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Abstract: Hypertension can have its origin in early life. During pregnancy, many metabolic alterations
occur in the mother that have a crucial role in fetal development. In response to maternal insults,
fetal programming may occur after metabolic disturbance, resulting in programmed hypertension
later in life. Maternal dietary nutrients act as metabolic substrates for various metabolic processes
via nutrient-sensing signals. Different nutrient-sensing pathways that detect levels of sugars, amino
acids, lipids and energy are integrated during pregnancy, while disturbed nutrient-sensing signals
have a role in the developmental programming of hypertension. Metabolism-modulated metabolites
and nutrient-sensing signals are promising targets for new drug discovery due to their pathogenic
link to hypertension programming. Hence, in this review, we pay particular attention to the maternal
nutritional insults and metabolic wastes affecting fetal programming. We then discuss the role of
nutrient-sensing signals linking the disturbed metabolism to hypertension programming. This review
also summarizes current evidence to give directions for future studies regarding how to prevent
hypertension via reprogramming strategies, such as nutritional intervention, targeting nutrient-
sensing signals, and reduction of metabolic wastes. Better prevention for hypertension may be
possible with the help of novel early-life interventions that target altered metabolism.

Keywords: hypertension; nutrient-sensing signal; developmental origins of health and disease
(DOHaD); asymmetric dimethylarginine; uremic toxin; short chain fatty acid; trimethylamine-N-
oxide; AMP-activated protein kinase (AMPK)

1. Introduction

Hypertension is nowadays a top risk factor for cardiovascular disease (CVD) [1,2].
Though many antihypertensive drugs and interventions have been developed for hyper-
tension [3], the prevalence of hypertension continues to rise worldwide [4]. All this raises
the level of concern for prevention and not just treatment of hypertension.

Human and animal evidence reveals that hypertension could have its origin in prena-
tal life and in early childhood [5,6]. Nowadays this theory referred to as “developmental
programming” or “the developmental origins of health and disease” (DOHaD), which
proposes that adaptations to adverse intrauterine environments alter structure and func-
tion of organs during fetal development [7,8]. Several maternal conditions occurring
during organogenesis can give rise to the development of hypertension during adult life,
including nutritional imbalance, illness, pollutant exposure, and medication use [7,8]. Inter-
estingly, these conditions were more or less the same as those factors involved in metabolic
disease [9,10].
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The major functions of metabolism are: energy production; the conversion of nutrients
to carbohydrates, proteins, and lipids; and the elimination of metabolic wastes. Hyperten-
sion is connected to impaired metabolic homeostasis [11], although it is not clear whether
disturbed metabolism is a cause or a consequence. Hence, understanding of the impact of
disturbed metabolism in hypertension programming is important, as targeting metabolic
changes might provide novel therapeutic opportunities to avert programmed hypertension.

The aim of our review was to provide insight into how maternal nutritional insults
and metabolic wastes impact offspring hypertension, what are the mechanisms behind
hypertension programming, and what is our potential strategy for targeting metabolic
changes to prevent hypertension.

2. Nutrition and Metabolism during Pregnancy and Fetal Development

Maternal nutrition has substantial implications for fetal development. It not only
affects the maternal metabolic adjustment capacity to the hormones secreted by the placenta
but it is also the only way for the fetus to get the required nutrients. Requirements for quite
a lot of nutrients rise during gestation to meet maternal and fetal demands, which require
an increased consumption.

During gestation many metabolic alterations occur in the mother that are created for
supporting fetal development. For example, the mother becomes less reactive to insulin,
resulting in increased glucose availability to the fetus in late gestation. Dietary proteins
perform a broad spectrum of metabolic and biological functions. In addition to being
the basic building blocks of proteins, amino acids are involved in the regulation of blood
pressure (BP), lipid metabolism, food intake and immune function [12]. In early pregnancy,
protein turnover is similar to that of non-pregnant women; there is an increase in protein
synthesis by 15% in the second trimester and 25% during the third trimester [13].

Hypoaminoacidemia happens in gestation during fasting, especially glucogenic amino
acids [13,14]. The amounts of circulating amino acids have been close linked to fetal
outcomes, particularly to infant birth weight. Accordingly, the current Dietary Reference
Intake is 1.1 g/kg/day of protein during gestation, which is moderately higher than
the 0.8 g/kg/day recommended in the non-pregnant state [15]. Failure to adjust the
mother’s body to the pregnant state may induce compromised pregnancy and impair fetal
development.

Moreover, fetal metabolic wastes are transferred into the maternal circulation via the
placenta and eliminated by maternal urination. Accordingly, neonates born to mothers
with chronic kidney disease (CKD) are at risk for preterm birth, low birth weight, small
size for gestational age, stillbirth and neonatal mortality [16].

2.1. Maternal Malnutrition and Offspring Hypertension in Humans

Both undernutrition and overnutrition during pregnancy have increased risk for
hypertension in later life. Macronutrients are nutrients that people require in large quanti-
ties to generate energy, mainly carbohydrates, proteins and fats. Unlike macronutrients,
micronutrients are vitamins and minerals which are consumed in small quantities, but
are nonetheless essential for physical function. Emerging human and animal evidence
supports the idea that excess or deficits in specific nutrients are related to hypertension of
developmental origins.

