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Abstract: A number of studies have assessed the impact of SARS-CoV-2 infection and COVID-19
severity on the metabolome of exhaled air, saliva, plasma, and urine to identify diagnostic and prog-
nostic biomarkers. In spite of the richness of the literature, there is no consensus about the utility of
metabolomic analyses for the management of COVID-19, calling for a critical assessment of the litera-
ture. We identified mass spectrometric metabolomic studies on specimens from SARS-CoV2-infected
patients and subjected them to a cross-study comparison. We compared the clinical design, tech-
nical aspects, and statistical analyses of published studies with the purpose to identify the most
relevant biomarkers. Several among the metabolites that are under- or overrepresented in the plasma
from patients with COVID-19 may directly contribute to excessive inflammatory reactions and defi-
cient immune control of SARS-CoV2, hence unraveling important mechanistic connections between
whole-body metabolism and the course of the disease. Altogether, it appears that mass spectro-
metric approaches have a high potential for biomarker discovery, especially if they are subjected to
methodological standardization.
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1. Introduction

The pandemic outbreak of coronavirus disease 2019 (COVID-19) has caused a major
perturbation of public health, coupled to global social and environmental change. As of
8 February 2023, the World Human Organization (WHO) reported 754 million confirmed
cases of COVID-19, including 6.8 million deaths [1]. The causative agent of COVID-19 is se-
vere acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which potentially affects the
entire human body, impacting the respiratory, inflammatory, neurological, cardiovascular,
and gastrointestinal systems [2]. Most individuals infected with SARS-CoV-2 develop poly-
morphic symptoms ranging from close-to-asymptomatic to severe clinical illness requiring
hospitalization and sometimes even multiorgan failure leading to death [3,4]. Nowadays,
novel SARS-CoV-2 strains variants still evolve in the unfolding COVID-19 pandemic [5].
Aged and immunocompromised persons, as well as obese individuals with co-morbidities
(such as diabetes and hypertension), are particularly susceptible to SARS-CoV-2 infection
and the development of COVID-19 [1,2,4–8]. Traditional biomolecular diagnostic tests,
particularly the detection of viral DNA by reverse transcriptase real-time PCR (RT-qPCR) in
oro-nasopharyngeal swabs, have played a significant role in tracking SARS-CoV-2 [9]. Alter-
natively, antigen detection immunoassays identify specific viral proteins in nasopharyngeal
swabs or saliva specimens [4,8].

In the fight against the COVID-19 pandemic, mass spectrometry (MS)-based
metabolomics constitutes one of the cutting-edge technologies allowing to detect and
identify circulating metabolites as potential biomarkers of SARS-CoV-2 infection and
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disease severity [10–12]. Furthermore, metabolomic allows to characterize the complex
relationship between SARS-CoV-2 and host metabolism, which manifests a rewired TCA
cycle, reducing oxidative glutamine metabolism, and increasing pyruvate entry [13–15].
Thus, metabolomics provides a systemic dimension of the host–virus interaction [15–17].
This approach sheds light on the determinants of biochemical pathways associated to
COVID-19 disease from the initial steps of infection to its progression resulting in final reso-
lution or lethal aggravation [11,18–22]. When comparing different metabolomic analyses of
COVID-19 specimens, it is noteworthy that there is a big heterogeneity in methods, ranging
from (i) clinical test design, to (ii) sample collection and preparation, (iii) chromatographic
and MS-based methods, and (iv) statistics and data processing [23–28]. In spite of the need
for further methodological standardization, we attempted an extensive overview of the
literature on the COVID-19-related metabolome.

Of note, variations in the systemic metabolite profile provide a close-to-holistic view
of complex adaptive responses and may pinpoint valuable biomarkers of COVID-19. Exten-
sive data support the contribution of metabolic perturbations to the immune-inflammatory
alterations that characterize disease progression in COVID-19 [29–31]. However, MS-
metabolomics generates large datasets on several hundreds to thousand metabolites that
are difficult to interpret in statistical terms [11,32]. In addition, the few studies which
were conducted to examine metabolite and pathway-based dysfunctions linked to the
diagnosis and prognosis of COVID-19 did not target the same metabolites, prohibiting
interexperimental comparisons [10]. To identify the best diagnostic and prognostic biomark-
ers, we applied a funnel method selecting the most significant metabolites identified by
MS-based metabolomics analyses in the literature. This method highlights the top-ranked
pathways and creates a panel of biomarkers associated with prognosis. We have gathered
mechanistic evidence on diagnostic and prognostic biomarkers, especially those related to
the immunopathology associated to multiorgan failure and death [32]. We surmise that
metabolomics constitutes a powerful approach for the identification of disease-relevant
diagnostic and prognostic biomarkers.

2. From Metabolomics to Relevant Prognostic Biomarkers of COVID-19

Metabolomics is the systematic determination of small molecules <1000 Da in bioflu-
ids, cells and biological tissues. Metabolites can be produced by the host organism,
absorbed with the diet, produced by microorganisms, or stem from other exogenous
sources, e.g., aerosols and cosmetic products [33,34]. Metabolomics has been widely used
for biomarker discovery, with the goal to identify metabolites that correlate with various
diseases [34,35]. This also applies to COVID-19 disease following a non-standardized
workflow involving a stereotyped sequence of steps (Figure 1).
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2.1. Metabolomic Workflow
2.1.1. Clinical Design

The clinical definition of health, disease and disease stages is amongst the features
that affect metabolomics workflow (Figure 1) [22]. Multiple studies have explored the
COVID-19 metabolome based on a variety of criteria indicating disease progression, such as
the severity of pathology (i.e., mild versus severe), outcome (i.e., discharge versus decease),
risk factors for severe disease (i.e., comorbidities and cancer), longitudinal assessments of
individuals with SARS-CoV-2 infection (i.e., from asymptomatic infection to symptomatic
disease, resolution or death), and different types of treatment (e.g., ambulatory versus
hospitalization) [35–40]. These criteria are so heterogeneous as to compromise comparisons
among studies. Moreover, systematic bias can be introduced by distinct methods of
handling and storing specimens [14]. For example, the comparison between studies dealing
with serum versus plasma metabolomes as well as different storage methods (−80 ◦C,
liquid nitrogen) may be problematic [36,41–43].Fortunately, to strengthen metabolomic
analyses, multiple studies have established a robust clinical strategy. Briefly, clinical
standardization collection can be achieved by applying stringent inclusion criteria, such
as viral detection by positive RT-PCR (rather than less accurate test such as viral antigen
detection), and broad clinical characteristics (e.g., age, pre-admission symptoms, duration
or positivity determined by RT-PCR and the presence of comorbidities) [44]. The severity
of the COVID-19 needs to be defined to accurately distinguish mild, moderate, and severe
disease, as described in detail by Danlos et al. [41]. An important point is also to include
technical and biological replicates to assess the reproducibility of measurements [45].
Finally, we strongly recommend the obligatory exploration of validation cohorts to confirm
the identification of potential biomarkers [30,39,44] (Figure 1).

