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Abstract: Dairy cows with ketosis have high circulating beta-hydroxybutyric acid (BHBA) concentra-
tions alongside which inflammation is concomitantly developed. Tryptophan (Trp) is an essential
amino acid that participates in the regulation of the inflammatory response. However, the association
between Trp metabolism and inflammation in dairy cows with ketosis remains unclear. Therefore,
blood samples from healthy (n = 10) and ketotic (n = 10) primiparous dairy cows were collected at the
calving date and the day of ketosis diagnosis (7 days in milk (7 DIM)). Serum levels of non-esterified
fatty acids (NEFA), BHBA, haptoglobin (HP), serum amyloid A (SAA), lipopolysaccharide, and
cortisol were analyzed. Tryptophan and its metabolites were quantified using liquid chromatography–
tandem mass spectrometry. At 7 DIM, the concentrations of NEFA, BHBA, HP, and SAA were higher
and the levels of Trp, kynurenine (KYN), indoleacetic acid, indole-3-lactic acid, and 3-indoxyl sulfate
were lower in the dairy cows with ketosis compared with those in the healthy cows. However, the
KYN/Trp and melatonin/Trp ratios increased in the cows with ketosis. At the calving date, the serum
lipopolysaccharide levels did not differ between the healthy and ketotic cows, whereas the levels of
NEFA, HP, and cortisol increased in the ketotic cows. Correlation analysis showed that Trp deficiency
and elevated Trp metabolism in the dairy cows occurred during ketosis. Overall, our results suggest
that abnormal Trp metabolism may contribute to the pathogenesis of ketosis.

Keywords: ketosis; dairy cows; inflammatory biomarkers; tryptophan metabolism

1. Introduction

Dairy cows experience a metabolic challenge during the transition period, especially
after calving, characterized by an unbalanced energy status [1,2]. To adapt to this negative
energy balance, dairy cows mobilize body fat, which is accompanied by elevated circulating
concentrations of non-esterified fatty acids (NEFA) that are common in cows during the
post-partum period [3,4]. Poor metabolic adaptation can result in a higher concentration of
NEFA, which increases the risk of metabolic disease after calving [5,6]. Some researchers have
suggested that NEFA contribute to the development of ketosis and displaced abomasum [5,7,8].
Traditionally, beta-hydroxybutyric acid (BHBA) is generated from the NEFA in the liver
via partial oxidation and then released into certain organs, such as the heart and brain, as
an alternate fuel source [9]. However, when NEFA produce excessive BHBA in response
to poor metabolic adaptation, dairy cows’ blood BHBA concentration increases to more
than 1.2 mmol/L and ketosis occurs [10,11]. During the early lactation period, particularly
during the first week of lactation, 40–60% of dairy cows suffer from ketosis [11–13]. The
prevalence of subclinical ketosis is higher than that of clinical ketosis in lactating dairy
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herds [14,15]. Evaluations of economic loss indicate that ketosis is not the main factor
affecting milk production but it increases the risk of other diseases and culling [16,17].
Sordillo et al. [18] and Pascottini et al. [19] have reported significant negative effects caused
by the inflammatory response to ketosis. The levels of inflammatory biomarkers, such as
haptoglobin (HP), serum amyloid A (SAA), and lipopolysaccharide (LPS), increase in dairy
cows with ketosis [20–22].

Tryptophan (Trp) is an essential aromatic amino acid whose metabolites participate
in the regulation of inflammation and insulin resistance [23,24]. Tryptophan metabolism
follows three major pathways: (1) Trp is converted into kynurenine (KYN) in the liver
and immune tissue, which is mediated by the two rate-limiting enzymes tryptophan
2,3-dioxygenase (TDO) and indolamine-2,3-dioxygenase (IDO) [25]. (2) Serotonin or
5-hydroxytryptamine is generated from Trp in enterochromaffin cells via hydroxylation.
The serotonin is acetylated to form N-acetylserotonin (NAS) in order to finally produce
melatonin (MLT) [26]. Finally, (3) Trp is directly transformed into several molecules, such
as indole-3-lactic acid (ILA), indoleacetic acid (IAA), and indole, by the gastrointestinal
microbiota [27]. In cows, besides BHBA and NEFA, KYN was recently reported as a new
indicator of negative energy balance [28]. The levels of Trp and KYN in blood samples
are lower in dairy cows with ketosis than in healthy cows [29]. In addition, serotonin
is involved in the regulation of metabolic homeostasis in dairy cows during transition
periods [30]. However, changes in Trp metabolism in dairy cows from calving to lactation
have rarely been studied, and the association between Trp metabolism and inflammation
in ketosis events remains unclear.