Table 1 lists a summary of human studies documenting offspring hypertension coin-
cident with nutritional imbalance during pregnancy [17–23]. First, associations between
maternal undernutrition and offspring hypertension are supported by several famine co-
hort studies [17–20]. The studies on the Dutch famine of 1944–1945 offer a clear look at
how undernutrition in pregnancy is associated with increased risk for developing adverse
outcomes in adult offspring. One study recruited a cohort of 2414 people, aged 50 years,
born around the time of the 1944–1945 Dutch famine, of whom 741 subjects developed
not only hypertension, but also hyperlipidemia, obesity, and insulin resistance. These
findings indicate that maternal undernutrition has an important impact on offspring health
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in later life, but that the timing of the nutritional insult determines which organ system
is affected [17,18]. Studies in different famine cohorts suggest maternal undernutrition
increases hypertension risk without racial disparities [17–20]. However, scarce information
currently exists with regard to the link between specific nutrient deficiencies in gestation
and offspring hypertension [24,25].

Table 1. Summary of Maternal Malnutrition on Offspring Hypertension in Human Studies.

Maternal Malnutrition Cohort Study/Country Age at
Measure (Year) Case Number References

Undernutrition Dutch famine study/Netherlands 50 741 Painter et al., 2005 [17]
Undernutrition Dutch famine study/Netherlands 59 359 Stein et al., 2006 [18]
Undernutrition Biafran famine study/Nigeria 40 1339 Hult et al., 2010 [19]

Undernutrition China great leap
forward famine study/China 55 1029 Li et al., 2017 [20]

High-protein,
low-carbohydrate diet

Aberdeen maternity
hospital study/Scotland 40 253 Campbell et al., 1996 [21]

High-protein,
low-carbohydrate diet Motherwell study/Scotland 30 626 Shiell et al., 2001 [22]

High-protein intake DaFO88/Denmark 20 434 Hrolfsdottir et al., 2017 [23]

DaFO88 = Danish fetal origins cohort.

Overnutrition refers to a type of malnutrition caused by consuming too much of a
certain nutrient, particularly in an imbalanced ratio. Today, only a few human studies
have surveyed the impact of excessive intake of a certain macronutrient during gestation
on adverse offspring outcomes. Prior work revealed that a high protein diet in gestation
is associated with hypertension in adulthood [23–25]. A previous study of 253 subjects
from Scotland who were born to mothers who had high daily animal protein (>50 g)
and low carbohydrate intakes in late pregnancy showed an association with high BP at
40 years of age [21]. Additional studies support the notion that higher maternal dietary
protein intake at the expense of carbohydrates is associated with offspring hypertension in
adulthood [22,23].

2.2. Animal Models of Maternal Malnutrition-Induced Programmed Hypertension

Various animal models have been established using insufficient or excessive intake of
a specific nutrient during gestation and/or lactation to validate the associations between
maternal malnutrition and offspring hypertension found in human observational studies.
Here, we summarize current knowledge on maternal malnutrition-induced offspring
hypertension in various rodent models (Table 2) [26–55]. Considering that one rat month
is comparable to three human years [56], the ages of rats developing hypertension are
approximately equivalent to humans from childhood to old age.

Table 2. Summary of Maternal Malnutrition-induced Hypertension Programming in Animal Models.

Animal Models Intervention Periods Age at
Measure Species/Gender References

Under-nutrition

Caloric restriction, 30% Gestation 54 weeks Wistar rat/M+F [26]
Caloric restriction, 50% Gestation 16 weeks Wistar rat/M+F [27]
Caloric restriction, 50% Gestation and lactation 12 weeks SD rat/M [28]
Caloric restriction, 70% Gestation days 0–18 28 weeks Wistar rat/M+F [29]
Protein restriction, 6% Gestation 52 weeks SD rat/F [30]

Protein restriction, 8.5% Gestation 20 weeks SD rat/M [31]
Protein restriction, 9% Gestation 12 weeks Wistar rat/M [32]
Protein restriction, 9% Gestation 22 weeks Wistar rat/M+F [33]
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Table 2. Cont.

Animal Models Intervention Periods Age at
Measure Species/Gender References

Methyl-deficient diet Gestation and lactation 12 weeks SD rat/M [34]
Tryptophan-free diet Gestation and lactation 16 weeks SD rat/M [35]
Low-salt diet, 0.07% Gestation and lactation 21 weeks SD rat/M [36]

Calcium-deficient die Gestation 52 weeks Wistar-Kyoto
rat/M+F [37]

Iron restriction 4 weeks before conception and
throughout pregnancy 3 months Wistar rat/M+F [38]

Vitamin D restriction 6 weeks before conception and
throughout pregnancy and lactation 8 weeks SD rat/M+F [39]

Zinc-deficient diet Gestation and lactation 12 weeks Wistar rat/M [40]

Over-nutrition

High-sucrose solution, 20% Gestation 22 months SD rat/M [41]
High fructose/salt solution,

10%/4%
4 weeks before conception and

throughout pregnancy and lactation 9 weeks SD rat/M [42]

High-fructose solution, 20% Gestation and lactation 8 months C57BL6J
mice/M+F [43]

High-fructose diet, 60% Gestation and lactation 12 weeks SD rat/M [44–46]
Maternal and post-weaning

high-fructose diet Gestation and lactation 12 weeks SD rat/M [47]

Maternal high-fructose diet
plus post-weaning high-fat

diet
Gestation and lactation 12 weeks SD rat/M [48]

Maternal high-fructose diet
plus post-weaning high-salt

diet
Gestation and lactation 12 weeks SD rat/M [49]

High-fat diet, 24% Lactation 22 weeks Wistar rat/M [50]
High-fat diet, 25.7% Lactation 22 weeks SD rat/F [51]
High-fat diet, 45% Gestation and lactation 30 weeks C57BL6J mice/M [52]

High-fat diet, 58% 5 weeks before the delivery and
throughout pregnancy and lactation 16 weeks SD rat/M [53]

High fat plus high-salt diet,
45%/4%

3 weeks before conception and
throughout pregnancy and lactation 19 weeks SD rat/M [54]

Maternal and post-weaning
high-fat diet, 58% Gestation and lactation 16 weeks SD rat/M [55]

High-protein diet Gestation and lactation 22 weeks Wistar rat/M [56]
High methyl-donor diet Gestation and lactation 12 weeks SD rat/M [34]

High-salt diet, 4% Gestation and lactation 21 weeks SD rat/M [36]

Studies tabulated according to types of malnutrition. SD = Sprague-Dawley rat; M = Male; F = Female.