2.1.2. Sampling Preparation and Chromatography Techniques

Within biological samples, the instantaneous cessation of metabolism is critical for the
obtention of a snapshot of the metabolic state [46]. Most of the literature on the circulating
COVID-19 metabolome is currently based on common protocols (cooling, freezing and unfreez-
ing, extraction with solvents) that must be applied to all samples of the same cohort [41,44,47].
Saliva has limited value for metabolic studies due to the contamination of samples with food
items and bacterial products [48]. Moreover, swab kits issued from different manufacturers
potentially differ in the metabolites they sample and release [18]. Expired breath can be used to
detect volatile organic compounds (VOCs), circumventing the need for such kits [49]. Hence,
“electronic noses” are being designed to detect disease-relevant VOCs [50,51].

For optimal data quality, the analytical process must adhere to a standardized proce-
dure that, beyond sample preparation, involves (i) randomization of biological samples,
(ii) constant quality control, (iii) batch correction throughout the metabolomic experi-
ment, and (iv) monitoring of the performance and stability of the instruments [32]. In
both targeted and non-targeted metabolomics, different methods of chromatography are
coupled to an array of mass spectrometers. Typical combinations are liquid chromatog-
raphy coupled to tandem mass spectrometry (LC-MS/MS), gas chromatography–mass
spectrometry (GC-MS), and ultra-performance liquid chromatography-tandem mass spec-
trometry (UPLC-MS/MS), which may involve simple to multi-quadrupole mass analyzers
(QMS), triple-quadrupole ion trap (QTrap), triple quadrupole (TQ), or quadrupole-TOF
(Q-TOF) [37,38,52]. However, there are hurdles to the chromatographic separation of
metabolites. For example, a short-duty analysis by means of a fast solvent gradient is often
recommended to achieve high-throughput of samples containing low molecular weight
compounds such as VOCs. These include chromatographic parameters, such as successive
times during the gas flow ramp and GC temperature, that affect the detection of candidate
COVID-19 breath biomarkers [53]. Flow injection MS/MS is the most popular method to
investigate nasal mucosal fluids and ultimately offers high-throughput without compro-
mising sensitivity, precision, and accuracy with a dynamic range from parts per billion to
parts per million [18]. The untargeted metabolomic approach has boosted the discovery
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of potential biomarkers in COVID-19 [39,41,54]. Most often, based on UPHLC-MS/MS,
this method facilitates the comprehensive and exploratory detection of metabolites which,
however, must be identified in a subsequent step by means of a targeted method. Hence, an
important goal of sample preparation is to cover a maximum number of metabolites. This
is achieved by means of a generic extraction, allowing for the solubilization of chemically
diverse molecules present in the sample. With amphiphilic properties, liquid chromatog-
raphy (LC) solvents and gradient elution profiles can be adjusted for long chain acylated
carnitines, fatty acids, or phospholipids [39]. It is useful to compile targeted and untargeted
metabolomic approaches to achieve a comprehensive view of the metabolome [30,41].

2.1.3. MS Based Metabolomic Analysis & Data Processing

The principle of mass spectrometry involves the ionization of chemical compounds to
generate charged molecules. These are detected and displayed as spectra with the metabo-
lite mass-to-charge ratio (m/z) in the abscissa and the intensity in the ordinate [11]. To
compare MS-based metabolomics methods between different laboratories, it is important
to understand whether the ionization source covers the whole metabolome, especially
with the untargeted approach [32]. A specific ionization source, electron ionization (EI), is
used for GC-MS analysis, e.g., to determine exhaled breath metabolomes from COVID-19
patients [49,55]. Other, less reproducible modes of ionization than EI exist, such as elec-
trospray ionization (ESI). The combination of two different ionization modes, ESI (+) and
ESI (−), is applied to the detection of specific compounds, such as chain acylcarnitines,
phosphatidylcholines (PCs), lysophosphatidylcholines (LPCs). Amino acids are usually
detected in the ESI (+) mode, and fatty acids (FAs) derivatives or bile acids in the ESI
(−) mode. The use of both ESI modes provides the advantage of abrogating ionization
mode bias and allows the detection of multiple distinct metabolites present in COVID-19
patient samples [54]. As mentioned above, the m/z analyzer is a central pillar to establish
metabolomic analysis. Diverse mass analyzers, including QTrap, have been employed
to unravel COVID-19-related metabolic biomarkers, such as purine nucleosides, phenols,
fructose, and mannose compounds, whereas Orbitrap has been used by Thomas et al. to
identify alterations in the kynurenine pathway, nitrogen metabolism, amino acids, oxidative
stress, circulating glucose levels, and free fatty acids [42,56].

Detection and integration of m/z peaks from the raw intensity data are critical for the
success of qualitative and quantitative analyses. Today, the prevalent metabolite identifica-
tion is based on data acquisition with (i) the m/z value of a molecular ion, (ii) retention
times (RT), (iii) detected ion intensities, and other biochemical parameters listed in authen-
ticated reference standard databases (such as Kyoto Encyclopedia of Genes and Genomes,
KEGG, and Human Metabolome Database, HMDB) [32,57]. Insufficient or inaccurate anno-
tation of putative metabolites constitutes a persistent obstacle for metabolomic profiling. A
key example is provided by deoxy-fructosyl-amino acids, which are new putative plasma
biomarkers for SARS-CoV-2 infection and COVID-19 severity and which were not listed
in the databases [58]. Faced with one of the major bottlenecks in current metabolomics
studies, recent work using machine-learning algorithms has facilitated the identification of
unique metabolite biomarkers [36]. Zhu and colleagues developed an innovative method,
the knowledge-guided multi-layer network (KGMN), to enable the global annotation of
metabolites via the integration of three-layer networks, including (i) a knowledge-based
metabolic reaction network, (ii) a knowledge-guided MS/MS similarity network, and (iii) a
global peak correlation network [59].

Advanced data normalization tools have also been developed for metabolomics to
render data comparable among different laboratories. Metabolite structure identification
software is commonly employed for non-targeted metabolomics. For instance, Roberts et al.
used Compound Discoverer software to demonstrate that deoxycytidine and ureidopropi-
onate levels indirectly reflect SARS-CoV-2 viral load [39]. Alternative data normalization
tools were developed as R packages to facilitate interexperimental comparisons.
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2.1.4. Statistical Analysis and Interpretation

Multivariate statistical methods are a critical part of the metabolomics workflow for the
extraction of reliable information from complex data sets and the elimination of spurious cor-
relations [60]. Standard tools for data analysis include principal component analysis (PCA),
partial least square discriminant analysis (PLS-DA), and orthogonal partial least squares
(OPLS), and all these tools have been used to distinguish the overall profile of uninfected
and SARS-CoV-2-infected patients [43,44,61,62]. Functional analysis software is evolving to
identify alterations in metabolic pathways informing on the severity of COVID-19 [42,43,63].
However, this latter approach does not contribute to the establishment of a cut-off for the
identification of meaningful metabolic biomarkers. Other methods are based on the false
discovery rate (FDR), and volcano-plots have been used to identify differentially abun-
dant metabolites, for instance to discriminate healthy individuals from moderate or severe
COVID-19 patients [63]. Robustness and accuracy can be estimated using ROC (receiver
operating characteristic) analyses to assess metabolite concentrations [52,64]. ROC curves
have been used to calculate the area under the curve (AUC) to identify the 10 most rele-
vant metabolites for diagnosing COVID-19 with the best sensitivity and specificity [52,64].
Another statistical model, the logistic regression analysis, can be utilized to select the high-
est ranked metabolites which contribute the most to the discrimination among patient
groups [64–66]. Random forest classifier and machine learning (ML) approaches can detect
complex relationships among variables and can be employed successively on training and
validation datasets [14,67]. Altogether, there is a panoply of different statistical methods that
must be used in an adequate fashion for the analysis of complex datasets. Unfortunately,
there is no fully standardized workflow for the statistical and bioinformatic treatment of
metabolomics data that would facilitate the comparison of distinct studies.

