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Abstract: The study of plant metabolism is one of the most complex tasks, mainly due to the huge
amount and structural diversity of metabolites, as well as the fact that they react to changes in the
environment and ultimately influence each other. Metabolic profiling is most often carried out using
tools that include mass spectrometry (MS), which is one of the most powerful analytical methods. All
this means that even when analyzing a single sample, we can obtain thousands of data. Data science
has the potential to revolutionize our understanding of plant metabolism. This review demonstrates
that machine learning, network analysis, and statistical modeling are some techniques being used
to analyze large quantities of complex data that provide insights into plant development, growth,
and how they interact with their environment. These findings could be key to improving crop yields,
developing new forms of plant biotechnology, and understanding the relationship between plants
and microbes. It is also necessary to consider the constraints that come with data science such as
quality and availability of data, model complexity, and the need for deep knowledge of the subject in
order to achieve reliable outcomes.
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1. Introduction

Plant metabolism encompasses the chemical reactions and processes happening in a
plant’s cells to support life, growth, and reproduction. These encompass the transformation
of energy and substances, such as water, carbon dioxide, and minerals, into parts of plants,
such as starch and other storage products, cellulose, sugars, and various metabolites such
as essential oils and allelochemicals [1]. This complex network contains photosynthesis,
respiration, transpiration, and biosynthetic pathways which generate required metabolic
intermediates, structural components, and various secondary metabolites [2]. The organic
compounds produced in this way are usually divided by perspective function into pri-
mary metabolites, secondary metabolites (also called specialized metabolites or natural
products), and plant hormones [3]. Primary metabolism products derived from glycolysis,
the tricarboxylic acid (TCA) cycle, or the shikimate pathway often serve as precursors
for the synthesis of the tens of thousands of secondary metabolites that have already
been described [4]. Primary metabolites are highly conserved and directly required for
plant growth and development [5] and secondary metabolites, including major groups
such as phenolic compounds, terpenes, and nitrogen-containing compounds, are often
lineage-specific and help plants interact with the biotic and abiotic environment [6].

Photosynthesis captures light energy and converts it into chemical energy in the
form of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate,
(NADPH), which are used to create sugars and starches. The process of respiration, by
contrast, releases energy to power cellular processes through the conversion of organic
compounds into CO2 and water while producing ATP [7].

In addition to basic metabolic pathways, plants also produce a wide range of secondary
metabolites including allelochemicals, pigments, and essential oils. These compounds
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have vital functions in the defense system, signaling, communication, and environmental
adaptation of the plant, and are made by complicated biosynthetic pathways which are
regulated by multiple environmental and genetic elements [8].

However, it should be remembered that the boundary between primary and secondary
metabolism is uncertain, e.g., because many primary metabolism intermediates play similar
roles in secondary metabolism. Secondary metabolites were previously thought to only
mediate plant-environment interactions, but recent genetic and chemical studies show they
can also regulate plant growth and defense, blurring the boundaries between these groups.
Combining the roles these compounds play in the plant provides a close link between
primary and secondary metabolism, and the distinctions between these processes must
be made with increasing caution. It may be necessary to revisit the existing functional
division [9–11]. Viewing secondary metabolites as integrated components of metabolic
networks shaped by environmental selection pressures can improve our understanding of
plant metabolism and plant-environment interactions.

In addition, it is important to remember that plant metabolism is regulated by a com-
plex system of enzymes and pathways that regulates plant metabolism, which is influenced
by genetic and environmental conditions such as temperature, light, and nutrient availabil-
ity [12]. Unraveling plant metabolism is critical for a variety of purposes, from establishing
sustainable agronomic practices to increasing crop productivity and resilience to envi-
ronmental extremes, to discovering new products and remedies derived from plants [2].
Overall, plant metabolism studies give us invaluable insight on how plants maintain their
existence, how they adjust to environmental changes, and how these revelations can guide
the creation of innovative approaches to boost productivity and sustainability with regards
to vegetation-based products and medications [13,14].

Data science requires taking multiple steps, such as collecting and organizing data,
exploring and visualizing it, engineering features, and constructing and validating models,
to finally deploy and supervise their outcomes. For this purpose, data scientists rely on
many tools and strategies such as machine learning algorithms, statistical models, data
mining, and big data technologies, in addition to data visualization tools [15].

Data science has an extensive range of applications in many industries, such as finance,
retail, healthcare, transportation, and the environment. It is employed to manage difficult
issues, such as foreshadowing patron conduct, discovering frauds and irregularities, op-
timizing logistics networks, and rearing public health [16,17]. The field of data science is
constantly progressing, necessitating an aptitude in mathematics and computation as well
as a thorough awareness of the principles involved in data analysis and modeling [18]. All
the while, new technologies, algorithms, and strategies are being devised for uses concern-
ing all manners of raw information [19]. Domain knowledge holds immense importance in
data science. This type of knowledge refers to expertise and familiarity with a particular
field or industry, which is key when comprehending the intentions and aims of a data
science endeavor. Furthermore, strong domain knowledge aids in interpreting and dissem-
inating the outcomes of data science projects, as well as detecting any potential biases or
constraints. Ultimately, domain knowledge is vital for enabling successful, impactful data
science results [20].

The purpose of this study is to present the possibility of using different data science
methods and techniques such as machine learning, network analysis, and statistical mod-
eling to evaluate data from plant metabolism studies. As we know, plant metabolism
is one of the most difficult areas of plant research due to the large number of metabolic
pathways, their mutual interactions, and dependence not only on the genotype but also
on the environment. Any tool that will facilitate the assessment of the huge amount of
data obtained during the analysis of metabolism is worth the interest of scientists. The
possibilities of using artificial intelligence in the study of plant metabolism, as well as
understanding the interaction between plant metabolism and the environment, have not
been sufficiently understood. The use of artificial intelligence should provide the ability
to predict the impact of environmental factors on plant metabolism and optimize plant
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breeding programs. Based on the collected literature, plant metabolites were characterized
in the context of their functions in the biology of plant systems and application possibilities,
and an outline of methods used for plant metabolic profiling was provided. The following
sections discuss the possibilities of using data science methods for mathematical modeling
and explain the software tools available for simulation purposes. We then review the
possibilities that recent discoveries in data science have opened up.

2. Plant Metabolites
2.1. Characteristics of Plant Metabolites and Its Applications

Primary metabolism is responsible for the production of appropriate compounds
necessary for the survival of the plant, referred to as primary metabolites. As a result
of reactions involving many enzymes, a wide range of molecules from the category of
carbohydrates, amino acids, fatty acids, nucleic acids, and polymers derived from them
(polysaccharides, proteins, lipids, etc.) are synthesized and used. Importantly, primary
metabolites are identical in all living plant cells and are responsible for basic life functions
such as respiration, growth, cell division, and reproduction [5]. Plant secondary metabolites,
on the other hand, are formed from primary metabolites under the influence of various
environmental stresses, such as light, temperature, and various metals, through several
metabolic pathways. The formation of secondary metabolites is very specific to each family
of plants, which from the same primary metabolites produce a large number of different sec-
ondary metabolites with different functions. They are mainly responsible for the interaction
of the plant with the environment, hence their role in plant defense against biotic (viruses,
bacteria, fungi, and insects) and abiotic (metals, temperature, light) stresses [21,22]. Among
plant secondary metabolites, we can distinguish several basic sections based on chemical
structure and functional groups. They include major groups such as terpenes, phenolic,
polysaccharides, hydrocarbons, nitrogen-containing compounds, and sulfur-containing
compounds [23] (Table 1).

