61]. However,
no evidence shows a substrate-tuned equilibrium shift among these distinct forms. Thus,
such an ACMSD quaternary structure-dependent KP regulation is limited, perhaps only
to adapting to environmental changes such as pH variations. No allosteric-type-pathway
product feedback inhibition mechanisms are known for the KP trio, either. Hence, the
metabolic-state-independent nature of the QA and PA levels remains perplexing and cannot
be rationalized with knowledge of each individual enzyme.

To resolve the puzzle, we propose the metabolite-induced formation of a transient
enzyme complex as a mechanism to regulate the metabolite partitioning between enzymatic
and non-enzymatic routes in the KP (Figure 5). In the scenario where the kynurenine
metabolites exceed a certain level, they will trigger the KP trio to change their conformations
and interact with each other, forming enzyme–enzyme complexes, either pairwise E1-E2 and
E2-E3 complexes or an HAO-ACMSD-AMSDH (E1-E2-E3) ternary complex, to shuttle the
unstable metabolites from one active site to another, deliberately reducing the spontaneous
reaction rates during high levels of L-Trp metabolites. In the free solution, QA and PA
production depends on the L-Trp metabolite levels, temperature, and pH. Inside a protein
tunnel, ACMS and 2-AMS will not only be in an increased hydrophobic environment
but also one with restricted conformational changes to reduce their tautomerizations
necessary for achieving autocyclization. At the fed state, the only plausible mechanism for
avoiding QA and PA overproduction and maintaining them at a low basal level is guiding
the metabolic precursors from one enzyme to the next, thereby sequestering them from
the bulk solvent. At high levels of the KP metabolites, it is likely that this enzyme trio is
functionally intertwined and that their close connectivity arises from their ability to regulate
each other’s activity and product distribution through direct protein–protein interactions.
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Figure 5. Illustrated hypothesis: formation of substrate-induced transient enzyme complex at high
metabolic flux for regulating non-enzymatic reactions. E1: HAO, E2: ACMSD, and E3: AMSDH.

The center enzyme of the trio, ACMSD, presents two potential tunnels in its structure
(Figure 6A). AMSDH also has a cavity for substrate binding that is validated by the
ternary-complex crystal structure of the bacterial enzyme (Figure 6B). To investigate this
connectivity further, a docking model was built from corresponding human ACMSD
and HAO crystal structures (PDB entries 4IGN and 2QNK, respectively [70,71]) by using
the ZDOCK utility and server (http://zdock.umassmed.edu, accessed on 22 February

http://zdock.umassmed.edu
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2023) [72]. This in silico docking model, shown in Figure 6C, reveals a tunnel through
which 3-HAA can enter and be guided to ACMSD to be converted to ACMS, which could
then be directed to AMSDH to form 2-AMS. Importantly, this model highlights a leak
point for ACMS to spontaneously form QA, which is essential for the de novo biosynthesis
of NAD+. This inner channel allows the enzymes to out-compete the autocyclization of
their substrates while still tolerating a necessary amount of autocyclization to maintain
proper levels of QA and PA. Thus, the results of in silico study support the hypothesized
pathway-regulation model delineated in Figure 5.
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and ACMSD (blue) docking model built from their corresponding crystal structures. The substrate
tunnel is highlighted in yellow. A space-filling of the docking model reveals a leak point that allows
spontaneously formed QA to exit.

6. Concluding Remarks

Transient physical association between enzymes has become increasingly appreciated
as a cardinal feature of metabolic systems [73]. We envision such a transient enzyme
complexation occurring and being of benefit in the following two scenarios. First, a tran-
sient enzyme complex may facilitate enzymatic biotransformation, which is energetically
unfavorable and does not occur in a test tube. The reaction becomes an intermediary step in
an overall reaction when coupled with a preceding enzyme. The energy released from the
prior reaction drives the conformational change of the target enzyme and delivers power
to the reaction that otherwise would not occur. Second, the transient, substrate-induced
enzyme–enzyme associate could serve as an effective regulatory mechanism for a metabolic
pathway involving unstable metabolites, which is a common scenario. In this latter case,
the enzymes compete with non-enzymatic chemical reactions, and the complexation is
expected to slow down the spontaneous reaction rates. However, the mechanisms by which
enzymes of a metabolic pathway interact with each other and the contribution of such
interactions to the internal regulation of various metabolic pathways remain unresolved.
Investigating transient enzyme assemblies presents a unique scientific challenge, as such
enzyme complexes do not typically exhibit sufficient stability to be isolated and character-
ized. This scenario is especially pertinent in the case of the L-Trp degradation pathway
in the KP trio segment, wherein each metabolite is unstable. Once established, such a
mechanism will expand the current repertoire of metabolic pathway regulatory strategies
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and bring the field of mechanistic enzymology one step closer to understanding enzymes
in their native, complex cellular environment.
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