3. Prognostic and Diagnostic Features of the Metabolome in COVID-19

In the preceding sections, [52,64], the wide variety of analytical methods and separation
techniques (capillary electrophoresis or chromatography), as well as approaches (non-
targeted, targeted), illustrates the diversity of results obtained by the different research
groups [68]. In spite of the heterogeneity of methodologies, metabolomic analyses pinpoint
profound effect of SARS-CoV-2 infection at the multiorgan level and more specifically at
the level of the immune defense [2]. To interpret perturbations observed in COVID-19
metabolomics profiles, we reviewed the relevant PubMed-accessible literature with the
aim to identify candidate biomarkers that should (i) correctly identify the presence of the
COVID-19, (ii) predict or detect clinical progression, (iii) preemptively identify individuals at
high risk of disease progression, and possibly (iv) generate information on the pathogenesis.

3.1. Method

We searched the PubMed database for articles up to December 2022. All articles were
considered potentially useful if they covered the topics of COVID-19 and MS-metabolomic
approaches in plasma/serum or other biological samples. This search initially yielded
118 publications, some of which were excluded because they employed other method-
ological approaches (e.g., lipidomic approach, nuclear magnetic resonance) or were not
accessible as full texts. Eligible studies included male and female COVID-19 patients with
a positive RT-PCR test for SARS-CoV-2, as well as healthy volunteers with a negative
RT-PCR test. In order to focus on COVID-19 focus, we did not consider studies centered on
participants with other initial diseases, such as lung diseases, cancer, inflammatory bowel
disease, or patients who received therapeutic agents/vaccines. All articles were screened
for metabolomic biomarkers that might reflect COVID-19 severity. References cited by the
most relevant studies were scrutinized to identify additional publications.

As a result, 20 articles were included in this review. For each among these studies, we
carefully compared the clinical design as well as the metabolomic profiling techniques (bio-
logical specimen, metabolites isolated, annotated biochemical pathways), as summarized
in Table 1.
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Table 1. Metabolite prognostic and diagnosis associated with COVID-19 disease using metabolomic MS-techniques.

Authors Biological
Matrix

COVID-19
Infected
Patients

MS Techniques Statistics & Data
Normalization

Number of
Metabolites

Detected
Pathway Associated to

COVID-19
Top of the COVID-19

Metabolites Biomarkers
Robustness, Originality,

and Limits

Wu et al., 2020
[43] Plasma

9 fatal outcomes,
11 severe,
14 mild,

10 Healthy
subjects

LC-ESI-MS/MS

OPLS-DA,
functional

enrichment
analysis,

logistic regression
analysis

431 metabolites
common for all

COVID-19 patients

pyrimidine,
urea cycle,

fructose and mannose,
carbon

(↓) malic acid
(↓) aspartic acid,

(↓) D-xylulose 5 phosphate,
(↓) guanosine

monophosphate (GMP),
(↓) carbamoyl phosphate

Longitudinal studies,
associations of age and
gender with COVID-19,

low sample size inpatients

Barberis et al.,
2020 [69] Plasma

COVID-19
patients

(n = 103),
non-COVID-19
with symptoms

(n = 32) and
healthy controls

(n = 26)

LC-MS/MS

PCA,
volcano plots,
MSE analysis,
ROC analysis

75 modulated
metabolites

phenylalanine, tyrosine and
tryptophan biosynthesis,

phenylalanine metabolism,
aminoacyl-tRNA

degradation, arachidonic
acid metabolism

(↑)2-hydroxy-3-
methylbutyric acid, (↑)

3-hydroxyisovaleric acid, (↑)
2-hydroxybutyric acid,

(↑)palmitic acid,
(↑)pyroglutamic acid,

(↓)L-valine

Large number of patients
(n = 161) but absence of

asymptomatic COVID-19
patients

Song et al.,
2020 [65] Plasma

Controls
(n = 26), mild

COVID-19
(n = 18),
moderate

(n = 19), critical
(n = 13) patients

UPLC-MS/MS

Logistic regression
model with

leave-one-out
(LOO)

cross-validation

404 metabolites β-oxidation, TCA cycle,
steroid pathway, amino acids

(↓) sphingosine-1-phosphate,
(↑) biliverdin,

(↑)5-hydroxy-tryptophan,
(↓)tryptophan (↓)valine, (↓)

proline, (↓)citrulline

Quantitative serum lipidome
and metabolome but small

longitudinal cohort

Thomas et al.,
2020
[42]

Sera

33 COVID-19–
positive and 16
control COVID-

19–negative

UHPLC-MS

One-way ANOVA
with Tukey’s

multiple
comparisons
Spearman’s
correlations

206 targeted
metabolites and
5518 untargeted

metabolites

Nitrogen (amino acid
homeostasis), carbon

(glucose and free fatty acids),
tryptophan/kynurenine
pathway, oxidant stress
(methionine sulfoxide,

cystine), renal dysfunction
(creatine, creatinine,

polyamines).

_

Comprehensive serum
metabolome with detailed

metabolic pathway but a low
number of samples

Cai et al., 2020
[66] Sera

COVID-19
patients (n = 39)
and uninfected
controls (n = 20)

UPLC-MS/MS

Multivariable
logistic regression,

Spearman
correlation

analysis, Chord
diagram

75 metabolites
with 17

metabolites
associated with

COVID-19 status
for age, BMI, sex,

and multiple
comparisons

Tryptophan pathway
metabolites

(↑) kynurenic acid, (↓)
glutamate, (↑)

cysteine-S-sulfate, (↑)
palmitoleic acid, (↑)
arachidonic acid, (↑)

lysophos-
phatidylethanolamine (LPE)

(22:6), (↓) glutamine, (↓)
tryptophan

Metabolites correlate with
immune response in a

sex-specific manner
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Table 1. Cont.

Authors Biological
Matrix

COVID-19
Infected
Patients

MS Techniques Statistics & Data
Normalization

Number of
Metabolites

Detected
Pathway Associated to

COVID-19
Top of the COVID-19

Metabolites Biomarkers
Robustness, Originality,

and Limits

Blasco et al.,
2020 [52] Plasma

55 patients
infected with

SARS-CoV-2 at
the time of viral
diagnosis (D0)
and 45 controls

LC-HRMS

PCA,
volcano plots,
MSE analysis,
Venn diagram,

ROC curves

160 metabolites
retained in the
final dataset.