There are different methods used for inducing malnutrition in pregnancy and fetus.
The most well-established are 2 models of maternal under-nutrition (caloric and protein
restriction) and some models of maternal over-nutrition. These maternal over-nutrition
models, which are typical of the Western diet (high sugar, fat, and salt), result in a disturbed
fetal nutritional environment and metabolism [57]. This in turn leads to a disturbed
metabolic profile, such as insulin resistance, obesity, diabetes, and fatty liver, in the adult
offspring [9,10].

Caloric restriction refers to a reduction in caloric intake without incurring deprivation
of essential nutrients. Similar to prior research on the effects of famine in humans, restricting
caloric intake to 30–70% of normal in pregnant rats caused hypertension in their adult
offspring [26–29]. Generally speaking, pups exposed to severe caloric restriction were more
likely to have hypertension earlier. Similar to caloric restriction, a protein restriction model
has also been commonly utilized to evaluate nutritional programming-induced offspring
hypertension [30–33]. Protein restriction, ranging from 6 to 9%, induced an increase in
BP in rat offspring, demonstrating a tendency for those with severe protein restrictions to
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show earlier development of hypertension [30–33]. Additionally, a deficiency of specific
amino acids, such as methionine [34] and tryptophan [35], in gestation and lactation has
also been reported regarding programmed hypertension. Furthermore, deficiencies in other
nutrients, including salt [36], calcium [37], iron [38], vitamin D [39], zinc [40], folic acid and
vitamins B2, B6, and B12 [34] in pregnant rats were also related to hypertension in their
adult progeny.

On the other hand, over-nutrition arising from excessive intake of specific nutrients
can lead to hypertension programming [58]. Feeding pregnant rats a diet high in sucrose
or fructose induced hypertension in their offspring [41–46]. A maternal high-fructose diet
not only caused hypertension, but also obesity, insulin resistance, and fatty liver [59]. A
high-fat diet is a broadly used model for studying metabolic disease of both established
and developmental origins [60,61]. Despite a high-fat diet altering fetal programming
and resulting in offspring hypertension, the programming effects may vary depending
on age, sex, strains, and different compositions of fats [62]. Notably, in animal models
of maternal diets characterized by high-sugar drinks, high-fat products, and excess salt
characteristic of the human Western diet, synergistic effects of these key components on
the rise of BP in adult progeny were detected [42,48,49,54]. Moreover, male rat offspring
exposed to excessive protein [56], methyl-donor [34], or salt [36] in maternal intake were
also characterized by raised BP.

Worthy of note is that hypertension programming can be induced by maternal malnu-
trition and disturbed metabolism in a variety of animal models. No matter what type of
nutritional imbalance, they produce the same end result–hypertension. These observations
reveal there might be common mechanisms underlying hypertension programmed by
maternal nutritional insults.

2.3. Impact of Metabolic Wastes in Pregnancy on Programmed Hypertension

The biochemical parameters of waste products in the form of blood creatinine and
urea demonstrated a significant drop from the pre-pregnancy values by 24 weeks of
pregnancy, but the values later rise in the third trimester in contradistinction to the basically
expected trends [63]. The excretion of waste products is closely dependent of renal function.
Accordingly, chronic kidney disease (CKD) in pregnancy causes accumulation of more
waste products, which can be detrimental to the fetal development [63].

The prevalence of CKD in women of childbearing age is around 3%–4% [64]. However,
too little attention has been focused on the identification of hypertension in children born
to mothers with CKD. Using animal models, maternal uremia-induced adverse offspring
outcomes have been evaluated in an adenine-induced maternal CKD model [65]. In this
model, maternal CKD-primed offspring hypertension is associated with increased uremic
toxin asymmetric dimethylarginine (ADMA), increased trimethylamine N-oxide (TMAO),
and reduced microbiota-derived metabolite acetate and butyrate levels [66,67]. These
findings suggest a pathogenic link between excessive metabolic wastes in pregnancy and
the development of hypertension later in life.

3. The Link between Nutrient-Sensing Signals, Disturbed Metabolism, and
Programmed Hypertension

Mammalian cells have various ways of sensing energy and essential cellular nutrients
such as amino acids, glucose, and lipids. The sensing of nutrient signals is the key factor
for whole-body metabolic homeostasis [68]. Maternal dietary nutrients act as metabolic
substrates for various metabolic processes via nutrient-sensing signals. During pregnancy,
nutrient-sensing mechanisms can detect the range of specific nutrients to ensure that fetal
growth rate and organic function coordinate properly. Conversely, disturbed nutrient-
sensing signals in pregnancy result in adverse fetal programming and have a pathogenic
role in the developmental programming of hypertension [69,70]. Here we summarize
current evidence documenting how these nutrient-sensing signals become deregulated in
programmed hypertension and describe the underlying mechanisms (Figure 1).
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tivate AMPK might be expected to be useful in the prevention of hypertension. 

Figure 1. Schematic diagram highlighting the various nutrient-sensing signals in pregnancy that may
impact fetal programming resulting in hypertension in later life. These signals cover AMP-activated
protein kinase (AMPK), peroxisome-proliferator activated receptors (PPARs), the mechanistic target
of rapamycin (mTOR), and G-coupled protein receptors (GPRs).