Table 1. Secondary metabolites in plants.

Classification Types Examples Function in Plant Ref.

Terpenes

Monoterpenes
geraniol, limonene,

carvone, linalool, linalyl
acetate, camphora

attract pollinating insects, deterring pests,
antifungal and antibacterial activity,

plant communication
[19–22]

Sesquiterpenes
humulene, farnesol,

bisabolol, caryophyllene,
helenalin

plant communication, antibacterial,
antifungal and antiprotozoal

activity, healing
[19,23,24]

Diterpenes
cafestol, placytaksol,

ginogolide,
taxane, aconane

plant growth and development,
defense from pathogens [19,25]

Sesterterpenes
geranylfarneso,

ophiobolin A, genepolide,
gentianelloid A

defense fromst pathogens [26]

Triterpenes
squalene, cucurbitacin,

oleane, ursolic acid,
chamaecydin

signaling molecules [27,28]

Polyterpenes gutta-percha defense from herbivores [29,30]
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Table 1. Cont.

Classification Types Examples Function in Plant Ref.

Phenolic

Simple phenolic
phenol, gallic acid, salicylic,

ferulic and caffeic acids,
hydroquinone

antimicrobial [31]

Coumarin
hydroxycoumarins,

umbelliferone,
esculetin, scopoletin

defense from insects, antifungical activity,
role in plant nutrition, response in Fe stress [19,30]

Furanocoumarins
psoralin,
angelicin,

bergapten, methoxsalen

defense mechanism against mammals and
insects, antifungal activity [32]

Lignin
resveratrol, wikstromal,
matairesinol, dibenzyl,

butyrolactol

antimicrobial, antifungal and
cytotoxic effects [19,33]

Flavonoids
quercetins, luteolin,
apigenin, peonidin,

delphinidin

UV protection, pigmentation, antimicrobial
defense, antioxidant activity, signal

transduction, allelopathy, defense against
herbivory, regulating gene expression,

mediating symbiotic interactions

[18]

Isoflavonoids genistein, daidzein, ekwol,
doumestrol, pueraryne defense mechanism, mainly against fungi [34]

Tannins tannic acid, geranilin,
tellmagrandin 1 and 2

plant defense mechanisms against
herbivorous, mammals, and insects [19,35]

N containing
compounds

Alkaloids cocaine, nicotine, morphine,
strychnine, codeine

role in germination, plants defense
from predators [18,34,36]

Cyanogenic
glucosides

linamarin, dhurrin,
amygdalin, frunasin ward off herbivores and pathogens [37]

Non-protein
amino acids

L-Mimosine, L-Canavanine,
5-Hydroxy-L-tryptophan,

L-3,4-
Dihydroxyphenylolanine

interactions with bacteria, fungi,
herbivores and other plants [38]

S containing
compounds

glutathione, glucosinolates,
phytoalexins, thionins,

defensins, allinim

physiological od abiotic stress,
antibacterial and antifungal activity [39,40]

Polysaccharides pectin, celulose, inuline,
alginian, starch

antibacterial and antifungal activity, plant
cell walls components and starch

components
[41,42]

Hydrocarbons ethylene, march gas,
methane plant hormone—plant development [34]

Terpenes are a large, diverse group of plant secondary metabolites. Among them are
such important substances as insect attractants, essential oils, growth inhibitors, and plant
hormones such as gibberellic acid and abscisic acid. All terpenes have nascent five-carbon
isoprene units [24]. They are classified according to the number of isoprene units in the
molecule and the prefix in the name indicates the number of terpene units. Monoterpenes
are allelochemicals present in the essential oil in plants. They can be found in such plant
organs as fruits, leaves, bark, or stems of herbaceous plants [25]. These substances are
therefore responsible for the appropriate smell of plants, which in this way attract polli-
nating insects and for deterring pests with it [26]. Some monoterpenes have antifungal
and antibacterial properties. Many of them have an intense taste and smell [27]. They also
have a special role in plant communication as infochemicals, enabling the propagation
of defense signals between plants [28]. Camphor and menthol are used as anti-irritants,
analgesics, and antipruritics; others have a coronary vasodilator effect [43]. Sesquiterpenes
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are compounds that are also attractive for pollinators and substances involved in plant
communication using volatiles [29]. They exhibit antibacterial, antifungal, and antipro-
tozoal effects. They are also responsible for the healing properties of some plants, e.g.,
Atracylodis macrocephala [25,30]. In addition to therapeutic effects, sesquiterpenes may also
have toxic and allergenic effects for humans and animals, which indicates their defensive
function in the plant organism [30]. Diterpenes are very important compounds in herbal
medicine. They exhibit a number of pharmacological properties: analgesic, antibacterial,
diaphoretic, anti-inflammatory, and many others [25,44]. They are also involved in the
basic elements of plant life, such as plant growth and development, and in the defense
mechanism against pathogens [45]. Sesterterpens are a group of terpenes not yet fully
explored, but researchers find these compounds in various parts of plants. It is assumed
that they play an important role in the defense mechanism of plants against pathogens [32].
Some show cytotoxic activity in leukemic cells [46]. Triterpenes are compounds that can be
divided into many subgroups, including saponins. Saponins are characterized by numerous
therapeutic applications, but they are also surface-active substances that, in contact with
water, form a foamy solution [33]. Simple triterpenes are components of surface waxes and
specialized membranes and have the potential to act as signaling molecules [34]. Triterpene
compounds are steroid precursors in both animals and plants and have anti-inflammatory
and antirheumatic effects [47]. Polyterpenes are complex chemical compounds that occur
in plants in the form of so-called resins and rubber. Rubber is a widely used material, an
important element of the economy [35]. Polyterpene resins are used as a binder for various
types of adhesives and in the production of paints [36].

Currently, it is believed that phenols are the largest group of secondary metabolites.
They include both simple compounds with single aromatic rings and complex compounds
such as tannins or lignins, which are polymers [24], and they share the presence of one
or more phenol groups. These are compounds that perform many important functions in
plants: among others, they are responsible for the color, taste, and smell of many plants.
Phenolics are valued substances used in herbal medicine due to their anti-inflammatory
effect [25]. Phenolic acids are ubiquitous in plants and the member gallic acid is well known
for its astringent properties, although it has many other properties, including antiviral,
antibacterial, antifungal, anti-inflammatory, and anticancer properties. Salicylates have
anti-inflammatory properties [31] and phenol was used as the first antiseptic because it
has antimicrobial activity [48]. Coumarins are chemical compounds that are very common
in many plant species. Coumarin has been found in about 150 species belonging to more
than 30 different families. They exhibit anti-inflammatory, antithrombotic, and anticancer
properties, which makes them important substances in herbal medicine [25]. They are
of great importance in plant nutrition. They are also responsible for the sweet smell
and taste of plant organs, which is supposed to protect the plant from being eaten [49].
Furocoumarins act as a defense mechanism against mammals and insects. They also exhibit
antifungal activity. These compounds can be found in roots, fruits, and leaves, often as
components of essential oils. They are also responsible for the phytotoxic properties of
plants such as Datura sp. or Ruta sp. [37]. Lignins are chemical compounds that are the
main component of the cell walls of plant cells [38]. They are dimeric compounds found in
many different species of plants. Many of the lignins have antimicrobial, antifungal, and
cytotoxic effects such as wikstromal, matairesinol [25,50]. Resveratrol, on the other hand,
has estrogen-like effects [51]. Flavonoids are a large group of compounds with considerable
structural diversity. More than 2000 flavonoids are already known. The most common of
these are anthocyanins, flavones, and flavonols. They are characterized by antioxidant,
anti-inflammatory, antiallergic, antiviral, and anticancer effects. Therefore, they are of great
importance in herbal medicine, and the research and use of these substances in dietetics and
natural medicine are becoming more and more numerous. In plants, they are responsible
for the colors of flowers and fruits [24,52,53]. Isoflavonoids are compounds that are very
similar to flavonoids in their use as antioxidants, but these substances can also be classified
as phytoestrogens that have the ability to bind to estrogen receptors. Phytoestrogenic
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activity excerpt as genistein and daidzein. This action can have a good effect on the body,
but research on all aspects of their function is still in progress. In plants, they play a role in
the defense mechanism, mainly against fungi [39,54]. Tannins are polyphenols that are very
common in the plant kingdom. These compounds have been used for centuries to transform
animal skins because they have the ability to precipitate protein [55]. Drugs containing
tannins have an antidiarrheal effect and have been used as antidotes in poisoning with
heavy metals and alkaloids, and as an antiseptic [25]. In plants, tannins can be found in the
leaves, bark, or wood itself. They are closely related to plant defense mechanisms against
herbivorous mammals and insects [40].

