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Abstract: Depression and metabolic disease are common disorders that share a bidirectional relation-
ship and continue to increase in prevalence. Maternal diet and maternal behaviour both profoundly
influence the developmental trajectory of offspring during the perinatal period. At an epidemiological
level, both maternal depression and obesity during pregnancy have been shown to increase the risk
of neuropsychiatric disease in the subsequent generation. Considerable progress has been made to
understand the mechanisms by which maternal obesity disrupts the developing offspring gut–brain
axis, priming offspring for the development of affective disorders. This review outlines such mech-
anisms in detail, including altered maternal care, the maternal microbiome, inflammation, breast
milk composition, and maternal and placental metabolites. Subsequently, offspring may be prone to
developing gut–brain interaction disorders with concomitant changes to brain energy metabolism,
neurotransmission, and behaviour, alongside gut dysbiosis. The gut microbiome may act as a key
modifiable, and therefore treatable, feature of the relationship between maternal obesity and the
offspring brain function. Further studies examining the relationship between maternal nutrition, the
maternal microbiome and metabolites, and offspring neurodevelopment are warranted to identify
novel therapeutic targets.

Keywords: gut microbiota; microbial metabolites; depression; metabolic disease; obesity;
maternal nutrition

1. Introduction

Obesity is a common yet highly preventable metabolic disorder prevalent world-
wide [1]. An audit led by the Royal College of Obstetricians and Gynaecologists in 2017 [2]
discovered that a quarter of pregnant women in the UK are obese, with a similar prevalence
across continental Europe [3]. Moreover, fewer than half of women in the UK have a
pre-pregnancy body mass index (BMI) within the normal range [2]. Excessive gestational
weight gain (GWG) is also a relatively common occurrence during pregnancy in the UK
and other Western countries, including the USA and Australia [4]. Entering pregnancy
with an elevated BMI increases the likelihood of excessive GWG, as well as the risk of
retaining weight postpartum [5]. Independent of pre-pregnancy BMI, 40% of women in
Western countries gain excessive weight during pregnancy [4]. It has also been shown that
the majority of pregnant women gain excessive weight due to the consumption of a diet
high in fat [6].

While the consequences of maternal obesity on offspring metabolism, obesity, and
cardiovascular health have been widely reported [7,8], only more recently are thorough
investigations being made into how maternal diet and obesity affect maternal and offspring
behaviour, including the transmission of psychiatric disease risk through poor maternal
health during gestation and the early life of the offspring. These potential mechanisms
have been summarised in Figure 1. It is critical to have a mechanistic understanding of
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how the maternal uterine and lactational environment may mediate offspring neurodevel-
opmental morbidity, because pregnancy may represent an important window for targeted
intervention to ameliorate foetal and offspring risk [9].
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Seminal studies in rodent [10] and nonhuman primate (NHP) [11] offspring first ob-
served the deleterious effects of maternal peripartum high-fat diet feeding on the off-
spring brain and behaviour (Table 1). In rats, it was shown that the expression of CD11b, 
a marker of macrophages and CNS-resident microglia, and TLR4 was significantly upreg-
ulated in the juvenile offspring of obese dams fed a diet high in saturated fat [10]. TLR4 
activation is required for robust pro-inflammatory responses to bacterial endotoxin, but it 
also mediates central inflammatory signalling and alters brain metabolism. In addition, 
the basal level of IL-1β protein was significantly elevated in the hippocampus and periph-
ery (liver) of both juvenile and adult offspring of high fat diet (HFD)-fed dams compared 
to offspring of controls. These inflammatory changes in HFD-exposed offspring were as-
sociated with an increased anxiety in the elevated plus maze. Moreover, Sullivan et al. 
(2010) linked changes in maternal HFD (mHFD) consumption during gestation with an 
increased anxiety-like behaviour in juvenile female NHP offspring [11]. This was also ac-
companied by perturbations to the serotonergic system, including decreased 

Figure 1. Summary of the putative mechanisms by which maternal obesity is thought to influ-
ence the course of offspring neurodevelopment. MCB, Maternal care behaviour; sIgA, secretory
immunoglobulin A; HMOs, human milk oligosaccharides; TLR4, toll-like receptor 4.

Seminal studies in rodent [10] and nonhuman primate (NHP) [11] offspring first ob-
served the deleterious effects of maternal peripartum high-fat diet feeding on the offspring
brain and behaviour (Table 1). In rats, it was shown that the expression of CD11b, a marker
of macrophages and CNS-resident microglia, and TLR4 was significantly upregulated in
the juvenile offspring of obese dams fed a diet high in saturated fat [10]. TLR4 activation is
required for robust pro-inflammatory responses to bacterial endotoxin, but it also mediates
central inflammatory signalling and alters brain metabolism. In addition, the basal level
of IL-1β protein was significantly elevated in the hippocampus and periphery (liver) of
both juvenile and adult offspring of high fat diet (HFD)-fed dams compared to offspring of
controls. These inflammatory changes in HFD-exposed offspring were associated with an
increased anxiety in the elevated plus maze. Moreover, Sullivan et al. (2010) linked changes
in maternal HFD (mHFD) consumption during gestation with an increased anxiety-like
behaviour in juvenile female NHP offspring [11]. This was also accompanied by perturba-
tions to the serotonergic system, including decreased cerebrospinal fluid levels of serotonin.
These studies paved the way for future animal models investigating the underlying mecha-
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nisms behind diet-induced obesity during gestation and nursing and altered neurobiology
and behaviour in the offspring (Table 1).

Table 1. Overview of preclinical studies investigating mechanisms of maternal-diet-induced obesity
on the offspring brain and behaviour.

Species
(Strain) Maternal Diet Intervention

Period, Length

Offspring
Behavioural
Outcomes

Offspring Brain
Outcomes Author, Year

Mouse (CD-1)
HFD (60% kcal
fat) vs. CD (10%

kcal fat)

Prenatal +
postnatal, 12 weeks
(including 6 weeks

pre-gestation)

↑ anxiety OFT PND21
and PND112; ↑

passive stress coping
FST PND21 and
PND112; ↓ social

interaction PND56

↓ brain creatine and
brain glutamate PND21;
↑ PFC ZIF-268 mRNA

PND21; ↓ PFC SYP
mRNA PND112

Radford-Smith
et al., 2022 [12]

Rat (Sprague
Dawley)

HFD (60% kcal
sat. fat) vs. trans

fat (60% kcal
trans-fat) vs. CD

(10% kcal fat)

Prenatal +
postnatal, 10 weeks
(including 4 weeks

pre-gestation)

↑ anxiety EPM (males
only), ↑ memory

performance MWM in
adulthood (3 months

age)

↑ hippocampal
microglial activation

(CD11b, TLR4) at PND1,
↑ IL-1B protein at

PND20, ↑ hippocampal
microglial activation and
reactivity in adulthood

(3 months age)

Bilbo and
Tsang, 2010

[10]

Japanese
macaques

HFD (32% kcal
fat) vs. CD (13%

kcal fat)

Up to 4 years
(including
prenatally)

↑ anxiety female
juvenile offspring

(PND130)

↑ TPH2, 5-HT1AR in
dorsal raphe in foetuses;

Sullivan et al.,
2010 [11]

Rat (Wistar)
HFD (40% kcal
fat) vs. CD (12%

kcal fat)

Gestation at
lactation (until

PND21)

↓ anxiety in OFT, ↑
social interaction in
HFD adult offspring

experiencing maternal
separation in early life
compared to CD adult

offspring

Prevents neurobiological
effects (↓ BDNF,

5-HT1AR, CRH) of
maternal separation

stress in juvenile
offspring (PND11) and
anxiety-induced cFOS
and corticosterone in

adulthood (8 months).

Rincel et al.,
2016 [13]

Mouse
(C57Bl/6)

HFD (45% kcal
fat) vs. CD (10%

kcal fat)

6 weeks (including
gestation)

Pups exposed to HFD
in utero altered
maternal care

behaviour (reduced
time spent on nest)

independent of
maternal diet

(cross-fostering
experiment)

- Baptissart et al.,
2018 [14]

Rat (Long
Evans)

HFD (60% kcal
fat) vs. chow diet
(13.5% kcal fat)

~6 weeks
(including 3 weeks

pre-gestation)

Pup isolation test:
HFD pups vocalised
less at PND7, more at

PND13

↑ CRH, ↓ NR3C1 in
paraventricular nucleus

at PND7, ↑ GAD1, ↓
NR3C1 in ventral

hippocampus at PND13

Abuaish et al.,
2018 [15]

Mouse
(C57Bl/6)

HFD (60% kcal
fat) vs. chow diet
(13.4% kcal fat)

Prenatal +
postnatal, 14 weeks
(including 8 weeks

pre-gestation)

↓ social interaction
(3-chamber social
interaction test), ↑
anxiety (OFT and
marble burying)

7–12 week offspring

↓ hypothalamic oxytocin
in HFD offspring; ↓

social
interaction-induced

dopaminergic activity in
ventral tegmental area

Buffington
et al., 2016 [16]
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Table 1. Cont.