3.1. Energy Sensing

To ensure cellular metabolism, the ATP level must be tightly regulated within a proper
range. AMP-activated protein kinase (AMPK) appears to achieve this coordination [71].
AMPK is a phylogenetically conserved, ubiquitously expressed serine/threonine protein
kinase containing catalytic α subunits and regulatory β and γ subunits [71]. AMPK is
known to be activated by falling cellular energy status, signaled by increasing AMP-to-
ATP or ADP-to-ATP ratios and acts to restore energy homeostasis by stimulating energy
production.

Emerging evidence suggests that dysregulated AMPK signaling pathway is connected
to developmental programming of hypertension, whereas AMPK activation in early life
helps prevent offspring’s hypertension [72]. In spontaneously hypertensive rat (SHR), aortic
AMPK activity was reduced, whilst 5-aminoimidazole-4-carboxamideriboside (AICAR), an
AMPK activator, can reduce BP in SHRs [73]. Similarly, other AMPK activators, such as
metformin and resveratrol can block the development of hypertension in SHRs [74,75]. In a
perinatal high-fat diet model, resveratrol protected against hypertension coinciding with
increased protein level of phosphorylated AMPK2α in offspring kidneys [76]. Likewise,
metformin or AICAR protected adult offspring against perinatal high-fat diet-induced
hypertension [77,78]. Based on these observations, dysregulated energy sensing is involving
in programmed hypertension and interventions that activate AMPK might be expected to
be useful in the prevention of hypertension.
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3.2. Glucose Sensing

Mammals depend on several approaches to maintain glucose concentrations within
a narrow physiological range. Multiple mechanisms of glucose sensing exist to tightly
regulate the intake, storage and breakdown of glucose by different organs. Additionally,
a network of hormone signals, exemplified by glucagon and insulin, seek to coordinate
orderly responses to systemic glucose concentrations in distant organs. AMPK is known to
participate in controlling glycogen and glucose metabolism.

Unlike glucose, fructose is specifically and passively transported by the facilitative
glucose transporter 5. So far, the role of glucose transporters in hypertension remains
largely unknown. Despite the similarity in their structures, fructose and glucose are metab-
olized in different ways. Using the maternal high-fructose diet model, we utilized RNA
next-generation sequencing (NGS) technology to investigate the transcriptome expression
in several organs [79–81]. We found that maternal high-fructose diet caused long-term
transcriptome changes. Especially, offspring hypertension coincided with several differen-
tially expressed genes (DEGs) related to fatty acid metabolism, fructose metabolism, insulin
signaling, and glycolysis/gluconeogenesis in neonate offspring’s kidneys [81].

3.3. Amino Acid Sensing

Amino acids are the building blocks for proteins. Placental amino acid transporters
regulate their exchange from the maternal to the fetal circulation [82,83]. As reviewed else-
where, three principal transport systems account for amino acid uptake in the placenta: ex-
change, accumulative, and facilitated transporters [84]. Increased renal expression/activity
of the solute carrier (SLC) 7A5 and SLC7A8 [85] and decreased expression of SLC7A1 [86]
have been related to hypertension. However, the role of placental amino acid transporters
in hypertension programming has not been fully established.

The availability of amino acids is highly dependent on the mechanistic target of ra-
pamycin (mTOR) [87]. mTOR functions via two multiprotein complexes termed mTOR
complex 1 (mTORC1) and 2 (mTORC2) [88]. Prior research demonstrated that activities
of placental mTOR and amino acid transporters were reduced in intrauterine growth
retardation (IUGR) [89]. Considering IUGR is a risk factor for developing adulthood
hypertension [90], it is very likely that amino acid sensing and mTOR are involved in
the mechanisms behind programmed hypertension, although how this integration occurs
awaits clarification. In a combined high-fructose and high-salt diet model, the beneficial
actions by which maternal melatonin therapy protects adult rat offspring against hyperten-
sion were associated with increased renal protein level of mTOR [49].

3.4. Lipid Sensing

Lipid metabolism refers to activities from uptake of lipids in the gut to cellular uptake
and transport to compartments such as mitochondria. Phosphoinositides are lipid signal-
ing molecules that act as master regulators of cellular signaling. The phosphoinositide
signaling system is common to many vasoconstrictor agents and as such is influential
in the regulation of BP [91]. However, no information exists regarding their impact on
programmed hypertension. AMPK also contributes to lipid metabolism through reduction
of fatty acid synthesis and thus inhibition of lipogenesis.

Several nuclear hormone receptors are lipid-sensing factors that influence lipid
metabolism [92]. The liver X receptors (LXRs) and peroxisome-proliferator activated
receptors (PPARs), working together with PPARγ coactivator-1α (PGC-1α), have been
shown to regulate lipid metabolism. AMPK can phosphorylate PGC-1α [93], to medi-
ate the expression of PPAR target genes. mTOR has also been shown to regulate PPAR
activation [94]. We previously revealed that several PPAR target genes are involved in
hypertension programming, such as Sod2, Sirt7, Ren, Nrf2, Nos2, Nos3 and Sgk1 [95]. Addi-
tionally, our prior work reported that the PPAR signaling pathway is involved in animal
models of hypertension programming, such as maternal caloric restriction [96] and mater-
nal high-fructose diet [81]. Considering the crucial role of PPARs in the pathogenesis of
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hypertension, disturbed lipid sensing in response to maternal nutritional insults is likely to
have close link to hypertension programming.