Nitrogen-containing compounds are substances having one or more nitrogen atoms,
usually in a heterocyclic ring. These compounds are easily soluble in water, optically active
and have a significant effect on animals [24]. Among these substances are well-known
alkaloids such as caffeine, nicotine, cocaine, and morphine [41,56]. It is estimated that
50% of drugs and pharmaceuticals of plant origin are alkaloids [42]. In the plant they
have a role in germination and of course protecting plants from predators. Alkaloids have
a very pronounced effect on animals, including humans. Many of the alkaloids act on
the nervous system, because highly addictive opioids are alkaloids. In addition to the
negative effect, they are used in herbal medicine as analgesics [39]. Cyanogenic glucosides
are very common substances in plants. Their function in plants depends on activation
by β-glucosidases to release toxic volatile hydrogen cyanide (HCN) as well as ketones
and aldehydes to ward off herbivores and pathogens [44]. Non-protein amino acids are
structures used by plants in their interactions with bacteria, fungi, herbivores, and other
plants. They are found in the plant flower nectar and rhizosphere. They are also classified
as allelochemicals [57].

Sulfur-containing compounds are organic substances that, even in small amounts,
promote, inhibit, or modify physiological or abiotic stress in plants [58]. They also exhibit
antibacterial and antifungal activity, which indicates their role in the defense mechanism of
plants against pathogens [59].

Polysaccharides are widely distributed in plant organs such as roots, leaves, shoots,
and seeds with anticancer, antioxidant, hypoglycemic, antibacterial, and antiviral ef-
fects [48]. In plant organisms, they occur in the composition of cell walls as cellulose
or pectin and as reserve substances in the form of starch or inulin [60].

Hydrocarbons are very simple chemical compounds, made of hydrogen and car-
bon. They exist as simple chains or rings and form the basic backbone of more complex
molecules. The waxes that build the coating on leaves and fruits contain many unsaturated
hydrocarbons that are insoluble in water. They prevent water from sticking to the surface
of the leaves. Hydrocarbons are also found in olive oil. An important hydrocarbon in plant
development is ethylene, which plays the role of a plant hormone. It causes the fruit to
ripen, the leaves to drop, and the neighboring flowers to wilt [39].

Primary and secondary plant metabolites are of great economic importance. They have
some common features, they can usually be extracted from plant material by steam distilla-
tion, organic, or aqueous solvents, and are low molecular weight (>2000 Da) compounds
with the exception of i.a. starch, gums, pectins, and natural rubber biopolymers, condensed
tannins [61,62]. Plant metabolites are used in many industries, including pharmacology
and medicine [63–65], agriculture [66,67], food industries [68–70], and other industries,
including textiles and cosmetics [71,72].

2.2. Methods of Testing Plant Metabolites

Metabolomics is the study of the composition of the pool of metabolites (metabolic pro-
filing) present in every organism, including plants. Thanks to metabolomics, it is possible to
understand of phenotypic expression of plants as well as study changes and the regulation
of plant metabolism in order to understand their adaptive and defensive responses to
environmental stress [73,74]. Metabolomics has been divided into two distinct approaches,
untargeted (which is a less specific analysis of all measurable analytes in the sample) and
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targeted metabolomics (specific and sensitive analysis of defined and biochemically anno-
tated metabolites). The quantity and complexity of metabolites and their characteristics
make metabolomic studies extremely complex. It is necessary to use methodology and
instruments to comprehensively identify and measure each metabolite [75,76].

The analysis of metabolites (primary or secondary) starts with sample preparation,
which includes the extraction of metabolites by various methods. Among the extraction
methods promising in metabolomic analysis are the methods of quenching, and mechanical
and ultrasonic extraction, sometimes integrated [77,78]. The selection of solvents is also of
key importance, of which chloroform, methanol, and water are most often mentioned [79–81];
it is necessary to extract and enrich the sample with interesting metabolites and to remove
impurities such as proteins and salts that hinder the analysis. Extraction is performed
using various methods, selecting the proportions of organic solvents, and also based on
liquid-liquid extraction or solid phase extraction [82].

Many tools and techniques are used in metabolomics, and usually a combination of
them. Mass spectrometry (MS) is one of most powerful and commonly used analytical
methods in metabolomics, allowing a choice of sensitivity and resolution performance
using either single (MS) or tandem (MS/MS) mass analyzers. A variety of MS-based
techniques are now available for untargeted and targeted metabolic profiling using LC
(liquid chromatography)-MS, GC (gas chromatography)-MS, CE (capillary electrophoresis)-
MS, FTICR (Fourier transform ion cyclotron resonance)-MS, MALDI (matrix-assisted laser
desorption/ionization), IMS (ion mobility spectrometry) and NMR (nuclear magnetic
resonance). GC-MS achieves a higher separation of metabolites than LC-MS and avoids ion
suppression by taking advantage of the gaseous phase and the nature of its MS ionization.
However, otherwise for LC-MS, GC-MS requires chemical derivatization of the metabolic
prior to the analysis. In turn ion mobility mass spectrometry is a gas-phase ion separation
technique, which takes advantage of differences in the mobilities of ions by size, shape,
charge, and the interaction with the inert gas under the influence of an electric field. Mass
spectrometry with CE is a very good technique for separating polar ionic and charged
substances that are separated based on their charge and size ratio in an aqueous medium. It
enables significant efficiency in the analysis of metabolites in biological samples, especially
for compounds with high polarity and water solubility. Furthermore, CE-MS is fast, uses
small amounts of sample and solvents per analysis, and requires little time for sample
preparation in comparison to GC-MS.

As mentioned previously, the main goal of metabolome profiling is the analysis of
small molecules. Beyond mass spectrometry, nuclear magnetic resonance (NMR) is a
good analytical platform used to analyze small molecules in metabolomics. NMR uses
molecules of nuclear spin energy in the presence of a magnetic field. Moreover, NMR is
very fast and non-destructive, requires little time for sample preparation, and provides
highly repeatable results. Another spectroscopy method that allows for metabolite analysis
is FTICR which, with MS, provides measures of metabolites in a couple min with minimal
pre-detector separation and without ion dissociation. MALDI-MS is one of the mass
spectrometric ionization techniques often chosen for the analysis of large biomolecules,
especially proteins. However, it has been recognized as a potentially high-throughput
method for the metabolome profiling [76,83–86].