Species
(Strain) Maternal Diet Intervention

Period, Length

Offspring
Behavioural
Outcomes

Offspring Brain
Outcomes Author, Year

Mouse
(C57Bl/6)

HFD (45% kcal
fat) vs. CD (10%

kcal fat)

Variable
pre-gestation until
significant weight

gain occurred

-

↓ neuropeptide Y
innervation of

paraventricular nucleus
in foetal offspring

Sanders et al.,
2014 [17]

Mouse
(C57Bl/6)

Chronic mild
stress + Western
diet (40% kcal

fat) vs. no stress
CD (10% kcal fat)

Prenatal +
postnatal, 11 weeks
(including 5 weeks

pre-gestation)

-

↑ hippocampal
microglial activation (↑
CD11b+ cells, ↑ AIF1,

TLR9 mRNA and
protein); ↓ neuronal cell
density (NeuN+ cells) in

hippocampus

Cohen et al.,
2016 [18]

Japanese
macaques

HFD (36.6% kcal
fat) vs. CD

(14.7% kcal fat)

Mothers had been
consuming HFD

for 1.2–8.5 years at
birth of offspring

↑ anxiety and
stereotypic behaviours

in offspring
(11 months age)

↓ TPH2 mRNA in dorsal
raphe; ↓ serotonin
immunoreactivity
prefrontal cortex
(13 months age)

Thompson
et al., 2017 [19]

Mouse
(C57Bl/6)

HFD (60% kcal
fat) vs. CD (10%

kcal fat) vs.
weight loss (HFD

→ CD)

Prenatal +
postnatal,

5.5 months
(including
4 months

pre-gestation)

-

No significant effect of
maternal diet on

offspring hypothalamus
or olfactory bulb
metabolite levels

Safi-Stibler
et al., 2020 [20]

Rat (Sprague
Dawley)

Grandmaternal
HFD (60% kcal
fat) vs. CD (10%

kcal fat)

Prenatal +
postnatal, 14 weeks
(including 8 weeks

pre-gestation)

↑ anxiety in female F2
offspring in EPM

↑ hippocampal CRH-R2
in male HFD F2

offspring; ↑ NR3C2 in
female HFD F2 offspring

Winther et al.,
2019 [21]

HFD, high fat diet; CD, control diet; PND, postnatal day; OFT, open field test; FST, forced swim test; EPM,
elevated plus maze; MWM, Morris water maze; PFC, prefrontal cortex; ZIF-268 encodes zinc finger protein 268
(early growth response protein 1); SYP encodes synaptophysin; CD11b encodes integrin alpha M; TLR4 encodes
toll-like receptor 4; IL, interleukin; TPH2 encodes tryptophan hydroxylase; 5-HT1AR encodes the serotonin 1A
receptor; BDNF encodes brain-derived neurotrophic factor; CRH encodes corticotropin releasing hormone; NR3C1
encodes the glucocorticoid receptor; AIF1 encodes allograft inflammatory factor 1; TLR9 encodes toll-like receptor
9; CRH-R2 encodes corticotropin-releasing hormone receptor 2; NR3C2 encodes the mineralcorticoid receptor.

2. Clinical Studies

Meanwhile, clinical studies, largely epidemiological in nature, have highlighted the
translational relevance for this field of experimental research (Table 2). Some of the first
association studies in humans investigated the link between low birthweight—a complica-
tion of pre-term birth with significantly greater prevalence in maternal obesity [22]—and
behavioural problems in children. Initially, it was shown that a very low birth weight
contributed to education difficulties and hyperactive behaviour in children [23,24], inde-
pendent of sociodemographic factors. Attentional problems were the focus of early studies
in low-birthweight offspring [23,25–34]. Following this, Rodriguez et al. (2008) made the
direct association between maternal obesity and attention deficit hyperactivity disorder
(ADHD), independent of birthweight [35].

A 2010 study showed that, in addition to inattentiveness, pre-pregnancy obesity
and overweightness predicted difficulties with emotional intensity and regulation in chil-
dren [36]. Studies over the subsequent decade affirmed the relationship between an
elevated pre-pregnancy BMI and internalising and externalising behaviours [37–40]. Here,
internalising behaviours correspond to affective disorders, whereby problems of an in-
dividual are internalised, manifesting in symptoms of depression, social withdrawal (as
opposed to antisocial behaviour), and anxiety. Other, related behavioural abnormalities,
characterised by high levels of negative effects, include obsessive-compulsive disorder,
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dissociative disorders, and eating disorders. In externalising disorders, on the other hand,
emotions and cognitions are manifested as maladaptive, antisocial behaviours towards
the external environment. ADHD is a relatively common externalising disorder. Despite
their opposing behavioural phenotypes, these categories often co-occur in a household
or individual, and appear to have a shared aetiology [41]. Throughout childhood and
adolescence, both internalising and externalising behavioural problems are more likely to
occur after gestational and early-life exposure to maternal obesity [38]. An analysis of the
same pregnancy cohort followed up children prospectively between the ages of 5 and 17
and found a higher risk of affective disorder in those exposed to an elevated pre-pregnancy
BMI [37]. Importantly, these and more recent studies with consistent findings adjust for
potential causative and confounding factors: weight gain during pregnancy, birthweight,
and the presence of maternal psychiatric disorders were common adjustments across these
studies [39,40,42] (Table 2). More rigorous considerations were made in the most recent
investigations, including the maternal age, delivery method, country of birth, socioeco-
nomic status, marital status, smoking status, and presence of a systemic inflammatory
disease; for example, Crohn’s disease [42]. The continued clinical relevance of this trans-
generational relationship between obesity and behaviour, coupled with highly consistent
findings in humans, highlights the need to uncover specific mechanisms of transmission
and accompanying therapeutics. While the relationship is undoubtedly complex, with
multiple contributing factors [9], establishing the key pathways involved will pave the way
for more targeted prevention and treatment during gestation and early-life offspring.

Table 2. Overview of clinical studies demonstrating an association between maternal obesity and
altered behavioural outcomes in children independent of other covariates.

Maternal Risk
Factor

Child Outcome (Age
at Follow-Up)

Study Design and
Sample Size Covariates Investigated Author, Year

↑ Pre-pregnancy
BMI and/or

gestational weight
gain

↑ teacher-rated ADHD
symptomology

(7–8 years or
10–12 years)

Cohort study,
N = 12,556

Maternal age, social adversity,
maternal smoking, gestation

length, birth weight, infant sex,
maternal education,

family structure

Rodriguez et al.,
2008 [35]

↑ teacher-rated ADHD
symptomology

(5 years)
Cohort study, N = 1714 Rodriguez, 2010

[36]

Pre-pregnancy
obesity

↑ Affective behavioural
problems as

determined by primary
caregiver (5, 8, 10, 14,

17 years)

Longitudinal cohort
study, N = 1754

Maternal age, maternal
education, household income,

maternal smoking, alcohol
consumption, family structure,
maternal life stress, gestation
length, gestational diabetes,
duration of breastfeeding,

birth weight

Robinson et al.,
2012 [37]

↑ Pre-pregnancy
BMI

↑ Internalising and
externalizing problems

in childhood and
adolescence (5, 8, 10, 14,

17 years)

Longitudinal cohort
study, N = 2868

Maternal psychopathology,
paternal psychopathology,

maternal age, alcohol intake,
smoking, socioeconomic status,

education, marital status,
maternal life stress,
maternal diabetes

Van Lieshout et al.,
2013 [38]
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Table 2. Cont.

Maternal Risk
Factor

Child Outcome (Age
at Follow-Up)

Study Design and
Sample Size Covariates Investigated Author, Year

Pre-pregnancy
obesity

↓Child psychosocial
development at age 6↑

likelihood of prior
ADD/ADHD

diagnosis,
speech/language

therapy, psychological
or special needs
services (6 years)

Cohort study, N = 1542

Maternal age, ethnicity, marital
status, education, parity,

household income, maternal
smoking, infant sex, infant

current weight, child
enrichment activities (e.g.,

reading to child >3 times per
week), breastfeeding duration,

postpartum depression,
birth weight

Jo et al., 2015 [39]

↑ Pre-pregnancy
BMI, pre-pregnancy

and gestational
diabetes

↑ risk of
neurodevelopmental,

ADD/ADHD,
psychotic, mood,

stress-related disorders
in offspring (up to 11

years, median 5.5 years)

Population study,
N = 649,043

Infant birth year, infant sex,
perinatal problems, gestation

length, parity, mode of
delivery, maternal age, family
structure, ethnicity, maternal

smoking, maternal
inflammatory comorbidities

Kong et al., 2018
[40]

Infant birth year, infant sex,
perinatal problems, gestation

length, parity, mode of
delivery, maternal age, family
structure, ethnicity, maternal

smoking, maternal
inflammatory comorbidities,
maternal psychopathology

Kong et al., 2020
[42]

AD(H)D, attention deficit hyperactivity disorder; BMI, body mass index.

3. Maternal Factors Influencing Offspring Neurodevelopment and Behaviour
3.1. Maternal Care Behaviour

It is generally accepted that the importance of the relationship between the mother and
infant transcends nutritional need. This was demonstrated in animals in early ethological
studies [43,44], which initially demonstrated the impact of contact and comfort on primate
development independent of nutritional support. Infant primates raised in the absence of
maternal care developed severe social deficits while developing strong emotional attach-
ment to inanimate objects that provided any source of comfort. While infants during the
early postnatal period are typically hyporesponsive to stress compared to other life stages,
maternal care (and neglect) remains a strong influence over neurodevelopment [45].

Clinical studies have revealed important associations between childhood maltreat-
ment and altered neurobiology and behaviour. Childhood neglect, in its various forms, is
associated with an increased risk of behavioural problems and psychiatric illness. Longi-
tudinal studies are important for clinical studies on the effects of maternal care. A large
longitudinal study in 2017 showed that poor maternal care provides context for a link
between depression and elevated BMI in adult women [46]. This and other clinical studies
indicate that female offspring may be more at risk of developing psychopathologies as
a consequence of poor maternal care. Another study showed that female adolescents of
mothers with major depressive disorder (MDD) have a significantly greater likelihood
of developing a psychiatric disorder [47]. Exposure to maternal neglect in childhood is
also a risk factor for attempted suicide, depression and anxiety, and other psychiatric
disorders [48]. A comprehensive systematic review of clinical studies on different forms
of childhood maltreatment found neglect to have one of the highest associations with the
development of depressive disorders in later life [49]. The environmental modulation
of development during early life likely serves to allow for the adaptation of subsequent
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generations to novel environments that may differ to those of previous generations. During
the perinatal period, the developing brain is particularly susceptible to environmental
insult, including neglect. Prevailing theory suggests that exposure to early stress through a
lack of maternal (and paternal) care programs enhanced the responsiveness to stress [50,51].
While this may be viewed as a neurodevelopmental adaptation to a perceived stressful
environment, it is almost certainly detrimental in the present environment. Understanding
the neurobiological sequelae of exposure to poor maternal care is therefore an important
feature of both clinical and preclinical neuroscience and behavioural research.