Therefore, in this study, we aimed to determine the role of Trp metabolism in ketosis
development. The concentrations of plasma Trp metabolites in dairy cows with ketosis
were quantified using liquid chromatography–tandem mass spectrometry (LC-MS/MS).
The levels of inflammatory biomarkers in the serum were concurrently analyzed on the
calving date and the day when ketosis was diagnosed. Individual Trp metabolites and
serum variables were integrated to assess the potential functional links between the differ-
ent Trp metabolism pathways and inflammatory responses. Our findings provide novel
information regarding the pathogenesis of ketosis in dairy cows.

2. Materials and Methods
2.1. Animals and Study Design

The experimental protocol was approved by the Institutional Animal Care and Use
Committee of Sichuan Agricultural University (NO. DYY-2018203039). The study was
conducted at a modern dairy farm in Sichuan Province, China. In this study, 90 primiparous,
pregnant dairy cows of similar age and number of days into gestation were selected and
housed in cow barns. The prepartum dairy cows were fed twice daily with a total mixed
ration consisting of 29.04% corn silage, 32.67% oat hay, 7.26% wheat straw hay, 29.14%
complete feed (Hengfeng Feed Co. LTD, Sichuan, Meishan, China), 1.45% soybean meal, and
0.44% choline on a dry matter basis. Dairy cows were transferred to fresh barns after calving
and were fed three times daily with a total mixed ration consisting of 18.80% corn silage,
17.27% alfalfa hay, 4.32% oat hay, 32.61% complete feed (Sichuan Hengfeng Feed Co. LTD,
Meishan, China), 6.47% cottonseed, 6.48% beet pulp, 12.95% steam-flaked corn, and 1.10%
molasses on a dry matter basis. The cows had free access to fresh water. The dry matter
intake of the cows was recorded daily. Lactating cows were milked daily at 06:30, 14:00,
and 21:30 in a 60-point rotary milking parlor (Afimilk, Kibbutz Afikim, Israel). Dairy cows’
health was monitored by vets. The evaluation criteria regarding health status, including
clinical signs, rumen fill scores, body condition scores, and fluctuations in milk yield, were
described as reported previously [31]. In addition, the evaluation criteria for diseases, such
as milk fever, mastitis, metritis, retained placenta, abomasal displacement, clinical ketosis
(BHBA ≥ 3.0 mmol/L), and diarrhea, were described in our previous report [32]. A blood
BHBA concentration of ≥1.2 mmol/L in the first week post-calving was classified as ketosis,
and subclinical ketosis was defined as 1.2 mmol/L ≤ BHBA < 3.0 mmol/L [10,11]. Before
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the morning feeding, blood samples were collected from all cows via the caudal vein at
1 day in milk (DIM; calving occurred within 6 h after the colostrum was released) and
7 DIM. Blood BHBA concentration was determined at 1 and 7 DIM using a Blood Ketone
Meter (WD1621, Nova Bio Vet, Waltham, MA, USA). Serum and plasma (using heparin
sodium as an anticoagulant) samples were collected, centrifuged at 1500× g for 10 min at
25 ◦C, and subsequently stored at −80 ◦C.