Nicotinate and nicotinamide
metabolism, Arginine,

proline and purine
metabolisms

(↑) cytosine,
(↑) indole-3-acetic acid,

(↑) L-isoleucine,
(↑) L-asparagine, (↑) 1-

aminocyclopropanecarboxylate

Multivariable analysis.
Discriminant metabolic

pathways predict clinical
outcomes of COVID-19

patients

Shen et al.,
2020 [21] Sera

28 healthy
subjects, 25

non-COVID-19,
25 non-severe
COVID-19, 37

non-severe and
25 severe

COVID-19
patients

UPLC-MS/MS

Random forest
machine learning
model based on

metabolomic data
from 18 non-severe

and 13 severe
patients

From 941
metabolites

identified, 204
metabolites at the

final data set

Bilirubine products,
tryptophan,

glycerophospholipid,
sphigolipids and fatty acids
and amino acid metabolism

(↑) kynurenine, (↓) choline,
(↑) mannose, (↓) serotonine,

(↓) bilirubin degradation
product

Hydrophilic and
hydrophobic molecules and

viable diagnostic and
therapeutic tools, but sera

samples collected at different
time points

Caterino et al.,
2021 [63] Sera

9 healthy control
and 52

hospitalized
COVID-19

patients, mild
(n = 20),

moderate
(n = 16), and

severe (n = 16)

LC-MS/MS
PLS-DA volcano
plots, Spearman

correlation, MSEA

143 quantified
metabolites

Glycolysis/Gluconeogenesis,
D-glutamine and

D-glutamate metabolism,
nitrogen metabolism,

arachidonic acid metabolism,
amino acid metabolism

(↑) lactate (↑)glutamate,
(↑)glycine, (↑)aspartate,

(↓)trigonelline
(↓) phenylalanine, (↓)

arachidonic acid

Correlation with
inflammatory cytokines
(succinic acid, xanthine,

ornithine and glutamate)

Delafiori et al.,
2021 [14] Plasma

350 controls, 442
COVID-19

confirmed and
23 suspicious

patients

HESI-Q Exactive
Orbitrap-MS Machine learning

19 discriminant
biomarkers for

COVID-19 selected
by the ML

_

(↑) guanosine, (↑) uridine, (↑)
deoxyguanosine, (↑)

N-linoleoyl-glycine, (↑)
N-acylethanolamines (C20:1

and C22:0), (↑)
phosphatidylglycerol (PG)

[PG (20:5)], (↑)
phosphatidylethanolamine

(PE) [PE (38:4)], (↑)
phosphatidylcholine (PC)

[PC (38:8)]

COVID-19 automated
diagnosis and risk

assessment through
metabolomics and machine

learning

Khodadoust
et al., 2021 [62] Plasma

Active COVID-
19-infected

participants,
including 18

severe
respiratory

distress and 32
with mild
symptoms

UPLC−QTOF/MS
PCA

OPLS-DA
MEDM

283 lipids covering
8 lipid classes

PS, PEs, Cer, HexCer,
Hex2Cer, and Hex3Cer,
salvage of sphingosine,

sphingolipids with
sphingomyelin

(↑) Cer (d18:1/16:0) (↑)
Cer(d18:1/24:1) subclasses

Interface between
metabolomics and lipidomic

for the
identification of lipid

metabolites
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Table 1. Cont.

Authors Biological
Matrix

COVID-19
Infected
Patients

MS Techniques Statistics & Data
Normalization

Number of
Metabolites

Detected
Pathway Associated to

COVID-19
Top of the COVID-19

Metabolites Biomarkers
Robustness, Originality,

and Limits

Danlos et al.,
2021 [41] Sera

Controls
(n = 29), mild

COVID-19
patients (n = 23),
moderate cases
(n = 21), critical
patients (n = 28)

GC-MS
UHPLC-MS/MS

PCA Wilcoxon
rank-sum test
random forest

machine learning
model

757 metabolites _

(↑) anthranilic acid, (↑)
3-hydroxy-DL-kynurenine,

(↑) 5-hydroxy-DL-(↓)
tryptophan, (↓)

desaminotyrosine,
(↓)arginine, (↑) ornithine,

(↑)spermine, (↑)spermidine

Correlations between
cytokines and metabolites
and anthranilic acid as a

prognostic biomarker

Xiao et al.,
2021 [70] Sera

14 mild, and 23
severe

COVID-19
patients and 17
healthy controls

UHPLC-MS/MS Volcano plots

253 metabolites
from 134

metabolites with
targeted method

and 155
metabolites

identified from
6072 metabolites
with untargeted

methods

arginine metabolism,
tryptophan, purine

metabolism, nicotinate and
nicotinamide metabolism,

TCA cycle

_

Longitudinal
metabolite–cytokine

correlation in follow-up mild
COVID-19 patients

Overmyer
et al., 2021 [67] Plasma

COVID-19 status
and hospital-free

days at day 45
with COVID-19

patients (n = 102)
and

non-COVID-19
patients (n = 26)

GC-MS analysis
and

AEX-LC-
MS/MS

PCA, linear
regression

log-likelihood tests
machine learning

approach

110 metabolites
and 511

unidentified
metabolites

features

-

(↓) salicylic acid,
(↓) methylphenol,

(↑) kynurenine,
(↑) quinolinic acid

Machine learning with
multi-omics data and
cross-ome correlation

analysis

Páez-Franco
et al., 2021 [61] Plasma

COVID-19
severe patients
(n = 46), mild

patients (n = 19)

GC/MS
PLS-DA

hierarchical cluster
analysis

- Valine and threonine
catabolism

(↑) three α-hydroxyl acids of
amino acid

Comprehensive serum
metabolome

Shi et al., 2021
[64] Sera

79 COVID-19
patients, 78

healthy controls
and 30

COVID-19-like
patients

GC/MS

One-way ANOVA
followed by the

student-Newman-
Keuls,
ROC

75 metabolites _

(↑) butyric acid, (↑)
2-hydroxybutyric acid, (↑)

L-glutamic acid, (↑)
L-phenylalanine, (↑) L-serine,

(↑) 3-hydroxybutyric acid

Correlation with clinical
features but

no asymptomatic
SARS-CoV-2 infected troll

sols. GC–MS is limited
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Table 1. Cont.