The abnormal development of specific brain regions has been implicated in maternal
neglect. Both the hippocampus and prefrontal cortex (PFC) undergo protracted postna-
tal development and neurogenesis prior to myelination and synaptic pruning, with the
hippocampus continuing to develop during childhood and the PFC developing into the
third decade of life [52,53]. Both regions have a high density of glucocorticoid receptors
(GRs) [54,55]. Physiologically, these GRs serve to maintain homeostasis by inhibiting fur-
ther hypothalamic pituitary adrenal (HPA) axis activity during the stress response. They
are also thought to be important to neuronal function and survival through the regulation
of brain-derived neurotrophic factor (BDNF), a key protein involved in the regulation of
brain synaptic plasticity [56].

In rodents, maternal neglect has been shown to affect brain development and be-
haviour via overactivation of the HPA axis. Temporary intervals of maternal separation
from pups activate the HPA axis, increasing the levels of circulating adrenocorticotropic
hormone (ACTH) and glucocorticoids [57]. Prolonged separation reduces corticotropin
releasing hormone (CRH) binding sites in the hypothalamus [58], possibly due to nega-
tive feedback via the sustained elevation of circulating stress hormones. Lower levels of
maternal care, specifically the reduced licking and grooming of pups, correlates with re-
duced hippocampal GR mRNA levels and increased CRH mRNA in the hypothalamus [59].
Moreover, chronic corticosterone administration has been shown to hinder neurogenesis
in the hippocampus in rodent models in a number of independent studies [60]. Brain
transcriptomic analysis has subsequently revealed that maternal care behaviour regulates
the expression of >900 genes in the hippocampus [61]. Finally, it has been shown that
low levels of maternal licking and grooming behaviour lead to persistent anxiety-like
behaviours in the adult (3-month old) offspring [61,62].

Poor maternal care has also been shown to increase anxiety behaviours in NHP off-
spring, which may be mediated by perturbations to tryptophan metabolism via increased
glucocorticoid levels. Macaques exposed to maternal neglect displayed elevated anxiety-
like behaviours (increased scratching behaviour) between 12 and 24 months of age, which
correlated with reduced levels of 5-hydroxyindoleacetic acid (5-HIAA) in the cerebrospinal
fluid (CSF) [63]. 5-HIAA is a major metabolite of serotonin and may indicate reduced brain
serotonin synthesis. While glucocorticoids were not measured, other studies have shown
social separation in early life to significantly increase plasma cortisol levels at the age of
6 months [64] and persistently elevate CRH in the CSF at the age of 2 years [65]. Glucocorti-
coids are known to induce the expression of tryptophan 2,3-dioxygenase, an enzyme that
catalyses the first and rate-limiting step of tryptophan to kynurenine [66,67]. It is possible,
therefore, that early life maternal separation increases circulating glucocorticoid levels,
directing tryptophan metabolism towards kynurenine metabolism (in peripheral tissues or
in the brain) and depleting brain tryptophan availability for serotonin synthesis. In parallel,
early life stress has been shown to reduce the metabolism of kynurenine to kynurenic
acid, a neuroprotective agent, and increase metabolism to quinolinic acid, a neurotoxic
agent [68]. Given that serotonin levels peak during the perinatal period [69], it is unsurpris-
ing that perturbations to signalling during this sensitive period could produce long-lasting
behavioural changes reminiscent of affective disorders [70]. Recent evidence [71] indicates
an immediate impact of serotonergic signalling in response to maternal presence, whereby
PFC activity during the early postnatal period is reduced during maternal absence as
opposed to maternal presence. This was shown to be mediated by 5-HT2 receptors and is
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consistent with another study that demonstrated early life stress to increase the pre-mRNA
editing (and reduce downstream activity) of the 5HT-2C receptor in adult mice [72].

The adverse effect of stress on neurodevelopment has been demonstrated retrospec-
tively in humans by a reduced hippocampal volume in adults with a history of childhood
trauma [73,74]. Women, but not men, who experienced low maternal care during early life
have a reduced hippocampal volume compared to matched control individuals [75]. This
points to the increased susceptibility of female offspring to poor maternal care. Similar
findings have been identified in the PFC, whereby the grey matter volume in the prefrontal
cortex has been shown to be reduced in children exposed to early life stress in both longi-
tudinal studies and when evaluated retrospectively [76–79]. The total brain volume has
also been shown to be reduced in children with a history of trauma, compared to typically
developing children [76,80]. A reduced hippocampal volume is also a risk factor for future
psychiatric disease [81]. Other studies have been more equivocal: De Bellis et al. (1999)
found no effect of post-traumatic stress disorder on hippocampal volume in children or
adolescents compared to control individuals [82]. Similarly, while Carrion et al. (2001)
found that children (age 7–14) with a history of psychological trauma had a smaller total
cerebral volume compared with control individuals, there was no difference in the relative
volume of the hippocampus [80]. In summary, significant stress exposure prior to the
complete development of the hippocampus and the PFC may lead to their precocious
maturation at the expense of their full developmental potential [50,77].

Maternal depression has been demonstrated to be a modifying factor in the quality of
maternal care behaviour, whereby depressive episodes are an obstacle to sensitive maternal
care. Depressed mothers are less attentive and responsive to the needs of their offspring [83].
Substantial clinical evidence now exists to show that maternal depression affects the HPA
axis of developing children. For example, children of mothers who exhibit depression
show elevated morning cortisol levels at 6–10 years age [84]. In another study, elevated
waking cortisol levels were identified in 13 year old children of mothers with postpartum
depression [85]. In the same cohort, it was shown that the elevated cortisol levels in these
children played a significant mediatory role in the development of depression at the age
of 16 years [86]. Retrospective studies in humans have shown that both prenatal and
postnatal maternal depression adversely affect cognitive and emotional development in
offspring [87–89]. Furthermore, lower scores on parameters that measure parent–child
relationships (i.e., reduced empathy and more emotional distance) significantly increase the
risk of depression and anxiety in later life [90,91], increasing the risk of parental–offspring
neglect and psychopathology between generations.

Preclinical studies investigating natural variations in maternal care (without human
intervention, i.e., maternal separation from pups) in rats show that natural variations in the
extent of the licking/grooming (LG) and arched-back nursing (ABN) of pups has a signifi-
cant influence on neurodevelopment and behaviour. Offspring of dams engaging in higher
levels of LG show an increased exploratory behaviour in an open field [92]. Another study
showed that naturally occurring higher levels of LG and ABN increased the expression of
NMDAR subunit and brain-derived neurotrophic factor (BDNF) mRNA, with an increased
hippocampal synaptogenesis and improved spatial memory [59]. Changes in offspring
gene expression and behaviour may be mediated by epigenetic mechanisms [91,93,94].
Altered DNA methylation due to natural variation in maternal care that leads to changes in
the chromatin structure can result in the attenuation of hippocampal GR expression in pups
exposed to less LG [93]. Interestingly, preclinical evidence also supports the inheritance of
maternal care behaviours, such that female mice exposed to lower levels of maternal care
also exhibit poor maternal care to subsequent generations via the epigenetic regulation of
brain estrogen receptor alpha expression [94]. Association studies in humans have also
been conducted that show that an abusive or neglectful parent is far more likely to have a
history devoid of adequate parental care [95].

Few studies have investigated how the maternal diet or diet-induced obesity affects
maternal care behaviours in rodents or the parenting style in clinical studies. A high-fat,
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high-protein diet in rats leads to increased ABN and reduced passive nursing (PN), as
well as increased grooming behaviour [96]. This study is of limited validity as maternal
care was observed from birth to weaning age (postnatal day 21), and only for 2 h each day
per animal. Maternal care exhibits natural variation throughout this period, and a more
intensive observational study in the first week of life might have been more meaningful [97].
Additionally, changes in maternal behaviour towards pups were not linked to any brain
or behavioural changes in offspring. A more recent study, also using rats, looked at the
effect of a high-fat diet (60% kcal from fat) in comparison to a control diet (10% kcal from
fat) on maternal care behaviours from postnatal days 3 to 6 [98]. They found no differences
in maternal care behaviour during the day (light period) over a 3 h observation for each
day. During the dark period, ABN and total nursing was increased in dams exposed to
a palatable high-fat diet, whereas time spent resting was reduced. No differences were
observed between licking/grooming. This study also has several limitations; the rats were
only started on the high-fat or control diets after the second day of gestation, and straight
after arriving to the facility. The effect of transport stress may confound results of stress due
to diet. Furthermore, weight gain in the mothers was not assessed, and it is unlikely that
significant weight gain occurred during the feeding period. Short-term palatable high-fat
diet feeding may reduce anxious behaviour rather than induce depressive-like behaviours
and deficits in maternal care, particularly in the absence of obesity [99]. Moreover, evidence
from another study suggests that an obese phenotype (significant weight gain) rather than
high-fat diet exposure alone is required to adversely impact offspring neurodevelopment
and behaviour [13]. A third study [14] using inbred mice showed that the dams of neonatal
mice exposed to a high-fat diet in utero were less interactive than neonates exposed to a
control diet. Using a cross-fostering design, this was demonstrated to be independent of the
mothers’ diet, instead suggesting a role of offspring physiological changes that cue maternal
interaction with pups. Importantly, females were fed the high-fat diet (45% of kilocalories
from fat) for six weeks prior to mating. This is an interesting concept, suggesting that,
even at this early stage, the relationship between the mother and offspring is instigated
bidirectionally [100]. Another recent study of maternal care behaviour (MCB) in rats [15]
used a high-fat diet (60% of kilocalories from fat) that started 3 weeks prior to mating.
MCB was assessed between the first and sixth postnatal day for 3 h during the day and
3 h during the night (at spaced intervals throughout the day and night). In this study,
high-fat dams were significantly heavier than their control counterparts. No differences
between the control and high-fat diet groups were found. Conversely, our laboratory
has shown that, after 9 weeks of HFD feeding, maternal mice are less attentive to their
offspring during the first postnatal week of life (as measured by the time spent away from
the nest) compared to maternal mice fed a control diet [12]. The average time spent nursing,
licking, and grooming was not different between obese and lean dams. As nursing, licking,
and grooming behaviours are thought to be the key actions that can influence offspring
development [93,101], it is unlikely that the extra time spent away from the nest in obese
dams would have adversely affected offspring development, as it appeared to only be at
the expense of the average time spent nest building. While an adverse relationship between
nest building and offspring developmental or behavioural outcomes has not been reported,
nest building is a highly motivated behaviour during pregnancy [102] and its reduction in
favour of inactivity may be indicative of anhedonia. Clearly, the preclinical evidence for an
effect of high-fat-diet feeding on maternal care is mixed and warrants clarification in future
studies. The length of high-fat-diet feeding may also affect MCB. It may be that maternal
care deteriorates over longer levels of pre-pregnancy high-fat-diet feeding.