The sensing of free fatty acids is through G-coupled protein receptors (GPRs), also
referred as free fatty acid receptors (FFARs) [97]. Short chain fatty acids (SCFAs) are the
key microbial metabolites formed during bacterial fermentation of dietary fibers, mainly
including acetate, butyrate, and propionate [97]. SCFAs are able to activate GPR41 and
GPR43, while long chain fatty acids have the ability to activate GPR40 and GPR120. During
pregnancy, SCFAs and their receptors have been reported to determine the development
and metabolic programming of the fetus [98].

In a maternal high fructose diet model, the elevation of offspring’s BP was accompa-
nying by decreased renal GPR41 and GPR43 expression [45]. Another study demonstrated
that perinatal 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure-primed hypertension
in adult offspring coincided with downregulation of renal GPR43 expression [99]. These
results support the notion that lipid sensing might be a decisive mechanism underlying
hypertension programming.

It is well-known that supplementation with long-chain omega-3 polyunsaturated fatty
acids (PUFAs) is associated with reduced cardiovascular risk [100]. PUFAs function not
only by activating GPR40 and GPR120, but possess also effects on PPARs and other nuclear
receptors [100]. Recent evidence suggests a maternal diet rich in PUFAs in pregnancy
may reduce the child’s aortic stiffness, with potential benefits of prevention for later
CVD [101,102]. As PUFAs have been used as dietary supplements with various health
claims, there is a growing need to better realize the lipid sensing signals of action of PUFAs,
and to be able to explore mechanisms underlying hypertension.

3.5. Other Common Mechanisms

In addition to nutrient-sensing signals, several molecular mechanisms involved in
hypertension programming have been proposed based on prior research, covering ox-
idative stress [65], nitric oxide (NO) deficiency [103], aberrant renin-angiotensin system
(RAS) [104], epigenetic regulation [105], increased sympathetic nerve activity [106], sex dif-
ferences [107], gut microbiota dysbiosis [108], and impaired sodium transport [109]. Some
of them are interrelated to nutrient-sensing signals in response to disturbed metabolism
in pregnancy, contributing to the development of hypertension. For the sake of brevity,
brief references are given below. First, extensive experimental animal studies have revealed
the interconnections among NO, oxidative stress, and nutrient-sensing signals involved
in hypertension programming [65]. A second line of evidence comes from the balance
between AMPK and the RAS [110]. Previous research indicated that AMPK activator can
inhibit the classic RAS axis while enhancing the non-classic RAS axis to modulate the
RAS balance in favor of vasodilatation. Third, nutrition influences epigenetic processes on
multiple levels. Nutrients either directly mediate the production of epigenetic enzymes
(i.e., histone deacetylase inhibitors), or alter the substrate availability for enzymatic reac-
tion, thus impacting hypertension-related gene expression [105,111]. Last, recent evidence
revealed that the gut microbiota can impact the gut-brain axis controlling energy balance
and the gut-kidney axis regulating BP, at both the level of gut nutrient-sensing mechanisms
and other organ systems [112,113].

As detailed descriptions of these mechanisms are beyond the scope of this paper,
readers are referred elsewhere for more in-depth information. A schematic summarizing
the dysregulated nutrient-sensing signal and its interconnected molecular mechanisms
linked to developmental programming of hypertension is presented in Figure 2.
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Figure 2. Illustration of dysregulated nutrient-sensing signal interconnected with other molecular
mechanisms related to developmental programming of hypertension. AMPK = AMP-activated
protein kinase (AMPK); PPAR = peroxisome-proliferator activated receptor; mTOR = the mechanistic
target of rapamycin (mTOR); GPRs = G-coupled protein receptors; NO = nitric oxide; RAS = renin-
angiotensin system.

4. Reprogramming Strategy

Emerging evidence reveals a highly disturbed metabolism in different pathways in
response to multiple maternal insults, resulting in programmed hypertension. These data
point to new potentially causal mechanisms behind metabolic programming, which can be
further investigated in the search for new ways of preventing hypertension.

As for our current understanding of the DOHaD theory, it turns out that control
and prevention of hypertension can be initiated early before the onset of hypertension in
early life stage-fetal periods, namely reprogramming [114]. Particularly, the mechanisms
involved in disturbed metabolism-related hypertension programming mentioned above
may serve as potential targets for reprogramming. Toward this end, interventions to offset
programming processes behind hypertension that have been assessed can be categorized
as three types: nutritional intervention, targeting nutrient-sensing signal, and reduction
of metabolic wastes. The interrelationships between maternal metabolic disturbance,
developmental programming of hypertension, and reprogramming strategies are illustrated
in Figure 3.
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4.1. Nutritional Intervention

It is well known that optimal maternal nutrition is essential for supporting fetal
growth and development. Accordingly, the above-mentioned risk factors regarding mater-
nal malnutrition illustrated in Table 1 should be avoided during pregnancy and lactation.
In addition, perinatal supplementation with certain nutrients can be beneficial in rela-
tion to offspring hypertension programmed by various early-life insults as we reviewed
elsewhere [115]. These nutritional interventions cover macronutrients (protein, lipid,
and carbohydrate) and micronutrients (folic acid, vitamin C, E, and selenium) (Table 3).
Macronutrients already being utilized in reprogramming strategies are largely amino acids.
Little reliable data presently exists about the reprogramming effects of specific micronutri-
ents on hypertension programming.

Table 3. Nutritional supplementation used as reprogramming interventions to prevent the develop-
mental programming of hypertension in rodent models.

Intervention Periods Animal Models Age at
Measure Species/Gender References

Protein

3% taurine Gestation and lactation Maternal high-sugar diet 8 weeks SD rat/F [116]

3% taurine Gestation and lactation Streptozotocin-induced
diabetes 16 weeks Wistar

rat/M+F [117]

0.25% citrulline Gestation and lactation Maternal caloric
restriction 12 weeks SD rat/M [28]

0.25% citrulline Gestation and lactation Prenatal dexamethasone
administration 12 weeks SD rat/M [118]
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Table 3. Cont.