In this study, 20 healthy cows were monitored (mean ± standard error of the mean
(SEM); BHBA = 0.64 ± 0.02 mmol/L at 1 DIM and BHBA = 0.91 ± 0.04 mmol/L at 7 DIM).
Cows with diseases had said ailments diagnosed. There were 15 cows with only sub-clinical
ketosis (BHBA = 0.69 ± 0.03 mmol/L at 1 DIM and BHBA = 2.29 ± 0.07 mmol/L at 7 DIM),
while there were 55 with signs of other diseases, including 5 with milk fever, 4 with mastitis,
11 with metritis, 10 with retained placenta, 5 with abomasal displacement, 6 with clinical
ketosis, 2 with diarrhea, and 12 with more than two diseases or others. Ten cows that
were diagnosed with only sub-clinical ketosis were of a similar age and had similar female
calf weights, body condition scores, calving ease scores, and actual days of pregnancy at
last parity (Table 1). For comparison with the former animals, 10 healthy cows in similar
condition as mentioned above were randomly selected to form a control group.

Table 1. Calf weight, calving ease score, body condition score, age, actual days of pregnancy, and
beta-hydroxybutyric acid level between the healthy and sub-clinical ketotic dairy cows.

Item Healthy Cows
(n = 10)

Sub-Clinical Ketotic Cows
(n = 10)

Calf weight (kg), female 37.90 ± 0.84 38.20 ± 0.97
Calving ease score 1.10 ± 0.09 1.20 ± 0.13
Age (month) 1 27.34 ± 1.06 28.08 ± 0.94
Day of pregnancy (d) 275.40 ± 1.06 274.50 ± 0.47
Body condition score 2 3.50 ± 0.04 3.60 ± 0.06
BHBA concentration at 1 DIM 0.63 ± 0.03 0.72 ± 0.04
BHBA concentration at 7 DIM 0.89 ± 0.05 2.36 ± 0.09 **

1 The age of dairy cows on the seventh day after calving. 2 Body condition score was assessed on the seventh day
before the due date. DIM = days in milk. Data are expressed as mean ± SEM. ** p < 0.01.

2.2. Serum Markers Analyses

Serum NEFA, HP, SAA, LPS, and cortisol levels were determined using commercially
available test kits from Nanjing Jiancheng Bioengineering Institute, China. The levels
of serum HP, SAA, LPS, and cortisol were analyzed using a competitive enzyme-linked
immunosorbent assay (inter-assay coefficients of variability (CV) < 12% and intra-assay
CV < 10%). NEFA concentration was determined using a coupled enzymatic reaction
system (acyl CoA Synthetase-acyl CoA oxidase method, inter-assay CV < 8%, and intra-
assay CV < 10%).

2.3. Quantification of Tryptophan and Its Metabolites

The deuterated internal standards MLT-d4 and creatinine-d3 (Sigma-Aldrich, Merck,
St. Louis, MO, USA) were added to 200 µL aliquots of plasma samples and mixed with
800 µL of acetonitrile-methanol (1:1, v/v). Plasma samples were pretreated as reported
previously [33]. In brief, all mixtures were sonicated in an ice water bath and incubated
at −20 ◦C for 60 mi; thereafter, they were centrifuged at 14,000× g for 20 min at 4 ◦C. The
supernatant was collected and vacuum-dried. A total of 100 µL acetonitrile:water (1:1, v/v)
was added and mixed. The supernatant was collected by centrifugation at 14,000× g for
15 min at 4 ◦C. Subsequently, the supernatant was analyzed for Trp and its metabolites
using liquid chromatography– (LC; 1290 Infinity II, Agilent Technologies, Santa Clara, CA,
USA) tandem mass spectrometry (MS/MS; QTRAP 6500, AB SCIEX, Framingham, MA,
USA). In LC analysis, the mobile phase consisted of A (5 mM ammonium acetate and
0.2% ammonium hydroxide in water) and B (acetonitrile with 0.5% ammonium hydrox-
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ide). The gradient elution procedure was as follows: 0–5 min, 5% to 60% B; 5–11 min,
60% to 100% B; 11–13 min, 100% B; 13–13.1 min, 100% to 5% B; and 13.1–16 min, 5% B.
The MS was equipped with an electrospray ionization source and operated alternately in
positive-ion mode with +4.5 kV and negative-ion mode with −4.5 kV ion spray voltage.
The source temperature was maintained at 580 ◦C, and the curtain gas was supplied at
35 psi. Ion source gas 1 and gas 2 were provided at 45 psi and 60 psi, respectively. MS/MS
data were collected with a multiple reaction monitor, and the peak area was acquired
using the MultiQuant software (v3.0.2; AB SCIEX, Framingham, MA, USA). Tryptophan
(CAS#73-22-3), KYN (CAS#2922-83-0), serotonin (CAS#50-67-9), NAS (CAS#1210-83-9),
MLT (CAS#73-31-4), IAA (CAS#87-51-4), ILA (CAS#1821-52-9), and 3-indoxyl sulfate
(IS; CAS#487-94-5) (Sigma-Aldrich, Merck, MO, USA) were used as internal standards
for the quantification of targeted metabolites in the plasma. The calibration curve and
corresponding regression coefficients were obtained based on the concentration gradient of
the standard, and the targeted metabolite concentrations were subsequently calculated.