Preliminary evidence in human studies similarly indicates that the diet influences
maternal behaviour, although confounding variables are more difficult to control. A
systematic review found that a healthy diet prior to and during pregnancy reduces the risk
of perinatal anxiety and depression [103]. Postpartum depression is also exacerbated by a
poor diet [104]. On the other hand, a recent study conducted in the UK showed no evidence
for the overall diet being linked to postpartum depressive symptomology in humans after
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adjusting for many potential confounders [105]. Thus, the evidence for the diet playing a
significant modifying role on the maternal perinatal psychopathology is certainly mixed.

In summary, preclinical studies have begun to shed light on some of the key mech-
anisms mediating the effect of maternal neglect, a form of early life stress, on offspring
neurodevelopment with consequences for behaviour. These concepts align with the theory
of foetal programming, whereby exposure to significant amounts of neglect or other stres-
sors during the early postnatal window directs brain development along a specific pathway
best adapted to a stressful environment. In a benign environment, these behaviours are
maladaptive and likely increase the risk of internalising and externalising behavioural
disorders in later life. When investigating the effect of maternal-diet-induced obesity on
maternal behaviours, the evidence is limited and mixed. Because of this and the estab-
lished effect of maternal care on the offspring brain and behaviour, observed variations
in maternal care should be reported in all studies investigating the gestational and early
postnatal period, at least to eliminate possible confounding effects on other outcomes.

3.2. The Maternal Microbiome

The effect of maternal obesity on the offspring brain and behaviour may be mediated,
in part, by changes to the maternal and offspring gut microbiome. The obesity status
and consumption of a high-fat diet prior to and during pregnancy have been shown to
affect the composition of the maternal and neonatal gut microbiome in humans [106–108]
and rodents [109]. Moreover, maternal gut dysbiosis induced by diet [16] or antimicrobial
treatment [110] has been shown to affect the offspring microbiome, as well as the offspring
brain and behaviour.

While the absence of a placental microbiome has been confirmed in humans [111],
preclinical studies in mice have nonetheless revealed a profound effect of the maternal
microbiome on prenatal development through the transfer of microbial metabolites from the
dam to the offspring. Microbial metabolites contribute to foetal nourishment, but are also
crucial for the origins of immunity [112] and neurodevelopment [113,114]. Maternal chronic
mild stress during the first week of gestation has been shown to affect the maternal vaginal
microbiome composition through a decrease in Lactobacillus spp., markedly reducing the
abundance of this taxa in offspring, with associated changes to the plasma metabolome
affecting the energy balance and mitochondrial function [113]. The levels of brain amino
acids glycine and threonine were also reduced in early-life (postnatal day [PND]2) male
offspring but increased in early-life (PND2) female offspring as a consequence of maternal
prenatal chronic mild stress. This is an interesting sex-specific observation and may account
for differences in susceptibility to maternal stress in male and female offspring.

The specific absence of certain or all microbes during early life has been shown to
affect behaviour in later life. For example, Sudo et al. (2004) showed that GF mice exhibit
downregulated NMDA receptor subunit NR2A in response to acute restraint stress, which
was reversed by the microbial reconstitution of Bifidobacteria (but not Escherichia coli)
neonatally [115]. Stress-induced changes in brain gene expression were not reversible by
gut microbial reconstitution in adulthood. This seminal study established the importance
of the commensal microbiota in the normal conditioning of the HPA axis. An altered gut
microbiota due to a poor maternal diet likely also has a pervasive effect on metabolites
reaching the foetus, which may prime offspring for disease. Germ-free mice colonised
with the gut microbiota of offspring born to obese dams have an increased intestinal
permeability (determined by increased plasma fluorescein isothiocyanate dextran levels),
hepatic inflammation (increased hepatic TNF mRNA and hepatic macrophage count), and
susceptibility to non-alcoholic fatty liver disease (NAFLD), determined by a histological
examination of liver sections for steatosis and the infiltration of inflammatory cells [116].
Clearly, maternal microbial changes that occur because of perinatal obesity affect the
composition of vertically transmitted metabolites to offspring during foetal and neonatal
development.
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One of the first pieces of evidence linking a maternal high-fat diet to the offspring
brain and behaviour via changes in the gut microbiota comes from a study by Buffington
et al. (2016) [16]. In this study, female mice were fed a HFD (60% of kilocalories from fat)
for 8 weeks prior to mating [16]. This is a more appropriate time period to achieve a mouse
model of diet-induced obesity [117]. At parturition, litter sizes were significantly reduced
compared to non-obese mothers who were maintained on a regular diet (13.4% kcal fat).
Even though offspring mice were maintained on a ‘regular’ diet until adulthood, substantial
differences in the gut microbiome were observed, mirroring some of the changes observed
in the F0 maternal generation. These changes were replicated when offspring gut microbes
were transplanted into germ-free mice. Alongside changes to the microbiome, the offspring
of dams fed a HFD exhibited social interaction deficits, and, with this, reduced oxytocin
levels and the potentiation of synaptic inputs to dopamine neurons in the ventral tegmental
area (VTA) after the social interaction protocol. Lactobacillus reuteri was found to be the
most reduced species in maternal HFD offspring compared to controls. A reconstitution of
this species in maternal HFD offspring (4-week supplementation in drinking water post-
weaning) reversed social and synaptic deficits, which was not the case for other depleted
taxa. Heat-killed L. reuteri was unable to rescue social behaviour and had no effects on social-
interaction-induced long-term potentiation in the VTA of maternal HFD offspring. While
this study provided some of the first compelling evidence for the role of specific microbes in
neuropsychiatric disorders influenced by maternal nutrition, it contradicts other evidence
that functional metabolite production likely plays more of a role in mediating changes to
the gut–brain axis, rather than specific taxa [118]. With this in mind, microbial metabolite
production was not reported as a result of a maternal high-fat diet, and functional metabolite
changes as a direct result of L. reuteri administration were not described, despite this species
having been demonstrated as effective in promoting γ-Aminobutyric acid (GABA) and
histamine production in vitro [119]. Maternal chronic variable stress exposure during the
first week of gestation in mice has also been shown to reduce Lactobacillus spp. in the
vaginal microbiome (early postpartum) and offspring gut [113]. Offspring exposed to
early prenatal stress also had altered colon and plasma metabolite profiles, associated
with energy and microbial metabolism. Finally, prenatal stress altered brain amino acid
levels in offspring (postnatal day 2) in the hypothalamus and hippocampus. The effect of
peripheral metabolic changes on the brain is particularly important during development as,
relative to mature brain structures, certain brain regions are much more readily accessible
to circulating factors [113]. Offspring behavioural outcomes were not explored in this
experiment. It is currently unknown whether maternal obesity significantly alters the
normal composition of the vaginal microbiome, and this could be a mechanism by which
maternal obesity leads to vertically transmitted changes in the offspring gut microbiome,
with implications for social behaviour [16].

The effect of diet-induced microbial changes, but not the high-fat diet itself, on off-
spring behaviour has also been explored [120]. This allows for the direct effect of the
microbiota to be assessed, rather than the whole array of changes induced by a mater-
nal high-fat diet, on offspring behaviour. Microbiota from male mice fed with a high-fat
(60% kcal fat) diet for 3 months were transplanted into microbiota-depleted adult females.
Obese-type microbiota did not induce weight gain or affect maternal care in dams, though
female offspring were significantly heavier than control offspring at weaning and adult-
hood. In adult offspring, offspring males from dams with obese-type microbiota showed
an increased anxiety relative to controls, though, in females, no changes were found. All
offspring showed microbiome changes that differed in accordance with maternal treatment.
This study provided further evidence that maternal microbiota may program aspects of
offspring behaviour.

The intrinsic ability of microbes associated with obesity to alter brain function and
behaviour has also been demonstrated [121]. Gut microbes from adult mice were depleted
during a 2-week antibiotic protocol and recolonised with donor microbes from the caecal
content of genetically identical mice fed an HFD (60% of kilocalories from fat) for 8 weeks.
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Compared to mice that received donor microbes from mice fed a control diet, microbes
derived from a high-fat diet increased anxiety-like behaviours in the OFT, EPM, and
marble burying test in the absence of any weight gain in recipient mice. Increased plasma
endotoxin and TLR4 expression and brain macrophage marker IBA1 and TLR4 expression
were indicative of increased peripheral and central inflammation, respectively. Given
that microbiota may partially mediate neuropsychiatric consequences of obesity, it can
reciprocally be suggested that the modulation of the microbiome in obese individuals, or
individuals exposed to obesity with an altered microbiota composition, may be able to
attenuate brain and behavioural deficits. The efficacy of such treatment may give rise to
narrow therapeutic windows that correspond to important periods of neurodevelopment.
For example, Buffington et al. (2016) [16] found that microbes donated from conventionally
housed mice reversed social deficits in germ-free mice at 4 weeks old, but not at 8 weeks [16].