Intervention Periods Animal Models Age at
Measure Species/Gender References

0.25% citrulline Gestation and lactation Streptozotocin-induced
diabetes 12 weeks SD rat/M [119]

0.25% citrulline Gestation and lactation Maternal L-NAME
administration 12 weeks SD rat/M [120]

3% glycine Gestation and lactation Maternal low protein diet 4 weeks Wistar rat/F [121]
Oral gavage of D- or L-cysteine

8 mmol/kg/day Gestation Maternal CKD 12 weeks SD rat/M [122]

Oral gavage of tryptophan
200 mg/kg/day Gestation and lactation Maternal CKD 12 weeks SD rat/M [123]

BCAA-supplemented diet Gestation Maternal caloric restriction 16 weeks SD rat/M [124]

Lipid

Conjugated linoleic acid Gestation and lactation Maternal high-fat diet 18 weeks SD rat/M [125]
Omega-3 polyunsaturated

fatty acids Gestation and lactation Maternal low protein diet 6 months Wistar
rat/M+F [126]

Magnesium acetate
200 mmol/L Gestation and lactation Maternal high-fructose diet 12 weeks SD rat/M [127]

Magnesium acetate
200 mmol/L Gestation and lactation Maternal minocycline exposure 12 weeks SD rat/M [128]

Sodium butyrate 400 mmol/L Gestation and lactation Maternal tryptophan-free diet 12 weeks SD rat/M [35]
Propionate 200 mmol/L Gestation and lactation Maternal CKD 12 weeks SD rat/M [129]

Carbohydrate

5% w/w long chain inulin Gestation and lactation Maternal high-fructose diet 12 weeks SD rat/M [45]
5% w/w long chain inulin Gestation and lactation Maternal high-fat diet 16 weeks SD rat/M [55]

Micronutrients

Folic acid, vitamin C, E,
and selenium Gestation Maternal caloric restriction 16 weeks Wistar

rat/M+F [27]

Folic acid 5 mg/kg/day Gestation Maternal low protein diet 15 weeks Wistar rat/M [130]

4.1.1. Protein

Nutritional supplementation interventions starting during gestation as a reprogram-
ming intervention to avert developmental programming of hypertension in rodent models
are listed in Table 3 [27,28,35,45,55,116–130]. Among them, amino acids are the most com-
monly used nutrients for prevention of programmed hypertension. Vasoactive properties
of dietary proteins depend on the amino acid compositions [102], which can regulate
BP homeostasis. For example, serine, taurine, alanine, and glycine produce depressor
responses, while proline, glutamate, aspartic acid, and asparagine yield pressor responses
in conscious rats [131].

First, taurine has several potentially beneficial effects against hypertension that include
the regulation of NO, oxidative stress, and the RAS [132]. Previous studies showed that
dietary taurine supplementation from gestation to lactation can prevent offspring’s hyper-
tension programmed by a maternal high-sugar diet [116] or streptozotocin (STZ)-induced
maternal diabetes [117]. Citrulline is a non-essential amino acid and is available as a dietary
supplement [133]. As citrulline can be transformed to arginine for NO production, oral cit-
rulline treatment has been considered as an add-on therapy to enhance NO synthesis [133].
Additionally, previous research demonstrated that citrulline supplementation can act as a
reprogramming intervention in several rat models of programmed hypertension, including
maternal caloric restriction [28], antenatal dexamethasone administration [118], maternal
STZ-induced diabetes [119], and maternal NG-nitro–L-arginine methyl ester (L-NAME)
administration [120]. Moreover, other amino acids, like glycine, cysteine, tryptophan,
and branched-chain amino acid have also shown beneficial effects on programmed hyper-
tension [121–124]. Cysteine is a sulfur-containing amino acid and acts as a component of
glutathione. Formerly we reported that rat offspring born to dams with CKD supplemented
with D- or L-cysteine during gestation were protected against hypertension at 12 weeks
of age [122]. As cysteine is the substrate for hydrogen sulfide (H2S), early-life cysteine
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supplementation is a way to produce endogenous H2S and prevent the developmental
programming of hypertension [134].

Although current hypertension guidelines recommend the adoption of dietary mod-
ifications in patients with elevated BP [135], whether a Mediterranean diet in pregnant
women can help prevent offspring hypertension has yet to be studied. A high intake of
animal protein, particularly red meat, which contains high levels of methionine, is related to
vascular ageing and CVD [136]. In contrast, a Mediterranean diet, characterized by higher
plant-based foods and lower red meat intake, is related to lower CVD risk. Considering the
vasoprotective functions of a Mediterranean diet [137], further study is necessary to eluci-
date whether specific restriction levels of animal protein or individual amino acids (e.g.,
methionine) may serve as reprogramming interventions for hypertension.

During pregnancy and lactation, milk and dairy products consumption is a major
source of source of protein and other nutrients. A systematic review of 20 studies indicated
that maternal milk and dairy products intake during pregnancy is positively associated
with fetal outcome [138]. Due to their complex biochemistry, the association between
milk/dairy consumption and CVD and all-cause mortality remains inconclusive [139].
So far, the lack of studies prevents any conclusions being drawn related to hypertension
programming.

