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Abstract: Morphine administration causes system-level metabolic changes. Here, we show that
morphine-tolerant mice exhibited distinct plasma metabolic signatures upon acute and chronic
administration. We utilized a mouse model of morphine tolerance by exposing mice to increasing
doses of the drug over 4 days. We collected plasma samples from mice undergoing acute or chronic
morphine or saline injections and analyzed them using targeted GC–MS-based metabolomics to
profile approximately 80 metabolites involved in the central carbon, amino acid, nucleotide, and lipid
metabolism. Our findings reveal distinct alterations in plasma metabolite concentrations in response
to acute or chronic morphine intake, and these changes were linked to the development of tolerance
to morphine’s analgesic effects. We identified several metabolites that had been differentially affected
by acute versus chronic morphine use, suggesting that metabolic changes may be mitigated by
prolonged exposure to the drug. Morphine-tolerant mice showed a restoration of amino acid and
glycolytic metabolites. Additionally, we conducted reconstructed metabolic network analysis on
the first 30 VIP-ranked metabolites from the PLSDA of the saline, acute, and morphine-tolerant
mice groups, which uncovered four interaction networks involving the amino acid metabolism,
the TCA cycle, the glutamine-phenylalanine-tyrosine pathway, and glycolysis. These pathways
were responsible for the metabolic differences observed following distinct morphine administration
regimens. Overall, this study provides a valuable resource for future investigations into the role of
metabolites in morphine-induced analgesia and associated effects following acute or chronic use
in mice.

Keywords: morphine; opioids; tolerance; metabolism; plasma; metabolomics; GC-MS

1. Introduction

Morphine is widely recognized as an effective analgesic for managing moderate-
to-severe pain during surgeries and in several debilitating diseases such as cancer [1–3].
After intake, morphine undergoes hepatic metabolism via glucuronidation to morphine-6-
glucuronide (M6G) and morphine-3-glucuronide (M3G). M6G is biologically active and
exhibits a stronger analgesic effect than that of its parent compound and the M3G isomer
owing to the higher affinity of M6G for the µ-opioid receptor [4–10]. In addition to its
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analgesic effect, prolonged morphine intake also results in other undesired effects such as
addiction, dependence, and tolerance, which necessitate its cautious use in clinical settings,
particularly for patients with a history of chronic morphine use.

Metabolomics, a comprehensive measurement of metabolites in biological samples,
was applied to exploring metabolic changes associated with the use of morphine and
other addictive substances [11–18]. Previous investigations reported unique changes in
plasmatic metabolic profiles following morphine intake. For example, Zaitsu et al. demon-
strated that prolonged intravenous morphine use resulted in modified plasma metabolic
patterns in a rat model of addiction, and plasma metabolites could serve as predictors
of addiction [19]. Another study reported changes in plasma metabolites in rats during
the euphoria, tolerance, and withdrawal phases of morphine use after 7 days of acclima-
tization [20]. Caspani et al. provided a comprehensive review of metabolomic studies of
the metabolic signature underlying opioids and morphine addiction [21]. More recently,
plasma metabolic profiles were proposed as potential predictors of patient response to
opioids [22].

Despite this, morphine-mediated changes in metabolites could also influence tolerance
development, but there is paucity of information about the impact of morphine adminis-
tration on plasma metabolites following chronic or acute use in the context of morphine
tolerance [23,24]. Various rodent models of morphine tolerance were developed, such as
subcutaneous or intraperitoneal injection of morphine for 4–14 days [23–32] and morphine
pellet implantation [25,33–35]. C57/6B mice were subjected to a well-established toler-
ance regimen in which mice were subcutaneously administered either saline or morphine
for 4 days. The development of morphine tolerance was evaluated via the cumulative
dose–response data from before (Day 1) and after (Day 5) chronic morphine administration.
Using this model, the current study investigates changes in the plasma metabolite signature
of mice administered with acute or chronic morphine. The findings from this study may
identify metabolic targets for further investigation into their role in morphine tolerance.

2. Material and Methods
2.1. Study Design

In the current study, we included three groups of mice: a control group that received
saline injections, an acute group that was exposed to subcutaneous morphine administra-
tion for 4 h, and a chronic group that received the drug until the development of tolerance.
Plasma samples were collected from the mice in each group, as shown in Figure 1. Targeted
metabolomics using gas chromatography–mass spectrometry (GC–MS) was employed to
analyze the plasma metabolites of the mice. The resulting data were normalized, and prin-
cipal component analysis (PCA) and partial least-squares discriminant analysis (PLSDA)
were performed using MetaboAnalyst 5.0 and Rscript chemometrics.