Authors Biological
Matrix

COVID-19
Infected
Patients

MS Techniques Statistics & Data
Normalization

Number of
Metabolites

Detected
Pathway Associated to

COVID-19
Top of the COVID-19

Metabolites Biomarkers
Robustness, Originality,

and Limits

Sindelar et al.,
2021 [36] Plasma

Longitudinal
studies with 272

SARS-CoV-2
positive patients

and 67
SARS-CoV-2

negative patient
with 3, 7, 14, 28

and 84 days after
the initial blood

collection

LC/MS-MS
PCA and HCA
visualizations,

ML model

First putative
identification of
707 metabolites
with 92 unique

metabolites

_
(↑) kynurenate,

(↑) nicotinamide,
(↑)creatinine, (↑)serine

Predicted metabolites
confirmed by in vivo

experimentation

Valdès et al.,
2022 [54] Plasma

Negative
controls (n = 25),

positive
asymptomatic

patients (n = 28);
mild (n = 27);

severe (n = 36);
fatal outcome

(n = 29)

HPLC–QTOF–
MS

ANOVA, U test
and PLS-DA

MSE

After
Post-processing,
203 metabolites

Carnitines, Ketone body,
fatty acids, lysophosphatidyl-
cholines/phosphatidylcholines,

tryptophan, bile acids and
purines

(↓) hippuric acid,
(↑) 3-Hydroxyphenylacetic

acid,
(↑) urea,

(↑) 3-hydroxybutyric acid, (↑)
xanthine, (↑) alpha-linolenic

acid

Longitudinal studies

Chen et al.,
2022 [15] Sera

20 COVID-19
patients and 20

healthy
UHPLC-MS/MS

PLS-DA
MSEA

Volcano plots

Out of the 714
metabolites

identified, 203
change

significantly in
COVID-19 patients

Amino acids, fatty acids
(long-chain fatty-acid), and

glycerophospholipids,
bilirubin

(↑) linolenate, (↑) choline,
(↑) glycerol-3-phosphate, (↑)
glycerophosphocholine, (↑)

di-homolinoleate

Limited sample size

Lewis et al.,
2022 [44] Sera

Longitudinal
studies with 41
negative and

123 SARS-CoV-2
positive patients
(with 32 wave 1
and 91 wave 2)

LC-MS

PCA
OPLS-DA

machine learning
model prediction

30 metabolites
selected with

highest VIP scores

(↑) TG (22:1_32:5), (↑)TG
(18:0_36:3), (↑)glutamic acid,

(↓) glycolithocholic acid,
(↑)aspartic acid

Lack of healthy control
subjects, no information on

viral strains

Roberts et al.,
2022 [39] Sera

Discovery cohort
with 120

COVID-19
patients and
additional 90

COVID-19
patients

validation cohort

UHPLC-MS/MS

Univariate and a
multivariable

bayesian logistic
regression model,

pathway
enrichment

analysis

935 metabolic
features identified

that Bayesian
logistic regression

with 20
metabolites with

relevant biological
functions

pyrimidine metabolites,
tryptophan—kynurenine

degradation, deoxycytidine
and ureidopropionate

(↑) ureidopropionate, (↑)
cytosine (↓) uracil, (↓)

arginine, (↓) tryptophan, (↑)
N1-acetylspermidine

Multiple predictor Bayesian
logistic regression model but

LC solvents and gradient
elution do not allow to

reliably measure long chain
acyl carnitines



Metabolites 2023, 13, 342 10 of 22

3.2. Clinical Significance of Prognosis Circulating Metabolome in COVID-19 Patients

A pioneering study by Wu et al. 2020 at Wuhan Jinyintan Hospital, reported tar-
geted metabolomic profiles of the plasma collected from patients with COVID-19. The
authors discovered five plasma metabolites (malate, aspartate, D-xylulose-5-phosphate,
guanosine monophosphate (GMP), carbamoyl phosphate) to be downregulated in severe
COVID-19 [43]. Subsequently, many other studies reported the identification of various
potential candidate biomarkers for COVID-19 (Table 1).

For instance, a strong alteration in amino acid metabolism compared to healthy volun-
teers was detected in the catabolic pathways affecting arginine, glutamine, branched-chain
amino-acids and their derivatives (tryptophan, proline, lactate, glycine, phenylalanine,
tyrosine, aspartate). These key signatures are sustained in mild/moderate and severe
COVID-19 patients (Table 1). Among these, glutamate was found to be dysregulated in
longitudinal studies across various COVID-19 waves [44]. Tryptophan metabolism was
also confirmed to be perturbed in several studies, and two immunosuppressive tryptophan
metabolites, kynurenine and anthranilic acid, were found to be associated with disease
severity [41,67,69]. Elevations in such tryptophan metabolites were also found in patients
with long-COVID or with cancer [37,71]. It is interesting to note that elevations of kynure-
nate accompany clinical deterioration in male (but not female) COVID-19 patients [66].
α-hydroxylated amino acid increased with disease severity and was related to reduced
oxygen saturation and clinical markers of lung damage [18,61,64,69]. In addition to these
amino acid-focused studies, alterations in carbohydrate and energy metabolism, tricar-
boxylic acid cycle (TCA), purine metabolism (adenine, GMP, cysteine, urea), polyamines,
and nicotinamide metabolites have been reported. Thus, multiple glycerophospholipids,
including phosphatidylethanolamines (PEs), lysophosphatidylethanolamines (LysoPE),
sphingolipids, ceramides (Cer), and triglycerides (TG) or palmitic acid, were found to be
altered in samples from severe COVID-19 patients [21,69,72]. Sphingosine-1-phosphate sig-
nificantly increases during the recovery process [21,73]. Bilirubin and its degradation prod-
ucts, as well as specific bile acid derivatives, may reflect hepatic damage during COVID-
19 disease progression [21,54]. Moreover, elevated creatine, and acetylated polyamines
likely reflect renal dysfunction in severely ill COVID-19 patients [41,42] (Table 1). A re-
cent meta-analysis of COVID-19-relevant circulating metabolomes has pooled the data
from 272 COVID-19 infected-subjects and 120 healthy controls, revealing that the major
biomarkers are cholesterol, D-mannose, tyrosine, L-phenylalanine and bilirubin [73]. This
work further suggests that the severity of COVID-19 disease is associated with perturbed
metabolic pathways involving phenylalanine, tyrosine, and tryptophan, as well as changes
in the abundance of specific metabolites (L-alanine, uridine and uracile). Nevertheless,
such meta-metabolomic studies are still hampered by differences in extraction procedures
and analytical platforms.

3.3. Other Metabolomes

The untargeted metabolomic analysis of saliva and blood samples from 43 non-COVID-19
patients and 40 non-severe COVID-19 patients by Spick et al. led to the identification of
two circulating molecules predictive of severity, glycolithocholic acid 3-sulfate and L-
proline betaine, as well as the detection of an increase in salivary LPC aC18:2, Sarcosine
C5-DC (C6-OH), SM C24:1, and trans-4-hydroxyproline [48]. Frampas et al. found that the
concentration of valine, leucine, phenylalanine, tyrosine, and proline in saliva allowed to
discriminate patients with mild and severe COVID-19 [74]. One study of the exhaled air
metabolome failed to discover metabolites that correlate with COVID-19 disease severity
and viral SARS-CoV-2 load [49]. In contrast, Barberis et al. reported that the abundance of
fatty acids (1-monomyristin and monolaurin) in exhaled breath condensate can be used to
discriminate COVID-19 patients from healthy controls and patients with other respiratory
diseases [53].