4.1.2. Lipids

Several types of lipids have been utilized as reprogramming interventions for pro-
grammed hypertension in experimental studies. Conjugated linoleic acid is a microbial
metabolite coming from dietary PUFAs. Conjugated linoleic acid supplementation in ges-
tation and lactation protected adult rat offspring against high-fat diet-primed offspring
hypertension [125]. Another report demonstrated that maternal omega-3 PUFAs supple-
mentation has reprogramming effects against offspring hypertension programmed by
maternal low protein intake [126]. So far, four reports indicated reprogramming effects of
SCFA supplementation on programmed hypertension. Acetate, butyrate, and propionate
have been utilized as reprogramming interventions in models of maternal high-fructose
diet [127], maternal minocycline exposure [128], maternal tryptophan-free diet [35], and
maternal CKD [129], respectively.

4.1.3. Carbohydrate

There are some carbohydrates being utilized to prevent offspring’s hypertension as
reprogramming interventions. Some known prebiotics (inulin or oligosaccharides) are low
digestible carbohydrates [140]. Perinatal long chain inulin supplementation was able to
protect adult rat progeny against hypertension programmed by maternal high-fructose or
high-fat diet [45,55].

4.1.4. Micronutrients

Several vitamins and trace elements show cardiovascular benefits [141]. Unlike
macronutrients, only two studies reported the impact of maternal micronutrients sup-
plementation on offspring hypertension [27,130]. One previous report demonstrated that
gestational supplementation with folic acid, vitamin C, E, and selenium averted maternal
caloric restriction-induced hypertension [27]. Considering these micronutrients have antiox-
idant properties, their reprogramming effects on programmed hypertension is presumably
accompanied by reduction of oxidative stress [58]. Folic acid, a key player in one-carbon
metabolism, also showed benefits in preventing hypertension programmed by maternal
low protein diet [130].

Dietary sodium and potassium intake is also involved in the regulation of BP. Prior
work revealed that a diet that reduces salt intake while enhancing potassium consumption
is able to control or prevent hypertension [142]. Nevertheless, a previous study reported
that both high and low maternal salt intake in pregnancy resulted in offspring hyper-
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tension [36]. Thus, there remains a lack of evidence supporting sodium reduction and
increased potassium intake for prevention of hypertension programming.

4.1.5. Others

There are several functional foods that can improve hypertension as well as metabolic
abnormalities [143,144]. For example, chocolate or cocoa product consumption significantly
improved vascular function in a human trial [145]. Although metabolic derangements
in rat offspring born to chocolate fed dams have been reported [146], whether chocolate
supplementation in pregnancy can avert hypertension in offspring is still unclear.

Additionally, plants produce polyphenols, which are considered essential functional
foods in our diet. As we reviewed elsewhere [147], several polyphenols, including stil-
benes [47,75], tannins [50], flavonols [70], and flavanols [148], have shown benefits against
offspring’s hypertension programmed by various maternal insults evaluated in animal
models.

4.2. Targeting Nutrient-Sensing Signal

Malnutrition and disturbed metabolism in early life can impair nutrient-sensing sig-
nals that have a fundamental impact on fetal metabolism and development. Interventions
targeting AMPK or PPARs signaling have been reported to avert the development of
hypertension in a variety of developmental programming models.

4.2.1. AMPK

Both indirect and direct AMPK activators have been examined in developmental
programming of hypertension. Indirect AMPK activators refers to modulators that cause
AMP or calcium accumulation without a direct communication with AMPK [149]. Some
indirect AMPK activators have shown their benefits on programmed hypertension, includ-
ing resveratrol [47,76], metformin [77], quercetin [148], epigallocatechin gallate [150], and
garlic [151]. Besides, the use of direct AMPK pan-activator AICAR in gestation and lacta-
tion can protect adult progeny against hypertension programmed by a high-fat diet [78].
Nevertheless, contemporary knowledge of isoform-specific AMPK activators in the devel-
opmental programming of hypertension is significantly limited.

Of note, resveratrol recently received great attention as a reprogramming intervention
not only against hypertension but also metabolic syndrome [152–154]. In a combined high-
fat diet and L-NAME administration model, resveratrol therapy protected adult offspring
against hypertension related to activation of the AMPK/PGC1α pathway [155]. In addition,
resveratrol has the ability to prevent the elevation of offspring’s BP via AMPK activation in
a high-fructose diet model [47] and a high-fat diet model [76]. These observations support
the idea that the interaction between resveratrol and nutrient-sensing signals are implicated
in hypertension of developmental origins.

4.2.2. PPAR

A growing body of evidence indicated that PPARs have a key role in the pathogenesis
of many metabolic disorders, and their ligands have therapeutic potential in restoring
these metabolic disorders [95,156,157]. Nevertheless, not many studies have evaluated
the impact of PPAR modulators on metabolic programming, especially hypertension [95].
Selective PPARγ agonists, pioglitazone and rosiglitazone, can be protective in low pro-
tein diet-induced hypertension and genetic hypertension [158,159]. Additionally, some
natural PPAR agonists, such as conjugated linoleic acid and omega-3 PUFAs, have been
examined in hypertension programming [125,126]. Given that fatty acid derivatives have a
widespread range of affinity to PPARs [160], it is hard to determine whether their repro-
gramming effects on BP are PPAR-dependent or not. Currently, no information exists with
regard to the reprogramming effect of PPARβ/δ on programmed hypertension, despite
PPARγ modulators having been considered attractive drug targets for addressing metabolic
disorders [161].
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4.3. Reduction of Metabolic Wastes