2.2. Animals

A total of 18 male C57BL/6N wild-type mice (6–8 weeks) were purchased from Charles
River Laboratories, Inc. (Wilmington, MA, USA) and were kept in a controlled environment
at the animal facility of the University of Nebraska Medical Center (UNMC) with ad libitum
access to food and water, a 12 h light/dark cycle (lights on at 07:00 a.m.), and maintained at
specific temperature and humidity levels (3–5 animals per cage). The mice were grouped
into three categories: saline, acute morphine, and chronic morphine groups. The saline
group (n = 6) received a subcutaneous injection of saline (100 µL) three times per day
for four consecutive days. On the fifth day, their plasma was collected, and they were
euthanized. The acute morphine group (n = 6) received a single subcutaneous injection of
morphine (40 mg/kg, dissolved in 100 µL saline), and their plasma was collected four hours
later before being sacrificed. For the chronic morphine group (n = 6), a cumulative dose–
response assay was conducted on the first day with morphine dissolved in saline, and the
mice were injected twice (s.c., 10 mg/kg) within a 6 h interval. On the second day, they
received three injections (s.c., 20 mg/kg) within the same interval, and on Days 3 and 4,
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they received three injections (s.c., 40 mg/kg) at the same interval to induce and maintain
tolerance levels [36]. On Day 5, cumulative morphine dose–response assays were conducted
again. Four hours after the cumulative dose–response assay, their plasma was collected, and
they were euthanized. The experimental protocol involving the animals was examined and
approved by the Institutional Animal Care and Use Committee (IACUC) at UNMC.
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Figure 1. Schematization of study design and morphine-tolerance mice model development.
(A) Schematic depicting morphine dosing and behavioral testing paradigm for morphine-induced
tolerance experiments. (B) Dose–response curve of morphine in C57BL/6N mice. Cumulative dose–
response studies were performed before (Day 1) and after (Day 5) morphine treatment. Error bars
represent SEM from 6 mice. * p, 0.05, ** p, 0.001 and **** p, 0.0001 for an unpaired Student’s t test.
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2.3. Morphine Analgesia and Tolerance

An LE7106 analgesia meter (Panlab Harvard, MA, USA, focus intensity: 30) was used
for tail-flick assays to evaluate the analgesic effect of morphine in the mice. To ensure
reliable results and minimize stress, the mice were handled and acclimated to entering
the restrainer for 5 min daily for 7 days prior to testing. Mice were also acclimated to the
experimental room for at least 1 h to adjust to the environment and reduce stress. Before
each test session, all mice were habituated to the tail-flick device for 2 min. After measuring
baseline latency, the mice were injected with an initial dose of morphine at 0.1 mg/kg body
weight, followed by increasing doses of 0.3, 1, 3, and 10 mg/kg. Tail-flick tests were con-
ducted 30 min after each dose, with the next dose of morphine administered immediately
thereafter. Tail-flick latency was measured before and 1 day after morphine administration
(as depicted in Figure 1). A cut-off time of 10 s was established for the tail flick to prevent
harm to the mice. The antinociceptive response was calculated as a percentage of the maxi-
mal possible effect (MPE), where MPE % = (test latency − baseline latency) × 100/(cutoff
latency − baseline latency). Following the experiments, the mice were anesthetized, and
blood was collected through the left ventricle using a 23–25 gauge needle.

2.4. Metabolite Profiling

Sample preparation: 50 µL of plasma was mixed with 0.5 mL extraction mixture
(methanol/water/isopropanol, 3/2/3 v/v/v). The supernatant was evaporated and deriva-
tized with 80 µL methoxyamine hydrochloride (40 mg/mL) for 60 min at 50 ◦C and with
80 µL N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) at 70 ◦C for 120 min, then 2 h
incubation at room temperature. We added 20 µL of the internal standard (hentriacontanoic
acid, 1 mg/mL) to each sample prior to derivatization.