Diet-induced obesity also alters the innate immune response through changes in
the gut microbiota composition. While it is well known that commensal microbes in-
teract with local immune cell populations in secondary lymphoid organs such as the
gut [122], the mechanism by which microbiota influence haematopoiesis at primary lym-
phoid organs—for example, the bone marrow—is less clear. Lee et al. (2019) demonstrated
that a defined population of bone marrow resident macrophages are able to detect cir-
culating cell-free bacterial DNA [123]. The detection of this DNA drives the production
of cytokines such as TNF and IL-1B, which regulate the production of bone marrow
haematopoietic stem cells (HSCs). While the complete absence of microbiota appears detri-
mental to primary immune cell development, modification to the microbiome by diet may
also impact innate immune cell development. Luo et al. (2015) showed that an HFD altered
the HSC niche in mice, with increased common myeloid as opposed to common lymphoid
progenitors [124]. Increased myeloid progenitors may underly more potent inflammatory
responses to infection in obese individuals [125] and increased peripheral and central TLR4
expression [126]. This effect was found to be mediated, at least in part, by changes to the
gut microbiota, as the depletion of gut microbes by oral antibiotics reversed changes to the
HSC niche. Additionally, FMT from high-fat-diet mice to mice on a regular diet induced the
same effect as the direct ingestion of the high-fat diet. By extension, high-fat-diet-induced
changes to the microbiome could mediate depressive symptomology through immune
dysfunction beginning in the HSC niche. Because innate immune memory appears to
be transferable through the microbiota [127], and the neonatal microbiota is significantly
shaped by the mother [128], an adverse combination of microbes and immunomodulatory
compounds during early life may impact the brain and periphery of developing offspring.

There remains a scarcity of studies that have investigated how obesity-induced changes
to the maternal microbiome impact offspring neurodevelopment and behaviour. Most
studies have investigated the link between obesity, the gut microbiota, and mood disorders
in a single generation [129]. Some evidence points to the deficiency of Bifidobacteria spp. or
Lactobacillus spp. in obese subjects mediating reduced beneficial metabolites [130], though
increased basal inflammation through increased circulating microbial endotoxins likely
also plays a role [131]. Work in our laboratory has previously shown that maternal HFD-
induced obesity reduces the abundance of Bifidobacterium spp. in maternal mice postpartum
compared to maternal mice fed a control diet [12]. In the same study, maternal HFD feeding
was found to negate the effect of probiotic supplementation on increasing faecal short-chain
fatty acid (SCFA) levels, and increased maternal plasma cholesterol levels.

3.3. Maternal Inflammation

Perhaps the most striking evidence for the contributory role of maternal inflammation
in programming offspring brain function and behaviour stems from the observation of
maternal infection during pregnancy and the increased risk of neuropsychiatric disorders
in the offspring. This has been investigated in preclinical models of maternal immune
activation (MIA) and human epidemiological data. In humans, converging evidence from
maternal autoimmune disorders, acute stress, and infection during pregnancy point to
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elevated maternal immune mediators in enhancing the risk of offspring psychopathology
development. Moreover, viral infection during pregnancy can significantly alter normal
neuronal development, as in the case of Zika virus infection [132]. In rodents, congenital
Zika virus infection impacted learning and memory in adulthood, which presented with
a reduced number of mature hippocampal neurons [133]. More generally, rodent MIA
models demonstrate behaviours resembling autism spectrum disorders and schizophrenia,
as well as anxiety-like behaviours [134]. The basal level of several neurotransmitters in
different regions of the rodent brain have also been shown to be influenced by MIA and
are thought to underly these persistent behavioural changes [135]. More recently, MIA has
been associated with offspring depressive-like behaviour in preclinical models [136] and in
humans [137]. Mechanistic studies in rodents have attributed depressive-like behaviour to
a reduced neuron density and long-term potentiation (LTP) deficits in the hippocampus,
reduced BDNF, and reduced serotonin in several brain regions, including the PFC [138–142].
Despite the apparent evidence of prenatal pro-inflammatory cytokines in programming
offspring behaviour, it is important to note that maternal inflammation and foetal or
neonatal exposure to maternal inflammatory mediators do not necessarily equate to a
similar inflammatory response in the offspring [134]. It is largely unknown how elevated
maternal cytokines alter brain development, though it is possible that they more directly
affect synaptic plasticity and pruning and neuronal function in offspring [143]. Given
the broad range of behavioural outcomes in offspring associated with maternal immune
activation, it seems unlikely that maternal inflammation is correlated with a specific disease.
Rather, MIA may contribute to a wider spectrum of psychiatric illnesses, the penetrance
of which may depend on other genetic and environmental factors. In humans, therefore,
maternal infection and inflammation may act as a disease primer, increasing the risk of
psychopathology manifesting later in life.

Obesity is an inflammatory condition. While different to an acute inflammatory
episode, obesity is known to be associated with a prolonged increase in circulating pro-
inflammatory cytokines, including IL-6 [144]. Pregnancy is normally associated with
immunological changes, including enhanced pro-inflammatory responses to lipopolysac-
charide (LPS) and viral challenges [145]. Obesity during gestation exacerbates inflammatory
changes associated with pregnancy, which has implications for foetal development [146].
Maternal obesity during pregnancy in humans is associated with significant alterations
to the placenta, including increased resident CD14+ and CD68+ macrophages, and an
increase in the placental expression of several pro-inflammatory cytokines, including IL-1β,
TNF, and IL-6 [147,148]. Placental inflammation due to high-fat-diet consumption has
been demonstrated in non-human primates [149]. Significant endocrine changes in the pla-
centa also occur in response to maternal inflammation, mediated by IL-6 [150]. Increased
maternal plasma concentrations of IL-6 were also observed in obese pregnant women
compared to lean pregnant women [147,151]. Increased levels of endothelial intercellular
adhesion molecule 1 and reduced levels of the anti-inflammatory cytokine IL-10 have also
been observed early in pregnancy in obese pregnant women compared to lean pregnant
women [151]. Increased serum IL-6 has been replicated in rodent models of maternal
obesity, with a concomitant reduction in placental vascularisation [152]. Additionally, it
has been shown that maternal IL-6 may transfer across the placenta and into foetal cir-
culation [153]. Gestational weight gain, as opposed to pre-pregnancy obesity, may also
be important. One study identified that every kilogram of gestational weight gain was
associated with a 3% increase in serum C-reactive protein (CRP) and serum amyloid A
(SAA) levels independent of pre-pregnancy BMI [154], though other inflammatory markers
were unaffected. These studies clearly indicate that obesity during gestation may impact
foetal development via excessive pro-inflammatory immune mediators.

The link between brain, behaviour, and immunity is evident in sickness behaviour.
This is a robust evolutionary response that arises upon the administration of a peripheral
inflammatory stimulus such as an endotoxin in both rodents [155] and humans [156]. Early
life infection may also result in persistent changes to the brain and behaviour. For example,
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a longitudinal study in humans found an association between early-life (<14 years of age)
viral CNS infection and the risk of schizophrenia development in adulthood [157]. Other
studies have discovered a similar association after a bacterial infection [158,159]. Interest-
ingly, the link between depression and immunity may be bidirectional, as depression at the
baseline has been shown to be prospectively associated with an increased risk of hospitali-
sation due to infection in the UK Biobank [160]. Strong epidemiological evidence has found
that the risk of developing any common mental disorder was increased with childhood
infection that required hospitalisation or other treatment [161]. While the trigger in this case
may be caused by an infectious agent, peripheral inflammation is known to lead to the de
novo synthesis of cytokines in the brain [162]. Therefore, adaptive CNS changes may occur
via immune-mediated inflammatory pathways within the CNS. Chronic, stress-induced
inflammation is thought to increase the risk of depression and other mood disorders via
similar inflammatory mechanisms [163]. Psychological stress, a key contributor to depres-
sion and other psychiatric conditions [164], alters the neuroimmune system, particularly
the induction of a pro-inflammatory state with cytokine signalling initiated by activated
microglia [165–168]. In humans, inflammatory biomarkers are associated with depression
and depressive symptomology [169,170], and attenuating this immune activation may
be a prerequisite for antidepressant treatment efficacy [171]. Rodent models of early-life
stress have connected the development of depressive-like behaviours with an increased
inflammatory tone that persists into adulthood [172]. In this way, mood and depression
may have an inflammatory origin that is conditioned early in development.

Microglia and astrocytes have been shown to play an important role in many aspects
of neurodevelopment. For example, they participate in the genesis and pruning of synapses,
regulation of apoptosis, and vascularisation of the CNS [173,174]. The intimate relationship
between microglia and neurons begins early in development, whereby microglia regulate
and refine neural circuits, and relay peripheral information to the brain, including signals
from the microbiota [175–178]. Cytokines, produced by glia in the CNS, are thought to
promote forebrain development in utero [179], and, based on preclinical and in vitro models,
appear to have broad, important roles as growth factors and in supporting gliogenesis
in the CNS [180]. Of particular importance is IL-6, which plays a key role in both foetal
brain development and in the association between maternal systemic inflammation and
risk of psychiatric disorders in offspring [181]. Prenatal exposure to IL-6 was shown
to cause deficits in spatial learning in adult offspring, with an accelerated hippocampal
neurodegeneration and increased GFAP and NMDA NR1 subunit mRNA expression [182].
Additionally, maternal serum IL-6 levels during pregnancy correlated with functional
and structural changes to the amygdala, as well as behavioural changes in 2-year-old
human offspring [183]. Clearly, the biology of IL-6 and other cytokines during early
neurodevelopment is complex, contributing to normal development and pathogenesis in a
dose-dependent manner, via both direct and indirect mechanisms.