Metabolomic studies can detect even thousands of possible specialized metabolites,
which leads to the creation of large data sets. That is why it is a huge challenge to extract
information about specialized metabolites from the huge amount of data generated during
analyzes. This requires transforming the raw data into a numerical matrix and then
applying statistical methods that will facilitate the comparison of all results across all
samples. Several programs are available for the in silico analysis of the large amount
of metabolite spectral data generated by various analytical instruments. They are often
proposed by manufacturers of apparatus for metabolomic analyses. Many bioinformatics
tools and spectral libraries are available for data pre-processing, including XCMS, METLIN,
PRIMe, AMDIS, MetaboAnalyst, MetAlign, and others [76,85,87–91].
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3. Does Data Science Can Help in Studying Plant Metabolites?
3.1. Data Science Methods

Data science methods are an essential part of addressing the challenges posed by
dangerous plant metabolites and environmental issues. These methods involve using
statistical, computational, and mathematical techniques to analyze large and complex
datasets, enabling the identification of patterns, relationships, and trends that may not be
immediately apparent from the raw data [92].

In order to elaborate on the subject of plant metabolites, it should be mentioned that a
summary of statistical methods and dedicated software has already been published [76,93].

In a recent review article by Johnson et al. [93], various statistical methods and software
tools commonly used in plant metabolomics research were summarized. The authors
highlighted the importance of the preprocessing and normalization of raw data, as well as
the selection of appropriate statistical tests for analyzing metabolite abundance changes
between different samples or treatments.

Among the statistical methods and software packages discussed by the authors were
multivariate analysis tools such as principal component analysis (PCA), partial least squares
(PLS), and orthogonal projections to latent structures (OPLS). These techniques can help
identify patterns in metabolite data that may be associated with specific biological factors,
such as treatment conditions or genetic variation.

Piasecka [76] provided a comprehensive review of various analytical methods that
can be used to detect changes in plant metabolomics in response to biotic and abiotic
stresses. The author highlighted the importance of integrating different types of data, such
as transcriptomic and proteomic data, with metabolite data to obtain a more comprehensive
understanding of plant stress responses.

In terms of statistical methods and software, Piasecka [76] discussed various multivari-
ate analysis techniques, such as PCA and hierarchical cluster analysis (HCA), which can be
used to identify groups of metabolites that are strongly correlated and may be associated
with specific stress conditions.

The methods used in data science include machine learning algorithms such as Ran-
dom Forest, Gradient Boosting, Support Vector Machines, and Neural Networks [94].
Remote sensing technologies like hyperspectral imaging, thermal imaging, Light Detection
and Ranging (LiDAR), and satellite imagery are used to analyze the environment [95,96]
while predictive modeling techniques such as species distribution models [97], generalized
linear models [98], time series models [99], and projection models [100] are used to forecast
future trends.

Spatial analysis is another important method used in data science, which involves
using tools such as geographic information system (GIS), geostatistics [101], Kriging [102],
and spatial clustering [103] to analyze spatial data. Data visualization techniques like heat
maps [104], choropleth maps [105], scatter plots [106], and time series [107] plots are used
to present the results of data analysis in a more accessible and understandable way.

Data preprocessing and cleaning methods like data imputation [108], outlier detec-
tion [109], feature selection [110], and normalization [111] are used to ensure the accuracy
and completeness of data. Molecular biology techniques like dPCR [112], qPCR [113], and
DNA sequencing [114,115] are also used to analyze genetic and molecular data related to
plant metabolites and their impact on the environment.

Climate modeling techniques, including Global Circulation Models [116], Earth Sys-
tem Models [117], and Regional Climate Models [118], are used to study the impact of
climate change on the environment. Environmental impact assessments such as Life Cy-
cle Assessment [119], Environmental Impact Assessment [120], and Ecological Footprint
Analysis [121] are used to assess the impact of human activities on the environment and
develop strategies to mitigate those impacts.

The methods are called “data science methods” because they are part of the broader
field of data science, which involves analyzing data using statistics, computational methods,
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and mathematics. By analyzing and processing large, complex datasets, these methods can
reveal patterns, relationships, and trends that are not readily apparent in the raw data [122].

These data science methods are used to analyze large and diverse datasets, such as
satellite imagery [123], climate data [124], and molecular biology [125] data, in order to
gain a better understanding of how harmful plant metabolites impact the environment
and to develop targeted management strategies in the context of addressing dangerous
plant metabolites and environmental issues [126]. By using these methods, scientists
and researchers can turn large and complex datasets into actionable information that can
inform decision-making and help to mitigate the impacts of dangerous plant metabolites
on the environment.

Data science methods offer several ways to study plant metabolites and their im-
pact on the environment. Predictive modeling can be used to predict the growth and
development of different plant species and the production of various metabolites, such
as allelochemicals and essential oils [127]. Metabolic pathway analysis can be performed
using transcriptomics, proteomics, and metabolomics data to understand the biosynthesis
and regulation of different plant metabolites. Gene expression analysis can also be used
to study the regulation of metabolic pathways and identify the genes responsible for the
production of specific metabolites [128,129]. Some plants contain cyanide or other poi-
sons [130–147]. Machine learning-based classification algorithms can be used to classify
cells of different plant species based on their metabolic profiles and predict the potential
production of harmful metabolites, such as allelochemicals and cyanide. Data visualization
tools can be used to visualize and compare the metabolic profiles of different plant species
and identify trends and patterns in the data. Network analysis can be used to study the
relationships between different metabolites and the enzymes and pathways involved in
their biosynthesis and degradation [92,148,149].

Environmental monitoring data, such as satellite imagery and climate data, can be
used to study the impact of environmental factors such as temperature and precipitation
on plant metabolism and the production of specific metabolites. By applying these data
science methods, researchers can gain a deeper understanding of plant metabolism and
the impact of specific metabolites on the environment. This knowledge can inform the
development of sustainable agriculture and land use practices, helping to mitigate the
negative impact of plant metabolites on the environment [150].

The role of AI in the context of plant metabolism and the classification of plant
metabolites is still in its early stages. However, there are some potential applications of AI
in this field. For example, AI algorithms can be used to analyze large-scale metabolomic
datasets, which can help to identify novel secondary metabolites and their functions.
Additionally, machine learning algorithms can be used to classify and predict the functions
of different metabolites based on their structural properties and other features. This can
help to refine our understanding of the roles of different plant metabolites in plant growth,
defense, and interactions with the environment.

Moreover, AI can also help in predicting and understanding the impact of environmen-
tal factors on plant metabolism. For example, AI can be used to model the impact of climate
change on the production of secondary metabolites in plants, which can help us to predict
and mitigate the potential effects of climate change on plant communities and ecosystems.
Additionally, AI can also assist in designing and optimizing plant breeding programs for
developing crop varieties with specific metabolite profiles that confer desirable traits, such
as resistance to pests or diseases. Overall, AI has the potential to significantly contribute to
the advancement of our understanding of plant metabolism and the classification of plant
metabolites [11].

3.2. Data Science Techniques

In addition to studying plant metabolism, there are several other data science approaches
that can be employed. These include techniques such as statistical analysis and machine
learning algorithms, which can be applied to better understand how plants function.
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1. Clustering analysis:

Clustering algorithms can be used to group plants based on their metabolic profiles
and identify metabolic similarities and differences between species. For example, clustering
analysis can be used to group plant species based on their production of specific allelo-
chemicals, such as terpenes, and compare the metabolic profiles of invasive and native
plant species [151].