Instrument analysis: metabolite profiling was performed using a GC–MS system
(Agilent Inc, Santa Clara, CA, USA) consisting of an Agilent 7890 gas chromatographer, an
Agilent 5975 MSD, and an HP 7683B autosampler. Gas chromatography was performed on
a ZB-5MS (60 m × 0.32 mm I.D. and 0.25 Um film thickness) capillary column (Phenomenex,
Torrance, CA, USA). The inlet and MS interface temperatures were 250 ◦C, and the ion
source temperature was adjusted to 230 ◦C. An aliquot of 1 µL was injected with the split
ratio of 10:1. The helium carrier gas was kept at a constant flow rate of 2 mL/min. The
temperature program was: 5 min of isothermal heating at 70 ◦C, followed by an oven
temperature increase of 5 ◦C per minute to 310 ◦C and a final 10 min at 310 ◦C. The mass
spectrometer was operated in positive electron impact mode (EI) at 69.9 eV ionization
energy at a scan range of m/z 30–800.

Metabolite data analysis: the spectra of all chromatogram peaks were evaluated
using AMDIS 2.71 (NIST, Gaithersburg, MD, USA) software using a custom-built database
(460 unique metabolites). All known artificial peaks were identified and removed prior to
data mining. To allow for a comparison between the samples, all data were normalized to
the internal standard in each chromatogram and the sample weight. Instrument variability
was within the standard acceptance limit (5%).

2.5. Data Analysis

Metabolite abundances were examined with univariate statistical analysis in R Stu-
dio (t-test significance analysis, two-tailed distribution with heteroscedastic variance).
Metabolite abundances were considered significantly different for p < 0.05 and absolute
fold change > +1.5. Prior multivariate analysis (principal component analysis (PCA), partial
least-squares discriminant analysis (PLSDA)) metabolite abundance was normalized as
follows: log-transformed and autoscaled (i.e., mean-centered and divided by the standard
deviation of each variable) to normal distribution. Metabolite abundances with fewer than
three replicates were excluded from analysis. The PCA and PLSDA of normalized metabo-
lite abundance were performed using MetaboAnalyst 5.0 with the Rscript chemometrics,
R, [37]. Sample hierarchical clustering was performed using the hclust function in the stat.
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R package (Ward clustering with Euclidean distance measure). Metabolite network analysis
was performed with MetScape 3 in Cytoscape [38,39].

3. Results
3.1. Metabolite Changes in Plasma Postacute or Chronic Morphine Intake in Tolerant Mice

We first developed a morphine-tolerant mouse model with the subcutaneous injection
of a well-established tolerance regimen (doses of morphine from 10 to 40 mg/kg over
4 days—Figure 1A). The development of morphine tolerance was determined via cumula-
tive dose–response data starting at the baseline (Day 1) and post (Day 5) chronic morphine
administration (Figure 1A). Chronic morphine administration significantly shifted the
tail-flick response curve to higher morphine dosage, with increased ED50 values (i.e., mor-
phine dose effective in 50% of the animals) (Figure 1B,C). The same mouse model was also
exposed to acute morphine intake (single i.v. 10 mg/kg dose). Mice injected with saline
were used as a control.

Next, we collected plasma samples from mice after 4 h (4H group, acute) and after
5 days (5D group, chronic) of morphine intake. In total, 80 metabolites in central car-
bon, amino acid, and lipid metabolism were measured with targeted GC–MS analysis
(Supplementary Table S1). Principal component analysis (PCA) of the metabolites mea-
sured in at least 3 samples showed distinct metabolic signatures among the control, 4H,
and 5D groups, with principal component (PC) 1 explaining 32%, and PC 2 explaining
18.8% of the total variance in the data set (Figure 2A). Metabolic profiles from samples
collected after chronic morphine use were positioned between the saline and 4 h groups
along PC1, suggesting that metabolic changes caused by acute intake are mitigated after
5 days of escalated chronic administration. The hierarchical clustering of samples according
to computed Euclidean distances across metabolic profiles corroborates this observation
(Figure 2B).

Univariate statistical analysis of metabolite abundance in the 4H vs. saline and
5D vs. saline groups demonstrated that a total of 27 and 18 metabolites had changed after
acute or chronic morphine intake, respectively (Figure 2C).

Acute morphine administration led to increased TCA cycle intermediates (succinic acid
and a-ketoglutaric acid), taurine, glutaric acid, lipid metabolites (2- and 3-hydroxybutanoic
acid, glycerol and glyceric acid), and uracil. Both essential and nonessential amino acids
(methionine, proline, threonine, tryptophan, isoleucine, alanine, glutamine, lysine, ser-
ine), and glycolytic metabolites (lactic acid, lactamine, fructose, ribose and sorbitol) were
decreased following acute intake.