As in systemic infection, a maternal high-fat diet and obesity can impact the de-
veloping brain via inflammatory mechanisms. Increased circulating IL-6 and other pro-
inflammatory mediators is associated with obesity during pregnancy in rodents [17] and
humans [147,151,184–191], though the extent of elevation compared to lean women likely
fluctuates over the course of pregnancy and postpartum [146,188,189]. This obesity-induced
activation of the maternal peripheral immune system has been shown in rodents to affect
the offspring brain and behaviour in a manner resembling the consequences of maternal
or early-life infection. One of the first demonstrations of this was by Bilbo and Tsang
(2010) [10]. In offspring exposed to maternal high-fat diet-induced obesity, increased hip-
pocampal IL-1β protein, but not gene expression, and microglial activation were found in
adulthood compared to those born to dams fed a low-fat diet. The offspring of dams fed
the HFD also showed increased anxiety-like behaviour in the EPM. The study suggests
that offspring microglia may be primed or sensitised to inflammatory responses in utero or
early postnatal life due to maternal obesity, which persists into adulthood. Similar findings
have been reported at weaning age, P21 [18]. Pro-inflammatory microglia that secrete
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more cytokines during this developmental period may contribute to the neuropathology of
affective disorder associated with persistent central inflammation [192].

Microglial activation has been discovered post-mortem in depressed victims of suicide.
Increased CCL2 expression was identified in the anterior cingulate cortex relative to non-
psychiatric controls. An increase in the number of perivascular macrophages was also
identified, suggesting the further recruitment of circulating monocytes into the anterior
cingulate cortex [193]. Conversely, antidepressant treatment has been shown to limit
microglial activation associated with depressive-like behaviours in mice [194]. Indeed,
research on the relationship between microglial activation and mood disorders remains
almost exclusively preclinical [195]. Many animal studies have provided direct evidence
for microglial activation in the foetal and adult brain after elevated maternal systemic
inflammation, while other studies report synaptic and neurotransmitter deficits in the
absence of microglial activation [196]. Microglia, therefore, may play a role in the effect of
a maternal high-fat diet on brain development and behaviour. Creating an inflammatory
environment at such early periods during development, with or without direct changes
to foetal microglia, appears to have significant, enduring consequences to the brain and
behaviour.

3.4. Breast Milk Composition

Unlike human milk substitutes (formula), human milk is highly dynamic in com-
position, varying within and between mothers, over time, and across populations [197].
For example, colostrum, the first milk produced after birth, is low in volume but rich in
immunologic (antibodies for example) and developmental components (growth factors
for example) when compared to milk produced in the later stages of lactation [198]. The
composition of milk changes over the course of lactation, with human milk being consid-
ered fully mature by four to six weeks postpartum. Despite the variation in composition,
all human milk throughout development contains essential nutrients and bioactive factors
needed for infant health and development, such as a largely complete macronutrient profile,
as well as essential micronutrients, immunoglobulins, prebiotics, and probiotics [197].

Indeed, while evidence for the importance of human breast milk on developing off-
spring metabolism, immunity, and commensal gut microbe colonisation is considerable [8],
the connection to psychopathology is only being made relatively recently [199]. Breast
milk is a source of live bacteria for the infant, possibly originating from the maternal gut
(the putative entero-mammary pathway) [200], or the infant oral cavity (retrograde path-
way) [201]. The human milk microbiome changes over the course of lactation, with possible
implications for the infant microbiome. For example, the microbiome isolated from the
colostrum is thought to be more similar to the maternal gut microbiome, whereas milk at 1
and 6 months of lactation aligns more with the infant oral cavity [202]. As a result, changes
to the maternal gut microbiome have direct consequences for the seeding of microbes in
offspring through breast milk at the earliest stages of life, and, through this, may affect
offspring neurodevelopment [203]. In addition to essential macronutrients and micronutri-
ents, breast milk also contains prebiotic human milk oligosaccharides (HMOs), which not
only help to proliferate but also shape optimal gut bacteria populations in offspring [204]
and prevent infection from pathogenic microorganisms [205]. The HMO composition in
human milk can vary according to the maternal genotype [206], as well as the stage of
lactation [207]. For example, the total HMOs were identified to be 17.7 g/L in colostrum,
13.3 g/L in transitional milk, and 11.3 g/L in mature milk [207]. However, the abundance
of individual HMOs across the lactational stage also exhibits distinct patterns according to
the lactational stage and maternal genotype [208]. This points to the overall importance
of providing human breast milk as opposed to formula milk for the long-term metabolic
health of developing offspring [209].

Breast milk may also program adverse outcomes in offspring if the maternal diet
is lacking certain micronutrients, or, more likely in the UK, inducing maternal obesity.
Maternal BMI influences the overall breast milk composition [201]. Mothers with a BMI
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>25 kg/m2 have higher levels of insulin in the breast milk and, despite an overall reduction
in the fatty acid content, show an increase in pro-inflammatory fatty acids such as linoleic
acid, an omega-6 fatty acid, and palmitic acid [210]. The microbiota composition of breast
milk from obese mothers is less diverse [202] and contains lower levels of Bifidobacterium
than lean mothers [211]. This is significant as Bifidobacterium longum subsp. Infantis present
in human milk is predicted to metabolise many HMOs present in human milk [212], from
which SCFAs such as acetate and butyrate are produced. Moreover, an elevated BMI has
been suggested to modify the immunological composition of breast milk, with high levels of
IL-6 [211], leptin [213,214], and other pro-inflammatory mediators [215] reported. Lastly, the
maternal BMI shows a positive association with Caesarian delivery as opposed to natural
birth [216], a negative association with the rate and time to onset of breastfeeding [217,218],
and a reduction in the manual expression of milk compared to the use of a breast pump [218].
These factors likely also contribute to changes in the infant microbiome. For example,
indirect (breast pump) vs. direct (skin–skin contact) breastfeeding has been associated
with a reduction in the diversity of the milk microbiome, as well as an enrichment in
potentially pathogenic bacteria and a reduction in Bifidobacteria spp. [201]. It also suggests
that the retrograde pathway of milk microbiota colonization from the infant oral cavity is
an important factor in the benefits of manual milk expression.

It is also worth noting that the introduction of solid food into the infants’ diet also has
a dramatic effect on the gut microbiota composition [219,220]. Bacteroidetes dramatically
increase in abundance, which may serve to assist in the metabolism of more complex
polysaccharides [219]. Conflicting evidence exists as to whether the cessation of breastfeed-
ing or introduction of solid foods is the predominant mediator of microbiome maturation
in infants, though it is likely that both factors play a contributary role [220]. Importantly,
evidence exists to support a continued beneficial role of breast milk (as oppose to milk
substitutes) during the introduction of solid food, whereby human milk suppressed the
solid-food-mediated increase in Firmicutes in the infant gut [220]. An increased Firmi-
cutes/Bacteroidetes ratio is often observed in obese individuals [221,222]. Additionally, the
maternal dietary practices associated with maternal obesity and healthy weight likely lead
to altered postnatal feeding practices in the offspring. This is an important consideration in
the impact of solid food on the infant gut microbiota and how the food composition may
also differ between mothers who are obese or of healthy weight [223].

Clinical studies investigating the role of breastfeeding in the vertical transmission
of psychopathology to the offspring face significant socioeconomic confounders. Initial
studies on breastfeeding and its relationship with neurodevelopment focused on cognitive
outcomes, whereby breastfeeding was generally associated with predicting greater aca-
demic achievements compared to formula feeding [224,225]. In preterm infants, breastmilk
was also found to increase the rate of regional gray matter development when compared
with formula-fed infants [226]. This observational study is the first to suggest that human
milk exerts a direct and distinct effect on the brain structural development in humans. How-
ever, in these clinical studies, it is not possible to randomise mothers and their newborns
to formula and breastfeeding groups, and therefore confounders may exist. Additionally,
because both obesity [227] and perinatal mental illness [228,229] are associated with socioe-
conomic inequality in the UK and globally, observational studies in humans have significant
limitations [230]. When trying to observe the effect of maternal obesity and depression,
independently or together against a control cohort, on the breast milk composition and its
effect on childhood psychopathology development, obese/depressed mothers are more
likely to switch to formula milk sooner [231], have a lower income, have difficult social
environments, and have reduced social support, and the young offspring are more likely to
receive lower education standards. These factors independently increase the risk of adverse
childhood neurodevelopment [232].

Studies in mice have provided direct evidence for maternal obesity during lacta-
tion, having the ability to program metabolic inflammation [233] and precocious pubertal
development [234] in the offspring. The latter finding was shown to be reversible with



Metabolites 2023, 13, 455 17 of 34

maternal microbial reconstitution during lactation, pointing to the role of the altered ver-
tical transmission of microbes and associated microbial metabolites during lactation as
a mediator of adverse metabolic programming in offspring [234]. In our laboratory, we
reported a reduction in milk butyrate levels in obese dams compared to lean dams, in
line with perturbations to the maternal microbiome following HFD-induced obesity [12].
This observation is supported by work in humans, which has shown that a diet high in
fat (predominately soybean oil) reduces the gut microbial diversity and total SCFA levels
in a controlled isocaloric study relative to a low-fat diet [235]. Because the dietary fibre
intake was matched between the HFD and control diet, it is possible that the reduced
Bifidobacteria and butyrate levels observed in HFD-fed dams is due to the much lower
carbohydrate level compared to the control diet. In humans, a low-carbohydrate diet is
associated with reduced faecal butyrate and butyrate-producing bacteria levels [236]. While
the level of Bifidobacterium spp. was not quantitated in the milk of the dams, the observation
of reduced faecal Bifidobacterium spp. may have mediated a decrease in the milk levels of
Bifidobacterium spp. and butyrate. Certain species of Bifidobacterium present in human
milk are thought to metabolise milk oligosaccharides into SCFAs such as butyrate [212]. In
line with this, maternal probiotic supplementation during gestation increases the levels of
SCFAs and lactate in milk at postnatal day 4 [12]. Rodent [114] and human [237] studies
have demonstrated the important neuromodulatory roles of gut and maternal-derived
metabolites at similar developmental stages. Other bioactive molecules contained in breast
milk, such as miRNAs, are differentially abundant in the milk of lean and obese dams [238].
These miRNAs, contained in extracellular vesicles, have been shown to survive a simulation
of gastric digestion in vitro, though their functions in milk remain largely unknown [239].