2.4. Statistical Analysis

The chemical structures of the targeted metabolites were generated using the Chem-
Draw 20.0 software (PerkinElmer Informatics, Waltham, MA, USA). To compare the
variables between the healthy and ketotic groups, a two-tailed Student’s t-test was per-
formed using the SPSS software (v21.0, IBM, Armonk, NY, USA). Repeated measures
ANOVA was also performed. The DIM scores were defined as fixed effects in the model,
and each cow was defined as a random effect. The threshold of significance was set at
p < 0.05, and trends toward significance were declared at 0.05 ≤ p < 0.10. Graphics were
generated using the GraphPad Prism software (v9.0, GraphPad, San Diego, CA, USA).
Data are expressed as mean ± SEM. The associations between Trp metabolism and clin-
ical parameters were determined using Spearman’s rank correlation in the R platform
(v4.2, https://www.r-project.org, accessed on 15 December 2022). Correlation thresholds
were set to Spearman’s r > 0.4 or r < –0.4 and p < 0.05.

3. Results
3.1. Alteration of Milk Yield, Dry Matter Intake, and Serum Markers in the Healthy and
Ketotic Cows

There was no significant difference regarding the dry matter intake and milk yield in
the dairy cows between the healthy and ketotic groups at 1 DIM and 7 DIM
(Figure 1). At 7 DIM, the mean milk yields in the healthy and ketotic cows were 25.45 kg and
28.26 kg, respectively. At 7 DIM, the blood NEFA concentrations in the ketotic cows were
significantly higher (p < 0.01) than those in the healthy cows. Noticeably, at 1 DIM, the
NEFA concentration in the ketotic cows was significantly higher (p < 0.01) than that in
the healthy cows. Compared with those in the healthy cows at 1 DIM, the serum HP and
cortisol levels increased (p < 0.1) in ketotic cows. However, SAA and LPS levels did not
differ between the healthy and ketotic cows at 1 DIM. At 7 DIM, the SAA and HP levels
increased (p < 0.1) during the ketosis event. Serum SAA and LPS levels in the dairy cows
increased significantly (PDIM < 0.05) from 1 to 7 DIM.

https://www.r-project.org
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Figure 1. Bar plot indicating the changes in dry matter intake, milk yield, non-esterified fatty acids
(NEFA), haptoglobin (HP), serum amyloid A (SAA), lipopolysaccharide (LPS), and cortisol between
the healthy and ketotic cows at 1 and 7 days in milk (DIM). 0.05 ≤ # p < 0.1, * p < 0.05, and ** p < 0.01.