Following chronic exposure to the escalating morphine regimen, amino acid levels
were rescued or significantly increased (methionine, proline, threonine, isoleucine, glu-
tamine, lysine, serine) with the exception of alanine. Changes in the TCA intermediates and
hydroxybutanoic and glyceric acids were also reversed. Our data also show increased pyru-
vate and decreased glycerol-3-phosphate in glycolytic metabolism in the chronic morphine
regimen. This was accompanied by decreased changes in ribose and uracil levels. Alanine,
lactic acid, ethanolamine glycerophosphate, 1-monohexadecanoylclycerol, allantoin, and
uric acid showed consistent changes across acute and chronic intake.

3.2. Pathways and Networks of Plasma Metabolites in Acute versus Chronic Intake

To establish the underlying pathways and metabolic networks that determine dis-
tinct metabolic signatures observed following acute vs. chronic morphine intake, we
performed partial least-squares discriminant analysis (PLSDA) of normalized abundances
from measured metabolites. This supervised multivariate modeling approach maximizes
the variance explained by each principal component to emphasize metabolic features
responsible for group separation (Figure 3A). Our results show that PC1 explained the
variation among the saline, 4H, and 5D groups. Next, we selected the first 30 metabolites
ranked according to their variable importance in projection (VIP) score computed on PC1
(Figure 3B). Among these, 2- and 3- hydroxybutanoic acid, lactic acid, ribose, and urea.
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Figure 2. Acute or chronic morphine intake is associated with distinct plasma metabolic signatures.
(A) Principal component analysis of metabolic profiles detected with GC–MS in mouse plasma
after acute, 4 h (Mor 4H), chronic, 5 days (Mor 5D), or after saline (Saline) injection of morphine;
(B) hierarchical clustering of metabolic signatures in distinct mice groups; (C) univariate analysis
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(5D vs. Saline) intake of morphine in tolerant mice. Metabolites were considered significant for
p-values < 0.05 in significance t-testing (2-tailed, heteroscedastic), and absolute fold change (FC) > 1.5;
red bar: upregulation, blue bar: downregulation.

Next, we used the first 30 VIP-ranked metabolites to reconstruct a network of metabolite-
pathway interactions using MetScape 3 in Cytoscape. This approach allowed for the visual-
ization of metabolite network and enzymes associated with metabolic variations observed
in 4H, 5D, and saline groups. In particular, MetScape leverages Kyoto Encyclopedia of
Genes and Genomes (KEGG) metabolite IDs as compound identifiers and contextualizes
them in the relevant metabolic reactions in mouse-specific metabolic pathways [39]. We fil-
tered the obtained network for only edges connecting, directly or through further metabolic
reactions, at least two of the significant metabolites shortlisted according to their VIP score.
This analysis unveiled four main interaction networks centered on amino acid metabolism:
the TCA cycle, glutamine-phenylalanine-tyrosine metabolism, and glycolysis (Figure 3C),
thus suggesting that adaptations in these pathways arising over the prolonged (chronic)
use of morphine are responsible for the metabolic differences observed under distinct drug
administration regimens.
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Figure 3. Metabolic network analysis of the first 30 metabolites, ranked according to the VIP score on
PLSDA PC1, responsible for changes in metabolite plasma concentrations in the 4H, 5D, and Saline
groups. (A) PLSDA dimensionality reduction of metabolic profiles to PC1 and PC2; (B) VIP scores
as projected on PC1 for first 30-ranked metabolites; (C) metabolic network reconstruction analysis
showing four main networks centered on amino acid, TCA cycle, and glycolytic metabolism. Red
nodes represent metabolites among the first 30-ranked features according to VIP scores, edges repre-
sent metabolic enzymes responsible for metabolite biotransformations, and orange nodes represent
metabolites not reported among the first 30 ranked VIP ones but involved in their biotransforma-
tions/metabolism.
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4. Discussion

In this study. we applied a mouse model of morphine tolerance upon drug escalation
(from 10 to 40 mg/kg over 4 days) and employed the model for establishing differences in
plasma metabolic signatures after acute (4 h) or chronic (5 days, tolerance) morphine s.c.
administration. Saline-injected mice were used as controls.

Our data demonstrate that plasma metabolic signatures in morphine-tolerant mice
were distinct from those induced by acute intake. Animals receiving a single dose of
the opioid showed increased TCA cycle intermediates, taurine, glutaric acid, and uracil,
while amino acid, ribose, and lactate levels were decreased. In contrast, the chronic
administration of morphine reversed changes in amino acids (except alanine and taurine),
TCA cycle intermediates, and hydroxybutanoic and glyceric acids. This was accompanied
by increased pyruvate and decreased glycerol-3-phosphate, and reduced changes in uracil
and ribose. We detected consistent changes across chronic and acute intake for alanine,
lactic acid, ethanolamine glycerophosphate, 1-monohexadecanoylglycerol, allantoin, and
uric acid.