Concerning the altered composition of breast milk in humans, few studies have
related this to maternal psychopathology. Based on a recent review [199] of maternal
psychopathology and altered breast milk composition, perinatal depression does not appear
to significantly affect the micronutrient content, though omega-3 polyunsaturated fatty
acids (PUFAs) may be reduced in depression. Docosahexaenoic acid (DHA) is an omega-3
PUFA crucial for neurodevelopment [240,241], and reduced levels have been linked to
MDD in humans. Perinatally anxious and depressed mothers may also have increased
secreted IgA in breast milk, which has been suggested to be a protective mechanism against
other depressive-associated alterations in the mother that might otherwise be transmitted
in the milk [199]. Overall, there is a narrow scope of literature with a heterogeneous
mix of human observational studies addressing how maternal breast milk components
may contribute to offspring brain and behavioural development. Given that early-life
offspring are dependent on breast milk for nutritional nourishment and immune mediators
while also being a critical source of commensal microbes, there is scant research on how
different maternal nutritional and psychological states affect the breast milk composition.
Furthermore, there is preliminary evidence to suggest that maternal psychopathologies and
obesity independently alter the breast milk composition to the detriment of the offspring—
likely by microbial and immune mechanisms. There remains a need for preclinical studies
to investigate in more detail how depressive and anxious behaviours, in the presence
of obesity, influence the bioactive content of milk throughout the nursing period. The
metagenomic and transcriptomic content of milk in relation to the maternal diet and
behaviour are also lacking in current research.

3.5. Neurotransmitter Systems

The developing neurotransmitter systems of offspring exposed to maternal obesity
have been suggested to be influenced by immune and microbial factors, which have been
addressed in the previous sections. Moreover, the opportunity to ameliorate substantial
changes to neurotransmission may exist only in infancy. Alterations to serotonin availability
during foetal development alters the normal formation of brain circuitry, resulting in en-
during changes to adult anxiety-like behaviours [242,243]. An early study investigating the
role of commensal gut flora on serotonergic neurodevelopment found that recolonisation
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post-weaning was unable to normalise the increased levels of serotonin and its primary
metabolite 5-HIAA in germ-free mice [244]. While the complete lack of microbes in early
life has been suggested to increase serotonin levels, a maternal high-fat diet consumption
may conversely suppress the offspring serotonergic system [11].

Maternal systemic inflammation during pregnancy may contribute to initial serotonin
deficits in offspring. This has been suggested to occur by promoting placental kynurenine
metabolism from tryptophan through the upregulation of indoleamine-2,3-dioxygenase
(IDO1) expression, a rate-limiting enzyme in the kynurenine metabolic pathway. This
depletes the foetal tryptophan availability in the foetus and limits the central serotonin
availability and production. Preclinically, this has been shown to occur in the murine pla-
centa following prenatal infection and immune activation [245]. Neonatal rabbits exposed
to endotoxins in utero also show a reduced tryptophan metabolism to serotonin in the cor-
tex and paraventricular region as measured by α[11C]methyl-l-tryptophan using positron
emission tomography in vivo imaging [246]. Similarly, cortical and hippocampal serotonin
levels as measured by an enzyme-linked immunosorbent assay (ELISA) were reduced in the
newborn rabbit brain exposed to prenatal endotoxin compared to the PBS control. Toll-like
receptor 4 (TLR4) is critically involved in inflammatory responses to endotoxins [247] and
is a gatekeeper for the downstream induction of pro-inflammatory pathways, but, during
gestation, can also respond to sterile pro-inflammatory signalling [248,249]. TLR4 activa-
tion initiates a host of cytokine responses and pro-inflammatory effector molecules via the
nuclear translocation of nuclear factor kappa B (NFkB). The upregulation of maternal TLR4
is a risk for pre-term birth and foetal inflammatory response syndrome, characterised by
the systemic activation of the foetal immune system [249]. In humans, TLR4 expression
was shown to be upregulated 9–10-fold in the placentas of obese women compared to lean
women. The expression of pro-inflammatory cytokines was also significantly greater [250].
This may have implications for excessive pro-inflammatory signalling in the foetus, though
more studies assessing the relationship between an increased maternal/placental TLR4
expression and foetal inflammation, with outcomes assessing neurotransmission and be-
haviour, are required.

The placenta is an essential exogenous source of serotonin for the developing foe-
tus. This was first shown by Bonnin et al. (2011), whereby maternal tryptophan was
metabolised to serotonin in the placenta (shown in both mice and humans) before entering
foetal circulation and allowing for normal forebrain development [251]. Placental-derived
serotonin is crucial for developing forebrain neurocircuitry, and its disruption by inflamma-
tion could be a mechanism by which prenatal maternal inflammation increases the risk of
subsequent mental illness. Maternal immune activation in mice has been shown to alter
placental serotonin production. Surprisingly, placental serotonin production from trypto-
phan increased with maternal inflammation [252]. Despite no increase in the expression of
pro-inflammatory cytokines in the placenta or the foetal brain, placental IDO1 expression
was shown to increase 4-fold 24 h after maternal immune activation with poly(I:C), and
placental tryptophan hydroxylase 1 (TPH1) increased 2.5-fold. After another 24 h, TPH1 ex-
pression was significantly reduced compared to saline controls. Remarkably, this window
of increased TPH1 expression rapidly increased the placental serotonin output, as well
as foetal serotonin specifically in the forebrain (at gestational day 14). Kynurenine was
also increased in the forebrain. This increase in foetal forebrain serotonin levels blunted
serotonergic axon outgrowth [252]. While no behavioural experiments were conducted, the
authors suggested that this phenomenon is maladaptive and may mediate, in part, the effect
of maternal inflammation on increasing the risk of offspring anxiety and depressive-like
behaviours in the offspring.

Preclinical studies have also investigated the effect of maternal-diet-induced obesity on
serotonergic perturbations in offspring, both at the juvenile age and in adulthood. Sullivan
et al. (2010) showed that maternal high-fat-diet consumption increased foetal tryptophan
hydroxylase 2 (TPH2) expression in the rostral dorsal raphe region of NHP macaques,
as well as the upregulation of the inhibitory 5-HT1A receptor [11]. TPH2 is expressed in
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serotonergic neurons and is critical to the central production of serotonin. An increase in
foetal serotonin here may have also caused the subsequent reduced serotonin levels in
the cerebrospinal fluid (CSF) at juvenile age (4 months) reported in the study by Sullivan
et al. (2010), with concomitant increased anxiety-like behaviour in female offspring [11].
This study demonstrates that similar perturbations to serotonergic neurodevelopment
may occur as a result of maternal metabolic inflammation, akin to maternal immune
activation. A more recent study [19] extended these findings to adult NHPs (11 months),
with reduced serotonin levels, an altered TPH2 expression, and increased anxiety-like
behaviours persisting despite being weaned onto a regular diet. These changes were
exacerbated if the NHPs exposed to a high-fat maternal diet were also weaned onto
the same diet. Overall, preclinical studies suggest that an impaired development of the
offspring serotonin system characterised by altered serotonergic activity may increase the
risk of offspring behavioural problems with enduring effects.

Based on the postulated action of the antidepressant selective serotonin reuptake
inhibitor (SSRI) agents, it is widely regarded that serotonergic neurotransmission plays a
role in depression and anxiety in humans. In cohorts vulnerable to depression, reduced
dietary tryptophan and subsequent serotonin deficits can induce temporary depressive
symptoms [253]. In terms of TPH2 functionality in humans, polymorphisms in TPH2
have also been associated with depression and anxiety [254]. Perturbations to serotonin
neurotransmission are associated with anxiety and depressive disorders in humans [255].
Reduced serotonin neurotransmission may underly depressive behaviour, with an increase
in neurotransmission thought to be a requirement for successful treatment with the selective
serotonin reuptake inhibitor (SSRI) citalopram [256]. This may depend on a reduced
sensitivity over time to the inhibitory 5-HT1A receptor, and hippocampal neurogenesis [255].
Perhaps in some individuals in which SSRIs are effective, this is correcting for serotonergic
deficits that began in neurodevelopment. While maternal obesity has been associated with
precocious puberty in females [257], there is a lack of understanding as to how this also
translates to an altered brain function. Preclinical studies should further investigate the
role of maternal pregravid obesity on brain development, and how this may translate to
adversely affect the development of normal emotional behaviours in humans.