SARS-CoV-2 may influence the nasal metabolome. Metabolomic analysis of nasopha-
ryngeal swabs from mild COVID-19 patients has resulted in the detection of specific
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analytes, including LPCs C18:2, beta-hydroxybutyric acid, methionine sulfoxide, and
carnosine, compared to other respiratory virus, such as influenza or respiratory syncytial
virus [18]. Several metabolites (cyclohexanecarboxylic acid, lactate and urea) were found in-
creased, but others (1-pentadecanol, D-cellobiose, deoxycholic acid, monomethyl succinate
and propanoic acid) were depleted in fecal samples from patients with severe COVID-19
compared to mild disease [75]. Another stool metabolomic analysis correlated impaired
tryptophan metabolism with a decreased abundance of the microbial metabolite indole-3-
propionic acid, which is also decreased in serum of critical COVID-19 patients [76]. In the
stool from COVID-19 patients, amino acids (glutamine, threonine, proline, glycine, trypto-
phan, phenylalanine, tyrosine, aspartic acid, leucine, and valine), as well as spermidine,
putrescine, and vitamin B6, were found to be increased [77].

All these local or systemic metabolomes established a set of candidate metabolites
serving a potential biomarker for COVID-19 progression and prognosis. Of note, some spe-
cific metabolome pathways were not compartment-specific. As an example, branched-chain
amino acids (BCAA) were found to increase in both the circulating and fecal
metabolomes [21,77]. Nonetheless, most of the candidate biomarkers were increased or
decreased in an organ-specific fashion.

3.4. Diagnostic Metabolites Predicting the Progression of the COVID-19

The key goal of metabolomics is to quantitatively and qualitatively evaluate metabo-
lites for their diagnostic potential [78]. As defined by the Food Drug Administration (FDA),
a diagnostic biomarker detects or confirms the presence of disease, condition of interest, or
identifies an individual with a subtype of the disease [79]. Compared to RT-PCR performed
on nasopharyngeal swaps, diagnostic tests based on the detection of SARS-CoV-2 antigen
are known to be rather limited in their sensibility [80,81]. Based on the current literature
(Table 1), it appears that an increase in L-cytosine correlates with SARS-CoV-2 infection
and hence might be considered as a diagnostic biomarker [39,52]. It has been hypothesized
that increases of L-cytosine levels are critically involved in the evolution of RNA viruses,
including SARS-CoV-2 [17]. Indeed, the underrepresentation of cytosine in the SARS-CoV-2
genome suggests a role other than viral RNA synthesis [82]. Furthermore, another study
described viral replication to be particularly dependent on extracellular carbon sources
such as glutamine [83]. Thus, the mechanistic roots of the elevation of L-cytosine correlating
with SARS-CoV-2 infection are still unclear.

Metabolomics analyses methods were used to discriminate acute respiratory distress
syndrome (ARDS) associated with COVID-19 from non-COVID-19 ARDS cases, based on
the VOC compounds, including methylpent-2-enal, 2,4-octadiene, 1-chloroheptane, and
nonanal, in patients’ exhaled air [49]. Metabolomic analysis associated increasing disease
severity (mild, moderate, severe, critical, fatal) with the elevation of anthranilic acid, a
kynurenine metabolite [41]. An increase in the levels of other tryptophan metabolites,
such as kynurenic acid and kynurenine, supports the role of this pathway in disease ag-
gravation [36,67]. Lewis et al. identified an elevation of circulating TG (22:1_32:5), TG
(18:0_36:3), and glutamic acid during the different waves of the COVID-19 pandemic [44].
Delafiory et al. combined metabolomics and machine learning to diagnose COVID-19
by measuring 19 metabolites, including increased guanosine, uridine, deoxyguanosine,
N-linoleoyl-glycine, specific N-acylethanolamines, PG, and PE, relating them to the patho-
physiology of the disease [14]. Attempts have been launched to complement standard
microbiological and biochemical methods of infection diagnosis by metabolomic analyses
to guide specific and tailored antimicrobial therapies for critically ill COVID-19 patients [84].
In addition, urine-based diagnostic tests have been proposed as “comfortable” by Moura
et al. to increase the adherence of individuals to routine testing [85]. The authors devel-
oped a rapid procedure based on multiplex flow injection analysis using tandem mass
spectrometry (FIA-MS/MS). In urine, 14 molecules, including glycine, valine, glutamate,
and tryptophan, allowed to diagnose COVID-19 with high sensitivity (>90%), specificity
(>95%), and accuracy (>95%), which would be better than antigen detection in oropha-



Metabolites 2023, 13, 342 12 of 22

ryngeal swabs (32–48% positivity) and nasopharyngeal swabs (63% positivity) [86–90].
However, this urinary test would rely on costly MS-metabolomic equipment and has not
been validated yet.

Indeed, as a common leitmotif, large-scale validation of metabolomic approaches for
COVID-19 diagnosis is still pending, meaning that it is elusive which among the possible
specimens (exhaled air, plasma, saliva or urine) would be optimally suitable for detecting
and staging COVID-19.

4. Mechanistic Biomarkers of COVID-19

We wondered whether some of the candidate biomarkers metabolites might constitute
‘mechanistic’ biomarkers, which would be ‘actionable’ because they are causally involved in
COVID-19 disease pathogenesis. Such mechanistic biomarkers would directly contribute to
excessive inflammatory reactions and deficient immune control of SARS-CoV-2 (Figure 2).

Metabolites 2023, 13, 342 12 of 22 
 

 

 

Figure 2. Mechanistic, diagnostic and prognostic biomarkers of COVID-19 disease. 

4.1. Tryptophan 

Clinical studies suggested that tryptophan catabolism (i.e., reduced tryptophan and 

augmented levels of kynurenine, kynurenate and anthranilic acid) is associated with the 

severity and the progression COVID-19 [91]. These data are reinforced by transcriptomic 

data [92]. The main route of tryptophan catabolism is the kynurenine pathway, with the 

rate-limiting enzymes being tryptophan-2, 3-dioxygenase (TDO) and indoleamine-2, 3- 

dioxygenase 1/2 (IDO 1/2). These enzymes metabolize tryptophan to kynurenine and nic-

otinamide adenine dinucleotide (NAD+) [93,94]. Increased kynurenine levels correlate fac- 

-tor α (TNF-α) [92]. These latter factors (IFN-γ and TNF-α) have been suggested to acti-

vate IDO, hence closing a vicious feedforward loop [95]. In line with this hypothesis, epa-

cadostat, an inhibitor of IDO1, reduces the release of proinflammatory cytokines by with 

adverse clinical outcomes and inflammatory properties, including elevated interleukin-

1α and β (IL-1α, IL-1β), interleukin-6 (IL-6), interferon-γ (IFN-γ), and tumor necrosis cir-

culating leukocytes from SARS-CoV-2-infected macaques [71]. Kynurenine can signal 

through the aryl hydrocarbon receptor (AHR). IDO1-dependent induction of AHR signal-

ing by SARS-CoV-2 leads to the upregulation of downstream effectors and enhanced cy-

tokine expression (e.g., IL-1β, IL-10, and TNF-α), hence further stimulating inflammation 

[96]. Besides kynurenine, the mechanistic contribution of anthranilic acid has been inves-

tigated in the pathogenesis of COVID-19. Anthranilic acid is best known as a third imme-

diate downstream product of kynurenine. Anthranilic acid concentrations in the plasma 

robustly correlate with circulating interleukin-10 and -18 levels [41]. Moreover, 3-hy-

droxy-anthranilic acid was found to be accumulated in the brain, heart, and lung from 

COVID-19 patients, but this accumulation, which was detected on autopsy material, was 

correlated with the expression of the IDO2 isoform, not IDO1 [97]. Interestingly, 

Figure 2. Mechanistic, diagnostic and prognostic biomarkers of COVID-19 disease.