In a previous investigation of plasma for 41 metabolites in rats, Liu et al. reported re-
duced overall metabolic changes with increased 4-hydroxybutanoic acid during morphine-
induced tolerance compared with animals sampled 30 min post morphine intake (euphoria
phase) [20]. Consistent with this study, our data show mitigated metabolic changes over
prolonged opioid exposure to tolerance. By establishing metabolic changes in plasma
after acute and chronic morphine intake in a well-established mouse model of tolerance,
our investigation provides evidence for the association between tolerance and plasma
metabolite signatures by measuring > 80 metabolic features.

Further studies will be focused on defining metabolic changes induced by morphine
in the brain. In particular, rat addiction to morphine was associated with disrupted brain
energy metabolism in TCA and glycolytic pathways. That study reported decreased plasma
tryptophan in the plasma of addicted rats, a consistent finding with our observations
after acute intake while contrasting with our data from tolerant mice [19]. Furthermore,
extracellular vesicles (EVs) are natural carriers of metabolites that play a vital role in various
cellular signaling pathways in the context of drug abuse [23,40–43]. The potential role of
EV-associated metabolites in morphine tolerance warrants further investigation.

Morphine intake also causes increased g-amminobutyric acid (GABA) in the nucleus
accumbens, prefrontal cortex, and striatum in the brain due to increased conversion of
glutamine into glutamate via increased glutamic acid decarboxylase in rats after acute
exposure. This may be the basis for the decreased glutamine plasma levels observed in our
study after acute intake. Further changes in brain levels of succinate and a-ketoglutaric
acid in the TCA were reported [44,45].

Increased taurine in the hippocampus, nucleus accumbens, and striatum was described
in morphine-dependent rats and is in line with our observations in plasma in both acute
and tolerant mice [46]. Similarly, Meng et al. showed increased proline in the brains
of morphine-induced conditioned place preference mouse model, consistent with our
findings [45].

Morphine-induced changes in brain metabolism, however, cannot solely account
for metabolic changes observed in plasma, since the effect of morphine on the metabolic
homeostasis of other tissues and organs contributes to overall variations. For instance,
morphine intake increases the glycolytic flux and lactate formation with reduced pyruvate
utilization in TCA metabolism in the brain [46,47]. However, our data show overall reduced
lactate levels in plasma after both acute and chronic intake. Moreover, our study revealed
that chronic morphine administration resulted in a 1.3-fold rise in plasma glucose levels
compared to the saline group mice, while acute morphine administration had no significant
impact on plasma glucose levels. These results are consistent with previous reports and
indicate that the chronic use of morphine could aggravate diabetes, dyslipidemia, and
hypertension [48–50].
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The administration of naloxone, a m-opioid receptor antagonist that counteracts
morphine’s effects, showed increased lactic acid in plasma after 5 days of oral morphine
administration in rats [20]. This finding suggests that the decreased lactic acid detected
in our data set following both acute and chronic intake could be rescued by antagonizing
morphine pharmacodynamic activity.

Next, we input the first 30 VIP-ranked metabolites from the PLSDA of the saline,
4H, and 5D mice groups to reconstruct the network of metabolite and biotransformations
underlying the observed differences in group clustering. This analysis revealed four
interaction networks centered on amino acid metabolism: the TCA cycle, the glutamine-
phenylalanine-tyrosine pathway, and glycolysis.

5. Conclusions

Taken together, our data demonstrate that metabolic profiles collected from morphine-
tolerant mice vs. profiles obtained after acute intake were distinct. In particular, metabolic
changes in morphine-tolerant mice were mitigated, raising the question of whether changes
in the plasma metabolites following acute morphine intake were contributing to morphine
analgesic effects and whether they could serve as tolerance indicators. The role of metabolic
changes in morphine-mediated pathologies [43,51–55] demands additional studies. Our
findings warrant further investigation in other morphine tolerance models and humans.
Overall, this study constitutes a valuable resource for future investigations aimed at defin-
ing the role of metabolites in morphine-induced analgesia and associated effects after acute
or chronic (mice-tolerant) intake.

Supplementary Materials: The following supporting information can be downloaded at: https:
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