2. Dimension reduction techniques:

Techniques such as principal component analysis (PCA) and multidimensional scal-
ing (MDS) can be used to reduce the complexity of large datasets and identify the most
important metabolic pathways and metabolites. For example, PCA can be used to identify
the most important metabolic pathways responsible for the production of volatile organic
compounds (VOCs) in plants [152].

3. Artificial Neural Networks (ANNs):

ANNs can be used to model complex relationships between environmental factors,
such as temperature and light, and the production of specific metabolites, such as essen-
tial oils. For example, ANNs can be used to predict the production of essential oils in
different plant species based on environmental variables, such as temperature, light, and
precipitation [153].

4. Decision Tree analysis:

Decision Tree analysis can be used to identify the most important environmental and
genetic factors that influence the production of specific metabolites. For example, Decision
Tree analysis can be used to identify plant species, which has implications for identifying
the most important environmental and genetic factors that influence the production of
allelochemicals in different plant species [154].

5. Bayesian networks:

Bayesian networks can be used to model the relationships between different metabo-
lites and the pathways involved in their biosynthesis and degradation. For example,
Bayesian networks can be used to model the relationships between different metabolites
in the biosynthesis of secondary metabolites, such as flavonoids, and the enzymes and
pathways involved in their production [149] .

Examples of data science in plant metabolomic scientific field are presented in Table 2.

Table 2. Examples of data science in plant metabolomic scientific field.

Used Methods Method Study

Evaluating the physiological and biochemical
responses of melon plants to NaCl salinity stress
using supervised and unsupervised
statistical analysis

OPLS-DA Use of OPS-DA and PCA to predict melon plant
response to salinity [152].

Ionomic and metabolomic analyses reveal the
resistance response mechanism to saline-alkali
stress in Malus halliana seedlings

OPLS-DA
Use of OPLS-DA to determine the nature of
metabolic changes in leaves of apple
seedlings [128].

Predicting metabolic pathways of plant enzymes
without using sequence similarity: models from
machine learning

mApLe
Using mApLe to predict metabolic pathways of
plant enzymes instead of Enzyme Commission
(EC) numbers [155].

Salinity source alters mineral composition and
metabolism of Cichorium spinosum OPLS-DA

Use OPLS-DA for the visualization of the
fluctuations in the plant’s metabolome in
response to the various treatments [156].

Physiological and metabolic responses triggered
by omeprazole improve tomato plant tolerance
to NaCl stress

OPLS-DA Use OPLS-DA to separate the variability
between the groups of samples [157].
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Table 2. Cont.

Used Methods Method Study

Metabolic responses to potassium availability
and waterlogging reshape respiration and
carbon use efficiency in oil palm

OPLS
Use of OPLS to determine the significance of
metabolome and proteome data components in
the organs of the studied plants [158].

Comprehensive meta-analysis and machine
learning approaches identified the role of novel
drought specific genes in Oryza sativa

* SVM, kNN, NB, DT, RF

These machine learning techniques were used to
identify the distinguishing features between test
samples and controls based on
accuracy [129,149].

Evaluating the physiological and biochemical
responses of melon plants to NaCl salinity stress
using supervised and unsupervised
statistical analysis

PCA Use of PCA to predict melon plant response to
salinity [152].

HCA Use HCA to make a heat map to predict melon
plant response of salinity [152].

Ionomic and metabolomic analyses reveal the
resistance response mechanism to saline-alkali
stress in Malus halliana seedlings

PCA Use of PCA to predict variability in two groups
of metabolites in leaf samples [128].

Principal component analysis of hormone
profiling data suggests an important role for
cytokinins in regulating leaf growth and
senescence of salinized tomato

PCA
Using PCA as a mathematical tool to evaluate
the relationship between physiological and
hormonal variables in tomato research [159].

Salinity source alters mineral composition and
metabolism of Cichorium spinosum HCA

Use HCA to support OPLS-DA in the
visualization of the fluctuations in the plant’s
metabolome in response to the various
treatments [157].

Physiological and metabolic responses triggered
by omeprazole improve tomato plant tolerance
to NaCl stress

PCA

Use PCA for obtaining a broad overview of
morphological and physiological changes in
tomato plants in response to the use of
omeprazole in salted and unsalted
conditions [157].

Changes in carbohydrates triggered by low
temperature waterlogging modify
photosynthetic acclimation to cold in
Festuca pratensis

PCA
Use of PCA to determine the variability between
parameters and to highlight the most important
ones from the research perspective [160].

Zinc stress affects ionome and metabolome in
tea plants

PCA Using PCA for tissue ionome variation [161].

HCA Using HCA to visualize correlations between
elements and metabolites in tea leaves [161].

* SVM—support vector machines, kNN—k-nearest neighbors algorithm, NB—naive Bayes classifiers, DT—
decision tree, RF—random forest.

4. The Advantages and Applications of Data Science in Plant Metabolism Studies

Data science has many potential benefits in the study of plant metabolism. One of the
primary advantages is the ability to derive data-driven insights from complex biochemical
processes and interactions that would be difficult to discern without the use of advanced
analytical tools. Predictive modeling is another advantage of data science, enabling the
development of models that can simulate and predict the behavior of plant metabolism
under different conditions. These models can help identify new targets for intervention,
optimize growth conditions, and improve crop yields [148,152].

Data science also enables the development of personalized solutions that take into
account the unique biology and environment of each plant, leading to more targeted and
effective interventions. Additionally, data science can integrate data from multiple sources
and scales, providing a comprehensive understanding of plant metabolism, from molecular
and cellular data to whole-plant and ecosystem data [162,163].

Sustainable solutions can also be developed using data science, including efficient
irrigation and fertilizer application, which can help minimize costs and optimize resource
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utilization while also improving crop yields. Finally, data science can support decision-
making by generating evidence-based recommendations for interventions and management
strategies [164].

The benefits of data science in plant metabolism studies demonstrate its potential to
revolutionize our understanding of plant biology, inform the development of innovative
solutions, and improve decision-making processes. By utilizing data science, we can
develop sustainable practices, optimize resource utilization, and improve crop yields,
leading to a more efficient and environmentally responsible agricultural industry [165,166].

5. Challenges and Considerations for Data Science in Plant Metabolic Studies

The benefits of data science methods offer numerous benefits in plant metabolic
studies, but it is important to consider the challenges and possible problems that come
with their use. One of the primary challenges is the quality and availability of data. The
difficulty in collecting and processing data at different scales and levels of detail, or the
complexity of the underlying biology, can limit data quality and availability, making it
challenging to generate accurate models [167].

Model complexity is another consideration, particularly when modeling complex
biological systems like plant metabolism. Complex models can be difficult to interpret
and communicate to stakeholders [168]. Overfitting is also a potential issue, particularly
when data is limited, or the model is too complex to capture the underlying biological
processes [169].

A lack of domain knowledge can lead to inaccurate or inappropriate models or result
in misinterpreted results. Data science requires a combination of technical and domain
knowledge, and a lack of the latter can significantly impact the accuracy of models and
analyses [170].

Computational resources can also be a challenge, particularly with large and complex
data sets. Data science methods can be computationally intensive, requiring significant
resources to process and analyze data. In plant metabolic studies, where data sets can be
especially large and complex, this can be particularly challenging [171].