4.1. Tryptophan

Clinical studies suggested that tryptophan catabolism (i.e., reduced tryptophan and
augmented levels of kynurenine, kynurenate and anthranilic acid) is associated with the
severity and the progression COVID-19 [91]. These data are reinforced by transcriptomic
data [92]. The main route of tryptophan catabolism is the kynurenine pathway, with the
rate-limiting enzymes being tryptophan-2, 3-dioxygenase (TDO) and indoleamine-2, 3-
dioxygenase 1/2 (IDO 1/2). These enzymes metabolize tryptophan to kynurenine and
nicotinamide adenine dinucleotide (NAD+) [93,94]. Increased kynurenine levels correlate
factor α (TNF-α) [92]. These latter factors (IFN-γ and TNF-α) have been suggested to
activate IDO, hence closing a vicious feedforward loop [95]. In line with this hypothesis,



Metabolites 2023, 13, 342 13 of 22

epacadostat, an inhibitor of IDO1, reduces the release of proinflammatory cytokines by with
adverse clinical outcomes and inflammatory properties, including elevated interleukin-
1α and β (IL-1α, IL-1β), interleukin-6 (IL-6), interferon-γ (IFN-γ), and tumor necrosis
circulating leukocytes from SARS-CoV-2-infected macaques [71]. Kynurenine can signal
through the aryl hydrocarbon receptor (AHR). IDO1-dependent induction of AHR sig-
naling by SARS-CoV-2 leads to the upregulation of downstream effectors and enhanced
cytokine expression (e.g., IL-1β, IL-10, and TNF-α), hence further stimulating inflamma-
tion [96]. Besides kynurenine, the mechanistic contribution of anthranilic acid has been
investigated in the pathogenesis of COVID-19. Anthranilic acid is best known as a third
immediate downstream product of kynurenine. Anthranilic acid concentrations in the
plasma robustly correlate with circulating interleukin-10 and -18 levels [41]. Moreover,
3-hydroxy-anthranilic acid was found to be accumulated in the brain, heart, and lung from
COVID-19 patients, but this accumulation, which was detected on autopsy material, was
correlated with the expression of the IDO2 isoform, not IDO1 [97]. Interestingly, anthranilic
acid has been also associated with the risk of developing severe dengue fever, suggesting
that this metabolite might be endowed with broad pro-inflammatory properties [98]. In-
deed, high plasma levels of anthranilic acid correlate with the accelerated development of
cardiovascular disease in patients with chronic kidney disease [99].

4.2. Other Amino Acids and Derivatives

Many amino acids and their derivatives are modified by COVID-19 and are associated
with the severity of the disease, as reported for valine, L-citrulline, L-isoleucine, asparagine,
aspartate, arginine, proline, and glycine [43,61,67]. Glutamine plays biosynthetic and
bioenergetic roles in several pathways, including the TCA cycle, nucleotide, and fatty
acid biosynthesis. It also acts as a fuel for immune cells, including macrophages and
lymphocytes [100]. COVID-19 apparently boosts its degradation, as well as an elevation of
glutamate [101]. A recent report provided some evidence linking comorbidity-associated
glutamine deficiency with predisposition to severe COVID-19 [102]. Glutamate negatively
correlates with the pro-inflammatory cytokines IL-6 and IL-18 but positively correlates
with (especially CD4+) T cells [44,63,95]. Of note, nutritional glutamine supplementation
caused a decrease of IL-1β, TNF-α and high-sensitivity C-reactive protein (hs-CRP), in
COVID-19 patient sera, compared to the non-supplemented control group [103]. These
finding establish the role of glutamine depletion in the pathogenesis of COVID-19. As
mentioned above, BCAA catabolism, affecting valine, leucine, and isoleucine, is detected
in mild, moderate, and severe/critical SARS-CoV-2 infection, as indicted by a decrease
of circulating valine and isoleucine [52,61,65,70]. BCAA are essential for skeletal muscle
and whole-human body anabolism and energy homeostasis [104]. Funneling of BCAAs
from skeletal muscle appears to be an essential compensatory mechanism to hypoxia
response, to regenerate NAD and NADP, as demonstrated for infections by Aspergillus
nidulans and Klebsiella pneumoniae. Surprisingly, high levels of BCAA in fecal materials have
been associated with elevated levels of interferon γ, interferon λ3, interleukin 6, CXCL-9,
and CXCL-10 [78,105]. These studies suggest, but do not prove, that the fecal microbiota
modulates the inflammatory tonus via metabolic effects.

COVID-19 pneumonia is associated with reduced bioavailability and low arginine-to-
ornithine ratio in the plasma [106]. Accordingly, arginase 1 is upregulated in peripheral
blood mononuclear cells (PBMCs) from COVID-19 patients [107]. Arginine plays a vital
role in the immune response, and as a precursor of nitric oxide (NO) that is produced
by NO synthase (NOS) [108]. Altered arginine metabolism is may reflect the endothelial
dysfunction observed in COVID-19 pneumonia [106]. A clinical study in Beijing, conducted
during the SARS-CoV-1 outbreak in 2003, found that NO inhalation therapy in critically
ill SARS patients resulted in improved arterial oxygenation and provided noninvasive
pressure support [109]. Based on these results, it has hypothesized that (i) NO directly
inhibits the replication of SARS-CoV, and that (ii) NO exerts immunostimulatory effects
on T lymphocytes. Indeed, in vitro experiments have demonstrated that the proliferative
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capacity of T-cells is significantly reduced in COVID-19 patients and can be restored by
arginine supplementation [110]. Based on these arguments, a randomized clinical trial
has evaluated the effects of oral arginine supplementation on patients hospitalized with
COVID-19 as an add-on to standard of care. Patients treated with L-arginine exhibited
a significantly reduced reduction of respiratory assistance during convalescence and a
shorter hospitalization as compared to placebo-treated controls [111]. Hence, a relative
deficit in arginine is likely to contribute to the pathogenesis of COVID-19.