Uremic toxins are metabolic wastes that accumulate in subjects with impaired kid-
ney function. The major uremic toxins contributing to hypertension programming are
TMAO, ADMA, and tryptophan-derived metabolites [162–164]. One major mechanism
linking uremic toxins to developmental programming of hypertension is gut microbiota
dysbiosis [108]. Microbiota dysbiosis, associated with a uremic milieu, is characterized by
loss of diversity, shifts in key taxa, reductions in beneficial microbes, and alterations of
microbial metabolites, and is involved in the pathogenesis of hypertension [113,165]. Par-
ticularly, a connection between microbiota-derived metabolites and offspring hypertension
has been found in several developmental programming animal models [45,68,127]. These
metabolites include SCFAs, TMAO, and tryptophan-derived metabolites. Importantly, gut
microbiota dysbiosis is interconnected with a number of mechanisms behind hypertension
programming, such as oxidative stress, inflammation, aberrant RAS, and dysregulated
nutrient-sensing signals [108]. Accordingly, gut microbiota-targeted therapy has emerged
as a reprogramming strategy to prevent hypertension programmed by numerous maternal
insult stimuli [108]. Here, we highlight pathogenic mechanisms behind hypertension pro-
gramming and the way in which reduction of uremic toxins contributes to prevention of
hypertension.

4.3.1. TMAO

TMAO is a gut microbiota-derived uremic toxin and its level correlates with CVD
mortality [166]. TMAO production results from the fermentation by the gut microbiota of di-
etary carnitine and choline, which are transformed to trimethylamine (TMA) and converted
into TMAO by flavin-containing monooxygenases in the liver [167]. Two microbial choline
TMA lyase inhibitors, iodomethylcholine (IMC) and 3,3-dimethyl-1-butanol (DMB), have
been utilized to inhibit TMAO production [168]. Maternal TMAO administration can cause
an increase in offspring’s BP [169]. Conversely, DMB or IMC therapy from gestation to
lactation averted adult rat progeny against hypertension programmed by various maternal
insults, which was related to the restoration of the TMAO metabolic pathway [69,99,127].
These observations theoretically indicated that targeted TMAO reduction may have some
potential to avert hypertension, though these results require further clinical translation.

4.3.2. ADMA

Another uremic toxin is ADMA. ADMA is increasingly recognized as a biomarker
of CKD and hypertension [170,171]. We and others previously reviewed a lot of currently
used drugs which can lower ADMA levels and restore NO bioavailability [170,171]. These
ADMA-lowering agents cover telmisartan, melatonin, resveratrol, N-acetylcysteine, ator-
vastatin, vitamin E, salvianolic acid A, oxymatrine, metformin, rosuvastatin, aliskiren, etc.
However, only a few of them have been evaluated in animal models to avert offspring’s
hypertension.

Maternal treatment with melatonin [49], aliskiren [96], resveratrol [172], or
N-acetylcysteine [173] has been reported to protect adult offspring against programmed hy-
pertension coinciding with reduction of plasma ADMA. However, specific ADMA-lowering
agents are still unreachable in clinical practice. Considering that ADMA is metabolized
by dimethylaminohydrolase (DDAH)-1 and -2, and that methyltransferase isoenzymes
(PRMTs) are responsible for ADMA generation, the discovery of specific DDAHs agonists
and PRMT inhibitors should bring advanced therapies to reduce ADMA and restore NO,
and thus avert the development of hypertension.

4.3.3. Tryptophan Metabolites

Tryptophan-derived uremic toxins, mostly derived from the kynurenine and indole
pathways, have been closely linked to cardiovascular risk in patients with CKD [174].
Indoxyl sulfate and indoleacetic acid are extensively studied uremic toxins. These micro-
bial metabolites derived from tryptophan are potent aryl hydrocarbon receptor (AHR)
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ligands, by which they exhibit pro-oxidant, pro-inflammatory, and pro-apoptotic prop-
erties. It is known that activation of AHR is involved in the pathogenesis of hyperten-
sion [175]. AST-120 is an orally administered intestinal sorbent that can adsorb small
organic molecules [176]. In CKD, AST-120 could reduce uremic toxins [177,178], while its
reprogramming effects on programmed hypertension have not been explored yet.

Considering that tryptophan-derived uremic toxin are ligands for AHR and that AHR
activation is associated with hypertension programming [172,179], AHR antagonists might
provide a potential reprogramming strategy to prevent tryptophan metabolites-induced
adverse outcomes. As a natural AHR antagonist [179], resveratrol has been shown to
prevent hypertension programming [153]. Given that resveratrol has multiple biofunctions
not just as an AHR antagonist, further research is needed to elucidate whether the use of a
specific AHR antagonist can avert offspring hypertension attributed to tryptophan-derived
uremic toxins in the future.

5. Conclusions and Perspectives

Current evidence has indicated the impact of maternal metabolic disturbance in the
developmental programming of hypertension. This review sought to highlight potentially
causal mechanisms behind underlying disturbance of metabolism during fetal development
and adulthood hypertension. Reflecting current knowledge, our review further opens new
avenues for prevention of hypertension via targeting disturbed metabolism underlying
hypertension programming.

While prior work has generated ample evidence on the impact of disturbed metabolism
during fetal development on the development of adulthood hypertension, it is still uncer-
tain whether and why restoration of metabolic imbalance occurring early in life would
benefit offspring outcomes, especially hypertension.

In the future, we recommend bridging the gap between human and animal research
through a focus on reprogramming strategies targeting metabolism-modulated metabolites
and nutrient-sensing signals. There is presently scant information on how various repro-
gramming strategies obtained from animal research might be used in pregnant women.
Longitudinal analysis of metabolites, nutrient-sensing signals-related biomarkers and de-
tailed background data are of the greatest importance in studying the time window effects
of maternal metabolic disturbance on offspring hypertension; this research can aid in design
of hypothesis-driven interventions and ideal timing of their administration.

These are imperative questions to answer, considering early-life preventative inter-
ventions targeting restoration of metabolic disturbance might provide novel therapeutic
opportunities to reduce the global burden of hypertension.
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