3.2. Alteration in Tryptophan Metabolism

Tryptophan metabolism consists of KYN, serotonin, and microbiota pathways, which
were altered during the ketosis event (Figure 2A). The plasma Trp and IS concentrations
were significantly lower (p < 0.05) in the ketotic group than those in the healthy group at
7 DIM (Figure 2B). In contrast to those in the healthy cows, the concentrations of KYN,
ILA, and IAA showed a decreasing trend (0.05 < p < 0.1) in the ketotic cows. The levels of
eight metabolites in the Trp metabolic pathway, namely, Trp, KYN, serotonin, NAS, MLT,
IAA, ILA, and IS, did not differ between the healthy and ketotic groups at 1 DIM. However,
the ILA/Trp, IAA/Trp, and IS/Trp ratios were higher (p < 0.1) in the ketotic group than
those in the healthy group at 1 DIM (Figure 3). Additionally, the KYN/Trp, NAS/Trp, and
MLT/Trp ratios were higher (p < 0.1) in the ketotic group than those in the healthy group
at 7 DIM.Metabolites 2023, 13, x FOR PEER REVIEW  6  of  12 
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Figure 2. Tryptophan (Trp) metabolism in dairy cows during the ketosis event. (A) Diagram of Trp
metabolism pathway, including kynurenine, serotonin, and microbiota pathways. (B) Levels of Trp
and its main metabolites between the healthy and ketotic groups at 1 and 7 days in milk (DIM).
0.05 ≤ # p < 0.1, * p < 0.05, and ** p < 0.01.
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Figure 3. Ratios of individual metabolites to Trp between the healthy and ketotic dairy cows.
Trp, tryptophan; KYN, kynurenine; SRT, serotonin; NAS, N-acetylserotonin; MLT, melatonin; ILA,
indole-3-lactic acid; IAA, indoleacetic acid; IS, 3-indoxyl sulfate. 0.05 ≤ # p < 0.1, * p < 0.05.

3.3. Association between Tryptophan Metabolism and Inflammatory Biomarkers during
Ketosis Events

To explain the associations between Trp metabolism and inflammatory challenges
during the ketosis events, Trp-related metabolites were integrated with serum biomarkers
based on Spearman’s correlation analysis (Figure 4). The decrease in Trp concentration
was negatively correlated with increased levels of NEFA (r = −0.71, p < 0.001), SAA
(r = −0.54, p = 0.015), and BHBA (r = −0.60, p = 0.006) levels. During the ketosis events,
an increased KYN/Trp ratio was positively correlated with the increased NEFA (r = 0.62,
p = 0.004), BHBA (r = 0.55, p = 0.012), and SAA (r = 0.53, p = 0.018) levels. In addition,
the IS/Trp ratio was positively correlated with the SAA level (r = 0.57, p = 0.01) during
ketosis events. Notably, the SAA level was positively correlated with the NAS/Trp (r = 0.49,
p = 0.029) and MLT/Trp (r = 0.58, p = 0.008) ratios. The circulating NEFA level was positively
correlated with the MLT/Trp ratio (r = 0.54, p = 0.012).
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4. Discussion

Dairy cows with ketosis present with metabolic stress, which is characterized by exces-
sive lipid mobilization and inflammatory dysfunction [18,20]. The dietary supplementation
of dairy cows with tryptophan has been recommended to relieve stress and improve produc-
tion during the lactation period [34]. Via a metabolomics approach, Trp metabolites have
been found to participate in the development of ketosis [28,29]. However, the mechanisms
underlying Trp metabolism and ketosis remain unclear. In this study, we used a targeted
metabolomics method to analyze the levels of Trp and its metabolites in dairy cows on the
calving date and the day on which ketosis was diagnosed and concurrently integrated them
with inflammatory biomarkers. Our results demonstrate that inflammatory biomarker
levels increased and Trp metabolism was enhanced in the dairy cows with ketosis. Notably,
the ratio of Trp metabolites was altered in the ketotic cows during calving, indicating that
abnormal Trp metabolism may be associated with inflammation before ketosis is confirmed.
Our findings provide novel mechanistic insights into the pathogenesis of ketosis.