4.3. Polyamines

Polyamines are critically involved in the maintenance of cellular homeostasis [112].
Polyamines, including putrescine, spermidine, spermine, and their derivatives, also emerged
as important modulators of virus–host interactions [113]. A set of metabolomic stud-
ies demonstrated that circulating polyamines and their precursor L-ornithine are over-
abundant in sera of COVID-19 patients. In particular, acetylated polyamine deriva-
tives (N1-acetylputrescine, N1-acetylspermidine, N1,N8-diacetylspermidine and N1,N12-
diacetylspermine) were found to be elevated in COVID-19 samples as compared to con-
trols [37,39,64]. Interestingly, serum levels of N1-acetylspermidine and N8-acetylspermidine
are particularly high in long-term SARS-CoV-2 carriers [37]. Recent preclinical work indi-
cates that SARS-CoV-2 infection causes the accumulation of key metabolites in infected
cells, including the deregulation of putrescine and N-acetylspermidine by hijacking au-
tophagy to facilitate their own viral replication [114]. In vitro experiments have shown
that spermidine and spermine can facilitate SARS-CoV-2 infection and replication, es-
pecially when ornithine decarboxylase I is inhibited [115]. However, it has also been
reported that spermidine and spermine inhibit SARS-CoV-2 infection via the induction of
autophagy [114]. The levels of circulating N1-acetylputrescine correlate with IFNα2a, and
IFNγ, IL-2, and IL-10 [37]. Goubet et al. demonstrated that N1, N8-diacetylspermidine anti-
correlated with absolute lymphocyte counts and increased in the serum of cancer patients
that failed to control SARS-CoV-2 infection of the nasopharynx as indicated by prolonged
viral shedding (>40 days) [47]. It should be noted that, in contrast to spermidine, which
has anti-inflammatory and immunostimulatory effects [116–118], acetylated polyamines
have no such effects and may actually reflect spermidine catabolism secondary to the acti-
vation of spermidine/spermine N1-acetyltransferase-1 (SAT1) by type-1 interferons [113].
However, this conjecture requires further in-depth investigation.

4.4. Fatty Acids: Case of Palmitic Acid and Arachidonic Acid

Alterations in plasma FAs in adults with COVID-19 have been observed [119]. Severity
of COVID-19 correlates with an elevation of arachidonic acid (AA) [66], an unsaturated
ω6 fatty acid constituent of phospholipids, as well as a precursor of prostaglandins and
thromboxanes (which are both pro-inflammatory), hydroxyeicosatetraenoic acids (HETEs),
and epoxyeicosatrienoic acids (EETs) (which are endowed in anti-inflammatory proper-
ties) [120]. The cytokine storm of COVID-19 patients (with an elevation of IL-1β, IL-6
and TNF-α) has been related to the increase of eicosanoids including AA and its metabo-
lites [121].

Palmitic Acid (PA), a long chain saturated fatty acid, may also contribute to the progres-
sion of COVID-19. PA, which is significantly increased in patients with COVID-19, might
play a pro-inflammatory role [54,70]. PA elicits inflammatory signaling by macrophages
and triggers chronic vascular inflammation in vivo and in vitro [59]. Moreover, PA is
required for the palmitoylation of the SARS-CoV-2 spike protein, which is essential for
viral infectivity [122]. In a preclinical mouse model of SARS-CoV-2 infection, injections
of orlistat, a powerful inhibitor of fatty acid synthase, reduced SARS-CoV-2 replication
in the lung, attenuated the pneumonia, and increased animal survival [16]. Altogether,
it appears that PA and AA are causally involved in the processes leading to excessive
COVID-19- associated inflammation.
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4.5. Sphingolipids: Ceramides and Shingosine-1-Phosphate

The most frequently reported sphingolipids metabolites associated to COVID-19 dis-
ease are ceramide (Cer) and sphingosine-1-phosphate (S1P), which are known for their
involvement in immune and inflammatory disorders [21,62,123]. High plasma Cer levels, in-
cluding Cer (d18:1/16:0) and Cer (d18:1/24:1), are strongly associated to clinical COVID-19
severity [62,124]. Previous studies have implicated Cer in lung inflammation [125]. The
decrease of circulating S1P appears to be associated to the activation of macrophage and
their recruitment to sites of inflammation [12,21,42,65,126], as well as the COVID-19-related
cytokine storm [127]. Intracellular S1P levels in erythrocytes are increased in COVID-19
patients compared with healthy controls due to upregulation of the S1P producing sphin-
gosine kinase 1 and downregulation of the S1P degrading lyase [128]. S1P analogs have
been proposed as a therapeutical strategy to protect from the cytokine storm induced by
influenza virus H1N1 and respiratory syncytial paramyxovirus [129,130]. Hence, both S1P
and Cer emerge as targetable disease-relevant factors.

4.6. Vitamin B3: Trigonelline and Nicotinamide

Trigonelline, which is formed by the methylation of the nitrogen atom of Nicotinamide
(also called niacin or vitamin B3) diminishes with COVID-19 disease severity [41,63].
Trigonelline is a natural alkaloid, attenuating pro-inflammatory cytokines production,
such as TNF-α and IL-6 in lung and spleen [131–133]. Nicotinamide and nicotinamide
mononucleotide (NMN), the precursor of the coenzymes NAD+ and NADP+, are also
depleted in COVID-19 [36,52,71]. Mehmel et al., suggested that adaptive immune response
and overexpression of CD38 in both CD4+ and CD8+ lymphocytes correlate with lack of
NAD+, leading to increased proinflammatory cytokines [134]. Xiao et al. described that
altered vitamin B metabolism correlated with IL-6, IL-10, and IL-15 in serum samples from
COVID-19 patients [71]. It has been speculated that nicotinamide riboside directly inhibits
SARS-CoV-2 entry, replication, and transcription [135]. However, nicotinamide supple-
mentation has failed to improved lymphopenia in COVID-19 patients, arguing against the
conjecture that vitamin B3 deficiency would contribute to disease pathogenesis [136].

4.7. 3-Hydroxybutyric Acid

In some studies, 3-hydroxybutyric acid (3HB), a ketone body produced by the liver
upon fasting, prolonged exercise, and carbohydrate restriction, was found to be elevated in
the course of COVID-19 [18,54,64]. Moreover, 3HB directly inhibits the inflammasome [137]
and has immunostimulatory properties, increasing the production of IFN-γ by CD4+ T-
cells and the cytotoxic activity of CD8+ T cells [138]. In mouse models 3HB improved the
function of CD4+ T-cells and reduced the mortality in SARS-CoV-2 infected mice [139].
Hence, 3HB may act as a disease-attenuating metabolite in COVID-19.

In this section, we discussed a comprehensive approach that reflects COVID-19 dis-
ease process activity and identifies metabolites that are (positively or negatively) related
to disease progression and its immunopathological correlates. We identified eight classes
of biomarkers, including tryptophan metabolites, specific amino acids, vitamin B3, 3-
hydroxybutyric acid, ceramides and shingosine-1-phosphate, palmitic acid, arachidonic
acid, and polyamines (Figure 2). Pending future validation, these eight classes of metabo-
lites can be used as potential diagnostic, prognostic, and mechanistic biomarkers.

5. Conclusions

Over the past decades, metabolomic approaches have continuously been refined, thus
allowing for ever more complete coverage of the metabolome. Despite this technological
progress, standardization of the entire methodological workflow remains a major issue
that must be addressed to render metabolomics compatible with clinical routine. In spite
of the heterogeneity of methods that renders comparison among studies difficult, we
identified a COVID-19-relevant catalogue of potential diagnostic and prognostic biomarkers.
These metabolites are more than mere biomarkers and are likely to contribute to excessive
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inflammatory reactions and mitigate the deficient immune control of SARS-CoV-2. Future
studies should determine which prognostic biomarkers, alone or in aggregate, in exhaled
air, plasma, saliva, or urine, most accurately reflect SARS-CoV-2 infection, COVID-19
severity, and adequate patient management.
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