4. Perturbed Metabolism in Offspring Exposed to Maternal Obesity

The metabolic effects of chronic maternal HFD feeding are known to propagate to
the offspring. For example, maternal obesity results in hepatic steatosis and an impaired
insulin sensitivity in rodent offspring [258–260] and dyslipidaemia in humans [261]. While
alterations in peripheral lipid metabolites are relatively well documented, few studies have
investigated the brain metabolome of offspring exposed to maternal obesity [20,262]. In
one study, the effect of a maternal diet (HFD vs. control) was explored in male F1 six-
month-old offspring (six per group) in the liver, hypothalamus, and olfactory bulb by mass
spectrometry (MS). While the maternal diet had a strong effect on programming hepatic
amino acid metabolism in the offspring, researchers found no lasting effects of the maternal
diet on brain metabolites in the two brain regions [20]. By contrast, Zhu et al. (2018)
demonstrated that the offspring of obese dams can be discriminated with 100% accuracy
from the offspring of lean dams based on brain PFC metabolites alone, also using MS
techniques [262]. Male F1 offspring (6–7-months-old, n = eight per group) from either obese
LEPRdb/+ or lean WT dams were compared, whereby the maternal mice heterozygous
for leptin receptor deficiency displayed hyperphagia and a 33% weight gain compared to
WT mice prior to conception. Both saturated and unsaturated fatty acids were found to
have accumulated in the PFC of the LEPRdb/+ offspring compared to the WT offspring.
However, because the genotype of the offspring also differed between the two groups in
the same way as the F0 generation, it is unclear whether maternal obesity or offspring
genotype was responsible for the observed increase in PFC lipid levels. Considering this
conflicting evidence, it is important for future studies to determine how maternal obesity
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alters the offspring brain metabolome whilst considering possible effects of offspring sex
and the longevity of such changes.

In the juvenile offspring of HFD-fed dams, 3-hydroxybutyric acid was found to
be significantly elevated in the brain compared to the offspring of lean dams [12]. 3-
hydroxybutyric acid is thought to mediate neural stress responses; for example, due to
fasting, ketogenic diets, or exercise [263]. The increase in brain 3-hydroxybutyric acid in
the juvenile offspring may be a direct result of increased fatty acid oxidation from the
increased abundance of lipids present in the milk of obese dams [264]. This is supported
by the fact that, in the aforementioned study, 3-hydroxybutyric acid was also significantly
elevated in the plasma of the juvenile offspring of obese dams relative to the offspring
of CD dams [12]. Furthermore, a concomitant decrease in faecal glucose and succinate
metabolites in HFD offspring compared to CD offspring suggests that the juvenile offspring
exposure to maternal obesity induced a shift in the gut microbiota ecology [12,265].

Lastly, we have reported maternal obesity to reduce brain and liver creatine levels in
the offspring [12]. A systematic review [266] collated data from studies employing in vivo
brain 1H magnetic resonance spectroscopy in MDD patients and found that creatine and
glutamate were significantly downregulated in MDD. A low dietary creatine intake is a
clinical risk factor for depression [267], and creatine supplementation has shown promise
as an adjunct supplement for MDD [268]. A promising theory for the pathophysiology
of synaptic dysfunction in psychiatric disorders is that plastic changes are constrained
by brain energy deficits [269]. This has been supported by preclinical [270] and clinical
evidence [271] implicating reduced creatine in depression and reduced creatine kinase
flux in bipolar disorder, respectively. The results from our metabolomic study support
accumulating evidence connecting maternal obesity during pregnancy to long-term changes
in central metabolism and behaviour [272].

5. Overview of Maternal Influences on the Offspring and Looking beyond the First
Filial Generation

Factors associated with maternal pregravid obesity should not be considered in iso-
lation when investigating their effects on the offspring brain and behaviour (Figure 2).
Multiple perturbations coalesce to alter the normal course of neurodevelopment in off-
spring. For example, TLR4 activation links maternal obesity with increased immune
activation via both an altered microbiota composition (endotoxin mediated inflammation),
adipocyte proliferation (hypoxia and HIF-1 mediated inflammation [273]), and by diet,
whereby saturated fatty acids can also activate TLR4 [274–276] (Figure 2). A state of chronic
low-grade inflammation, exacerbated by normal immunological changes that occur during
gestation, is likely to have an impact on the development of normal brain circuitry, particu-
larly through alterations in the availability of serotonin during key neurodevelopmental
windows. Sex differences may also occur, with females perhaps being more vulnerable to
the effects of maternal obesity on developing depressive behaviour.

Given that depression and stress are also linked to excessive GWG [277], the effect of
maternal obesity on offspring neurobiology and behaviour, coupled with adverse metabolic
outcomes, may contribute to a perpetual cycle of poor maternal health across generations.
The impact of the maternal obesity of a generation across subsequent generations was ex-
plored in a recent study [21]. The F0 consumption of a diet consisting of 60% of kilocalories
from fat for 14 weeks primed anxiety-like behaviours as assessed in the light–dark box
(LDB) and elevated plus maze in female F2 (granddaughter) offspring. This was suggested
to be due to heritable changes in the HPA-axis functionality as assessed by gene expression
analysis, specifically the mineralocorticoid receptor (MR) in the hippocampus. Metabolic
changes were also associated with the F0 diet [21]. This study emphasises the importance
of understanding sexual dimorphism in intergenerational behavioural studies and high-
lights the need for pharmacological and/or lifestyle interventions to aid in reducing the
intergenerational matrilineal transmission of vulnerability to mental illness.
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obesity and microbiome dysbiosis induce toll-like receptor 4 (TLR4) activation, increasing maternal
inflammation during the perinatal period and disrupting the development of the gut–brain axis in
the offspring.

6. Translational Perspectives and Conclusions

In humans, lifestyle modifications are key to reducing the risk of maternal compli-
cations during pregnancy and supporting healthy offspring development. Current UK
guidelines emphasise the importance of preventative strategies, whereby a healthy body
mass index is achieved prior to conception [278,279]. Nevertheless, the prevalence of ma-
ternal obesity in the UK doubled between 1989 and 2007 from 7.6% to 15.6% [280], and may
now be as high as 25% [3]. As pharmacotherapy, including weight-loss therapy, during
pregnancy raises safety concerns, optimising maternal nutrition during pregnancy and
breastfeeding is a crucial aspect of pregnancy care [279]. An established example of this is
the relationship between maternal obesity, the increased risk of neural tube defects in the
offspring, and folic acid supplementation. Obese women of childbearing age are known to
have reduced serum folate levels, even when adjusting for folate intake through diet or
supplements [281–283]. The underlying mechanisms for this may relate to differences in the
gut microbiota composition, chronic inflammation, insulin resistance, and epigenetic factors
between obese and lean women [284]. As a result, guidelines for folate supplementation
from one month preconception through the first trimester of pregnancy have changed from
a “one-dose fits all approach” to a higher dosage (5 mg daily as opposed to 0.4 mg daily) in
obese women.

This tailored approach to maternal nutrition could, in the future, be extended to target
the gut (and milk) microbiota to reduce the risk of disease in the offspring, including
mood disorders. Preliminary clinical evidence exists to support this idea. A study of
>20,000 mother–child pairs revealed that the children of mothers who followed an “un-
healthy diet” high in processed foods during pregnancy were more likely to demonstrate
externalising behavioural problems at 5 years of age compared to the children of mothers
who followed a healthy diet [285]. This finding was independent of social deprivation, but
it was unclear if it was independent of a maternal BMI. More recently, it has been demon-
strated in 213 mother–infant pairs that the maternal prenatal gut microbiota composition
was predictive of internalising behaviour in children at 2 years of age [286]. This study is
the first to report a longitudinal association between maternal microbiota and offspring
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behaviour in humans, which previously had been reported in animal studies. Surprisingly,
this effect was not mediated by infant gut microbiota. The maternal microbiota diversity
was not predictive of the child microbiota diversity at 6 months of age, and there was
no relationship between the child gut microbiota composition at 6 months of age and be-
haviour at 2 years of age. A mediation analysis suggested that, while there was no overall
association between the maternal diet quality and offspring behaviour, the maternal diet
modified the maternal gut microbiota diversity, which likely indirectly influenced offspring
behaviour outcomes [286]. A genus-level analysis of maternal microbiota revealed that the
levels of butyrate-producing bacteria (Lachnospiraceae and Ruminococcaceae) were lower in
mothers with children who exhibited internalising behavioural problems. No direct associa-
tion between maternal serum or faecal acetate, propionate, or butyrate levels and offspring
behaviour was found, but samples acquired for SCFA analysis were taken at a different
point in gestation (28 weeks) to the faecal microbiota sampling (36 weeks). In summary, this
recent prospective human study supports current preclinical evidence that the maternal
microbiota is associated with offspring development and behaviour. Continuing to assess
child and adolescent behaviour in the future in this longitudinal fashion will be important
in assessing the longevity of this association. Future studies in this area should aim to
perform a metagenomic analysis of the gut microbiome to retrieve information about the
collective microbiota function as opposed to taxonomy only. As microbiota metabolism is
thought to be more conserved between individuals than taxa [287], this approach may lead
to more precise findings and shed more light on the metabolic changes occurring during
offspring development in utero.

Microbiota modification by probiotic treatment or other methods may also aid directly
in preventing excessive gestational weight gain and improving the maternal metabolic
response to a dietary intervention. Turnbaugh et al. (2006) introduced the concept of
an “obese-type” gut microbiome, the metabolic potential of which may account for why
some people find it difficult to lose weight [288]. By extension, gut microbes associated
with obesity could be targets for therapeutic intervention. In another study, faecal metage-
nomic analysis distinguished individuals who were either susceptible or resistant to a
dietary weight-loss intervention [289]. Differentially expressed microbial genes included
an increase in starch-degrading amylases in those resistant to weight loss, which was
independent of the baseline BMI. Taken together, gut microbiota have the potential to
modify energy harvest in humans. While there is some evidence to suggest that probiotic
treatment can help with weight loss in humans [290], it is unclear whether probiotics are
more or less effective than increasing the daily fibre intake, which has also been shown to
result in clinically-significant weight loss in humans [291].

Overall, dietary changes as recommended by a dietitian or other health professional are
likely to be an appropriate first-line measure for women seeking to improve their metabolic
health prior to, during, and after pregnancy. However, based on the results in this thesis
and in line with current literature, a direct modification of the maternal microbiota may also
be appropriate to mitigate the risk of metabolic and/or mood disorders in the offspring.
For example, in cases of a low adherence to lifestyle interventions, antibiotic usage, or
where dietary changes are not feasible during pregnancy, personalised probiotic treatment
may be warranted. Clinical research in this area should be encouraged to assess the efficacy
of such an intervention.
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