While data science methods have numerous benefits in plant metabolic studies, it is
essential to consider the challenges and address them appropriately. By addressing these
considerations, it is possible to improve the accuracy, interpretability, and impact of data
science methods, leading to more effective and informed plant metabolic research.

6. Conclusions

In this review, we have explored the potential of integrating data science techniques
with plant metabolism studies to enhance our understanding of plant biology and its
interactions with the environment. Our main findings indicate that machine learning
algorithms, network analysis, and statistical modeling can contribute to new insights
into plant growth, development, and response to environmental changes. Moreover, the
application of these methods can help address the impact of environmental factors on
metabolite production and the environmental consequences of plant metabolites.

By discussing various data science methods, including clustering analysis, dimension
reduction, artificial neural networks, decision tree analysis, and Bayesian networks, this
review expands the current knowledge in the field by demonstrating the versatility of data
science techniques in plant metabolism research. Furthermore, we have shown how AI
can be used to identify novel secondary metabolites, predict and understand the impact of
environmental factors on plant metabolism, and optimize plant breeding programs.

As we look towards the future, several prospects emerge for further research and
development. The integration of novel data sources, such as remote sensing and high-
throughput phenotyping, can provide additional layers of information to enhance plant
metabolism studies. The continued development of advanced machine learning techniques,
such as deep learning and reinforcement learning, can lead to the more accurate and effi-
cient modeling of complex biological systems. Additionally, interdisciplinary collaboration
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between plant scientists, data scientists, and other stakeholders will be crucial for address-
ing the challenges of data integration, model interpretability, and the ethical use of AI in
plant research.

While some limitations and challenges persist, our review highlights the exciting
potential of combining data science and plant metabolism studies. By fostering interdisci-
plinary collaboration, we can further advance plant biotechnology, sustainable agriculture,
and our understanding of the complex interactions between plants and microbes. This
synthesis of knowledge ultimately opens up new avenues for research with a promising
future in addressing global food security and environmental sustainability.
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A.K. (Adrianna Krzemińska); writing—review and editing, A.K. (Anna Kisiel) and T.M.; visualization,
A.K. (Anna Kisiel) and T.M.; supervision, A.K. (Anna Kisiel) and T.M.; project administration, A.K.
(Anna Kisiel) and T.M.; funding acquisition, T.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by Polish Society of Bioinformatics and Data Science BIODATA.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Crozier, A.; Clifford, M.N.; Ashihara, H. Plant Secoundary Metabolites: Occurence, Strucure and Role in the Human Diet; John Wiley &

Sons: New York, NY, USA, 2008.
2. Li, S.; Tian, Y.; Wu, K.; Ye, Y.; Yu, J.; Zhang, J.; Liu, Q.; Hu, M.; Li, H.; Tong, Y.; et al. Modulating Plant Growth–Metabolism

Coordination for Sustainable Agriculture. Nature 2018, 560, 595–600. [CrossRef]
3. Taiz, L.; Zeiger, E.; Møller, I.; Murphy, A. Plant Physiology and Development; Sinauer Associates Incorporated: Sunderland, MA,

USA, 2015.
4. Kroymann, J. Natural Diversity and Adaptation in Plant Secondary Metabolism. Curr. Opin. Plant Biol. 2011, 14, 246–251.

[CrossRef] [PubMed]
5. Fernie, A.R.; Pichersky, E. Focus Issue on Metabolism: Metabolites, Metabolites Everywhere. Plant Physiol. 2015, 169, 1421–1423.

[CrossRef]
6. Hartmann, T. From Waste Products to Ecochemicals: Fifty Years Research of Plant Secondary Metabolism. Phytochemistry 2007,

68, 2831–2846. [CrossRef]
7. Geigenberger, P. Response of Plant Metabolism to Too Little Oxygen. Curr. Opin. Plant Biol. 2003, 6, 247–256. [CrossRef] [PubMed]
8. Pagare, S.; Bhatia, M.; Tripathi, N.; Pagare, S.; Bansal, Y.K.; Pagare, S.; Kasote, D.M.; Acquadro, A.; Rubiolo, P.; Bicchi, C.; et al.

Secondary Metabolites of Plants and Their Role: Overview. Curr. Trends Biotechnol. Pharm. 2015, 9, 293–304.
9. Neilson, E.H.; Goodger, J.Q.D.; Woodrow, I.E.; Møller, B.L. Plant Chemical Defense: At What Cost? Trends Plant Sci. 2013, 18, 250–258.

[CrossRef]
10. Zhou, S.; Richter, A.; Jander, G. Beyond Defense: Multiple Functions of Benzoxazinoids in Maize Metabolism. Plant Cell Physiol.

2018, 59, 1528–1537. [CrossRef]
11. Erb, M.; Kliebenstein, D.J. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional

Trichotomy. Plant Physiol. 2020, 184, 39–52. [CrossRef]
12. Fernie, A.R.; Tohge, T. The Genetics of Plant Metabolism. Annu. Rev. Genet. 2017, 51, 287–310. [CrossRef]
13. Fang, C.; Fernie, A.R.; Luo, J. Exploring the Diversity of Plant Metabolism. Trends Plant Sci. 2019, 24, 83–98. [CrossRef] [PubMed]
14. Wink, M. Modes of Action of Herbal Medicines and Plant Secondary Metabolites. Medicines 2015, 2, 251–286. [CrossRef] [PubMed]
15. Agarwal, R.; Dhar, V. Editorial—Big Data, Data Science, and Analytics: The Opportunity and Challenge for IS Research. Inf. Syst.

Res. 2014, 25, 443–448. [CrossRef]
16. Chung, S.-H. Applications of Smart Technologies in Logistics and Transport: A Review. Transp. Res. E Logist. Transp. Rev. 2021,

153, 102455. [CrossRef]
17. Raghupathi, W.; Raghupathi, V. Big Data Analytics in Healthcare: Promise and Potential. Health Inf. Sci. Syst. 2014, 2, 3. [CrossRef]

[PubMed]
18. Vogelsang, A.; Borg, M. Requirements engineering for machine learning: Perspectives from data scientists. In Proceedings of the

2019 IEEE 27th International Requirements Engineering Conference Workshops (REW), Jeju, Republic of Korea, 23–27 September
2019; pp. 245–251.

19. Schoenherr, T.; Speier-Pero, C. Data Science, Predictive Analytics, and Big Data in Supply Chain Management: Current State and
Future Potential. J. Bus. Logist. 2015, 36, 120–132. [CrossRef]

http://doi.org/10.1038/s41586-018-0415-5
http://doi.org/10.1016/j.pbi.2011.03.021
http://www.ncbi.nlm.nih.gov/pubmed/21514879
http://doi.org/10.1104/pp.15.01499
http://doi.org/10.1016/j.phytochem.2007.09.017
http://doi.org/10.1016/S1369-5266(03)00038-4
http://www.ncbi.nlm.nih.gov/pubmed/12753974
http://doi.org/10.1016/j.tplants.2013.01.001
http://doi.org/10.1093/pcp/pcy064
http://doi.org/10.1104/pp.20.00433
http://doi.org/10.1146/annurev-genet-120116-024640
http://doi.org/10.1016/j.tplants.2018.09.006
http://www.ncbi.nlm.nih.gov/pubmed/30297176
http://doi.org/10.3390/medicines2030251
http://www.ncbi.nlm.nih.gov/pubmed/28930211
http://doi.org/10.1287/isre.2014.0546
http://doi.org/10.1016/j.tre.2021.102455
http://doi.org/10.1186/2047-2501-2-3
http://www.ncbi.nlm.nih.gov/pubmed/25825667
http://doi.org/10.1111/jbl.12082


Metabolites 2023, 13, 454 14 of 19

20. Waller, M.A.; Fawcett, S.E. Data Science, Predictive Analytics, and Big Data: A Revolution That Will Transform Supply Chain
Design and Management. J. Bus. Logist. 2013, 34, 77–84. [CrossRef]

21. Ramírez-Gómez, X.S.; Jiménez-García, S.N.; Beltrán Campos, V.; Lourdes García Campos, M. Plant metabolites in plant defense
against pathogens. In Plant Diseases—Current Threats and Management Trends; IntechOpen: Rijeka, Croatia, 2020.

22. Anjitha, K.S.; Sameena, P.P.; Puthur, J.T. Functional Aspects of Plant Secondary Metabolites in Metal Stress Tolerance and Their
Importance in Pharmacology. Plant Stress 2021, 2, 100038. [CrossRef]

23. Aharoni, A.; Galili, G. Metabolic Engineering of the Plant Primary–Secondary Metabolism Interface. Curr. Opin. Biotechnol. 2011,
22, 239–244. [CrossRef] [PubMed]

24. Teoh, E.S. Secondary Metabolites of Plants. In Medicinal Orchids of Asia; Springer International Publishing: Cham, Switzerland,
2016; pp. 59–73.

25. Hussein, R.A.; El-Anssary, A.A. Plants secondary metabolites: The key drivers of the pharmacological actions of medicinal plants.
In Herbal Medicine; IntechOpen: Rijeka, Croatia, 2019.

26. Feng, L.; Chen, C.; Li, T.; Wang, M.; Tao, J.; Zhao, D.; Sheng, L. Flowery Odor Formation Revealed by Differential Expression of
Monoterpene Biosynthetic Genes and Monoterpene Accumulation in Rose (Rosa rugosa Thunb.). Plant Physiol. Biochem. 2014, 75, 80–88.
[CrossRef]

27. Banchio, E.; Bogino, P.C.; Santoro, M.; Torres, L.; Zygadlo, J.; Giordano, W. Systemic Induction of Monoterpene Biosynthesis in
Origanum × Majoricum by Soil Bacteria. J. Agric. Food Chem. 2010, 58, 650–654. [CrossRef] [PubMed]

28. Riedlmeier, M.; Ghirardo, A.; Wenig, M.; Knappe, C.; Koch, K.; Georgii, E.; Dey, S.; Parker, J.E.; Schnitzler, J.-P.; Vlot, A.C.
Monoterpenes Support Systemic Acquired Resistance within and between Plants. Plant Cell 2017, 29, 1440–1459. [CrossRef]

29. Algarra Alarcon, A.; Lazazzara, V.; Cappellin, L.; Bianchedi, P.L.; Schuhmacher, R.; Wohlfahrt, G.; Pertot, I.; Biasioli, F.; Perazzolli,
M. Emission of Volatile Sesquiterpenes and Monoterpenes in Grapevine Genotypes Following Plasmopara viticola Inoculation In
Vitro. J. Mass Spectrom. 2015, 50, 1013–1022. [CrossRef]

30. Padilla-Gonzalez, G.F.; dos Santos, F.A.; da Costa, F.B. Sesquiterpene Lactones: More Than Protective Plant Compounds with
High Toxicity. CRC Crit. Rev. Plant Sci. 2016, 35, 18–37. [CrossRef]

31. Amann, R.; Peskar, B.A. Anti-Inflammatory Effects of Aspirin and Sodium Salicylate. Eur. J. Pharmacol. 2002, 447, 1–9. [CrossRef]
32. Chen, Q.; Li, J.; Ma, Y.; Yuan, W.; Zhang, P.; Wang, G. Occurrence and Biosynthesis of Plant Sesterterpenes (C25), a New Addition

to Terpene Diversity. Plant Commun. 2021, 2, 100184. [CrossRef]
33. Faizal, A.; Geelen, D. Saponins and Their Role in Biological Processes in Plants. Phytochem. Rev. 2013, 12, 877–893. [CrossRef]
34. Thimmappa, R.; Geisler, K.; Louveau, T.; O’Maille, P.; Osbourn, A. Triterpene Biosynthesis in Plants. Annu. Rev. Plant Biol. 2014,

65, 225–257. [CrossRef] [PubMed]
35. Jan, R.; Asaf, S.; Numan, M.L.; Lubna, L.; Kim, K.-M. Plant Secondary Metabolite Biosynthesis and Transcriptional Regulation in

Response to Biotic and Abiotic Stress Conditions. Agronomy 2021, 11, 968. [CrossRef]
36. Zhaobang, S. Production and Standards for Chemical Non-Wood Forest Products in China; CIFOR: Bogor, Indonesia, 1995.
37. Del Río, J.A.; Díaz, L.; García-Bernal, D.; Blanquer, M.; Ortuño, A.; Correal, E.; Moraleda, J.M. Furanocoumarins: Biomolecules of

therapeutic interest. Stud. Nat. Prod. Chem. 2014, 43, 145–195.
38. Weng, J.; Chapple, C. The Origin and Evolution of Lignin Biosynthesis. New Phytol. 2010, 187, 273–285. [CrossRef]
39. Miadoková, E. Isoflavonoids—An Overview of Their Biological Activities and Potential Health Benefits. Interdiscip. Toxicol. 2009,

2, 211–218. [CrossRef]
40. Shahin, H.; Naser, M.-S.; Behrad, E.; Farad, B.M. Plants and Secondary Metabolites (Tannins): A Review. Int. J. For. Soil Eros. 2011,

1, 47–53.
41. Dewick, P.M. Medicinal Natural Products: A Biosynthetic Approach; John Wiley & Sons: New York, NY, USA, 2002.
42. Zhu, Z.H.; Chao, C.J.; Lu, X.Y.; Xiong, Y.G. Paulownia in China: Cultivation and Utilization; International Development Research

Centre: Ottawa, ON, Canada, 1986.
43. Yi, Z.; Wang, Z.; Li, H.; Liu, M. Inhibitory Effect of Tellimagrandin I on Chemically Induced Differentiation of Human Leukemia

K562 Cells. Toxicol. Lett. 2004, 147, 109–119. [CrossRef]
44. Bagci, E.; Yazgın, A.; Hayta, S.; Cakılcıoglu, U. Composition of the Essential Oil of Teucrium chamaedrys L. (Lamiaceae) from

Turkey. J. Med. Plants Res. 2010, 4, 2588–2590.
45. Zerbe, P.; Bohlmann, J. Plant Diterpene Synthases: Exploring Modularity and Metabolic Diversity for Bioengineering. Trends

Biotechnol. 2015, 33, 419–428. [CrossRef]
46. Ishikura, H.; Mochizuki, T.; Izumi, Y.; Usui, T.; Sawada, H.; Uchino, H. Differentiation of Mouse Leukemic M1 Cells Induced by

Polyprenoids. Leuk. Res. 1984, 8, 843–852. [CrossRef] [PubMed]
47. Culioli, G. A Lupane Triterpene from Frankincense (Boswellia Sp., Burseraceae). Phytochemistry 2003, 62, 537–541. [CrossRef]
48. Pelczar, M.J.; Chan, E.C.S.; Krieg, N.R. Control of Microorganisms, the Control of Microorganisms by Physical Agents. Microbiology

1988, 469, 509.
49. Robe, K.; Izquierdo, E.; Vignols, F.; Rouached, H.; Dubos, C. The Coumarins: Secondary Metabolites Playing a Primary Role in

Plant Nutrition and Health. Trends Plant Sci. 2021, 26, 248–259. [CrossRef] [PubMed]
50. Sharma, P.R.; Shanmugavel, M.; Saxena, A.K.; Qazi, G.N. Induction of Apoptosis by a Synergistic Lignan Composition from

Cedrus Deodara in Human Cancer Cells. Phytother. Res. 2008, 22, 1587–1594. [CrossRef]

http://doi.org/10.1111/jbl.12010
http://doi.org/10.1016/j.stress.2021.100038
http://doi.org/10.1016/j.copbio.2010.11.004
http://www.ncbi.nlm.nih.gov/pubmed/21144730
http://doi.org/10.1016/j.plaphy.2013.12.006
http://doi.org/10.1021/jf9030629
http://www.ncbi.nlm.nih.gov/pubmed/20000572
http://doi.org/10.1105/tpc.16.00898
http://doi.org/10.1002/jms.3615
http://doi.org/10.1080/07352689.2016.1145956
http://doi.org/10.1016/S0014-2999(02)01828-9
http://doi.org/10.1016/j.xplc.2021.100184
http://doi.org/10.1007/s11101-013-9322-4
http://doi.org/10.1146/annurev-arplant-050312-120229
http://www.ncbi.nlm.nih.gov/pubmed/24498976
http://doi.org/10.3390/agronomy11050968
http://doi.org/10.1111/j.1469-8137.2010.03327.x
http://doi.org/10.2478/v10102-009-0021-3
http://doi.org/10.1016/j.toxlet.2003.12.008
http://doi.org/10.1016/j.tibtech.2015.04.006
http://doi.org/10.1016/0145-2126(84)90105-X
http://www.ncbi.nlm.nih.gov/pubmed/6208436
http://doi.org/10.1016/S0031-9422(02)00538-1
http://doi.org/10.1016/j.tplants.2020.10.008
http://www.ncbi.nlm.nih.gov/pubmed/33246890
http://doi.org/10.1002/ptr.2511


Metabolites 2023, 13, 454 15 of 19

51. Gehm, B.D.; McAndrews, J.M.; Chien, P.-Y.; Jameson, J.L. Resveratrol, a Polyphenolic Compound Found in Grapes and Wine, Is
an Agonist for the Estrogen Receptor. Proc. Natl. Acad. Sci. USA 1997, 94, 14138–14143. [CrossRef]

52. Montanher, A.B.; Zucolotto, S.M.; Schenkel, E.P.; Fröde, T.S. Evidence of Anti-Inflammatory Effects of Passiflora edulis in an
Inflammation Model. J. Ethnopharmacol. 2007, 109, 281–288. [CrossRef]

53. Serafini, M.; Peluso, I.; Raguzzini, A. Flavonoids as Anti-Inflammatory Agents. Proc. Nutr. Soc. 2010, 69, 273–278. [CrossRef]
54. Goławska, S.; Sprawka, I.; Łukasik, I.; Goławski, A. Are Naringenin and Quercetin Useful Chemicals in Pest-Management

Strategies? J. Pest Sci. 2014, 87, 173–180. [CrossRef]
55. Hagerman, A.E.; Butler, L.G. The Specificity of Proanthocyanidin-Protein Interactions. J. Biol. Chem. 1981, 256, 4494–4497.

[CrossRef] [PubMed]
56. Benowitz, N.L. Farmacología de La Nicotina: Adicción, Enfermedad Inducida Por El Tabaquismo y Terapéutica. Revisión Anu. De

Farmacol. Y Toxicol. 2009, 49, 57–71.
57. Nepi, M. Beyond Nectar Sweetness: The Hidden Ecological Role of Non-Protein Amino Acids in Nectar. J. Ecol. 2014, 102, 108–115.

[CrossRef]
58. Khan, M.I.R.; Asgher, M.; Iqbal, N.; Khan, N.A. Potentiality of Sulphur-Containing Compounds in Salt Stress Tolerance. In

Ecophysiology and Responses of Plants under Salt Stress; Springer: New York, NY, USA, 2013; pp. 443–472.
59. Kim, S.; Kubec, R.; Musah, R.A. Antibacterial and Antifungal Activity of Sulfur-Containing Compounds from Petiveria alliacea L.

J. Ethnopharmacol. 2006, 104, 188–192. [CrossRef]
60. Liu, J.; Willför, S.; Xu, C. A Review of Bioactive Plant Polysaccharides: Biological Activities, Functionalization, and Biomedical

Applications. Bioact. Carbohydr. Diet. Fibre 2015, 5, 31–61. [CrossRef]
61. Bourgaud, F.; Gravot, A.; Milesi, S.; Gontier, E. Production of Plant Secondary Metabolites: A Historical Perspective. Plant Sci.

2001, 161, 839–851. [CrossRef]
62. Danova, K.; Pistelli, L. Plant Tissue Culture and Secondary Metabolites Production. Plants 2022, 11, 3312. [CrossRef]
63. Twaij, B.M.; Hasan, M.N. Bioactive Secondary Metabolites from Plant Sources: Types, Synthesis, and Their Therapeutic Uses. Int.

J. Plant Biol. 2022, 13, 4–14. [CrossRef]
64. Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.-M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.;

Heiss, E.H. Discovery and Resupply of Pharmacologically Active Plant-Derived Natural Products: A Review. Biotechnol. Adv.
2015, 33, 1582–1614. [CrossRef] [PubMed]

65. Ullrich, C.I.; Aloni, R.; Saeed, M.E.M.; Ullrich, W.; Efferth, T. Comparison between Tumors in Plants and Human Beings:
Mechanisms of Tumor Development and Therapy with Secondary Plant Metabolites. Phytomedicine 2019, 64, 153081. [CrossRef]
[PubMed]

66. Freeman, B.; Beattie, G. An Overview of Plant Defenses against Pathogens and Herbivores. Plant Health Instr. 2008. [CrossRef]
67. Yue, Z.; Singh, V.; Argenta, J.; Segbefia, W.; Miller, A.; Ming Tseng, T. Use of Plant Secondary Metabolites to Reduce Crop Biotic

and Abiotic Stresses: A Review. In Secondary Metabolites—Trends and Reviews; IntechOpen: Rijeka, Croatia, 2022.
68. Kallscheuer, N.; Classen, T.; Drepper, T.; Marienhagen, J. Production of Plant Metabolites with Applications in the Food Industry

Using Engineered Microorganisms. Curr. Opin. Biotechnol. 2019, 56, 7–17. [CrossRef] [PubMed]
69. Heitefuss, R. Functions and Biotechnology of Plant Secondary Metabolites, 2nd edn, Annual Plant Reviews, Vol 39. J. Phytopathol.

2010, 1, 72. [CrossRef]
70. Zhou, S.; Ma, Y.; Shang, Y.; Qi, X.; Huang, S.; Li, J. Functional Diversity and Metabolic Engineering of Plant Specialized Metabolites.

Life Metab. 2022, loac019. [CrossRef]
71. Boeriu, C.G. Plants4Cosmetics: Perspectives for Plant Ingredients in Cosmetics; Wageningen UR-Food & Biobased Research: Wagenin-

gen, The Netherlands, 2015.
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