Dairy cows experience excessive lipid mobilization even before the confirmation of
ketosis [35,36]. In the present study, we found that the circulating NEFA concentration was
markedly higher in the ketotic cows, but the BHBA levels did not differ on the calving
date, which is consistent with the results of Ha et al. [37] and Turk et al. [38]. In general,
NEFA metabolism has two harmful pathways: (1) abundant NEFA reassemble to produce
triglyceride (TG) in the hepatocellular endoplasmic reticulum, which further causes TG
accumulation in the liver; and (2) carnitine palmitoyltransferase 1 transports NEFA to the
mitochondria, where ketone bodies are subsequently generated from NEFA metabolism
through incomplete oxidation [2,4]. TG storage likely precedes BHBA synthesis in dairy
cows after calving [39,40]. Notably, NEFA play an important role in the development of
inflammatory responses in periparturient dairy cows [41]. Palmitic acid, a Toll-like receptor-
4 agonist, is a major component of NEFA and induces a pro-inflammatory response by
activating the NF-κB pathway [42]. Dairy cows with hyperketonemia exhibited higher
palmitic acid levels [29,32]. Acute-phase proteins, including HP and SAA, are regarded
as biomarkers for evaluating the inflammation statuses of dairy cows [43]. NEFA concen-
tration was strongly positively correlated with HP and SAA levels in dairy cows during
the transition period [44]. In line with our findings, few studies have reported that the
HP and SAA levels increased during ketosis events [20,22]. Furthermore, cortisol and LPS
are important induction factors that promote the expression of acute-phase proteins in
hepatocytes [45]. In the present study, LPS levels did not differ between the healthy and
ketotic cows from the calving date to 7 DIM, but the serum cortisol concentration increased
at 1 DIM. Abuajamieh et al. [20] found that the circulating LPS level in ketotic dairy cows
did not alter post-calving, whereas ketotic cows suffered from the challenge of a high
concentration of LPS before the prepartum period. Pascottini et al. [19] also suggested that
metabolic stress and systemic inflammation in dairy cows during the prepartum period
may result in the development of ketosis after calving. Therefore, the dysregulation of
inflammation is an important contributor to the development of ketosis, but the factors that
lead to differences in systemic inflammation warrant further investigation.

Tryptophan is an essential amino acid produced in the diet and plays a crucial role
in the regulation of immune function [46]. Notably, Trp deficiency occurs in dairy cows
with hyperketonemia [29,42,47]. In addition, the Trp levels in dairy cows decreased during
the ketosis event, and the levels of partial metabolites, including KYN, ILA, IAA, and IS,
also decreased in the present study. However, a decrease in Trp levels may lead to lower
concentrations of the downstream metabolites. Therefore, the ratio of individual down-
stream metabolites to Trp was analyzed to explain the changes in Trp metabolism during
the ketosis events. In the present study, KYN and serotonin pathways were enhanced
in the ketotic dairy cows on the day of diagnosis. The KYN pathway is a major route of
Trp metabolism and is regulated by IDO and TDO [25,48]. The expression of IDO and
TDO is induced by proinflammatory cytokines [49,50] and corticosteroids [51], respectively.
Larsson et al. [52] demonstrated that the plasma Trp level decreased and KYN/Trp ratio
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increased following LPS treatment. Furthermore, the KYN/Trp ratio was positively corre-
lated with cortisol levels with respect to the cows’ inflammatory statuses [53]. Importantly,
KYN is metabolized by enzymatic oxidation and non-enzymatic cyclization to quinolinic
acid and further to nicotinamide adenine dinucleotide (NAD+) via the Preiss–Handler path-
way [54]. KYN-derived NAD+ regulates the programming of the inflammatory response
by modulating the level of succinate (a tricarboxylic acid cycle metabolite) and maintaining
redox homeostasis [55].

In contrast, serotonin is converted into NAS by arylalkylamine N-acetyltransferase
and further metabolized to MLT by hydroxyindole-O-methyl transferase [56]. MLT relieves
palmitic acid-induced cytotoxicity by attenuating oxidative and endoplasmic reticulum
stress [57]. In addition, MLT lowers the expression of acute-phase proteins, including
SAA, HP, and C-reactive protein, in bovine mammary epithelial cells stimulated with
LPS and plays a key role in anti-inflammation [58]. However, Horst et al. [59] suggested
that circulating serotonin was not correlated with NEFA and BHBA levels in ketotic dairy
cows, which is consistent with the results of the present study. Furthermore, microbial
Trp catabolites participate in inflammatory regulation and the development of metabolic
disease [60–62]. For example, Bifidobacterium adolescentis, Bacteroides fragilis, Bacteroides
thetaiotaomicron, and Eubacterium cylindroides in the intestine convert Trp into ILA and
IAA [27,63]. Krishnan et al. [60] and Ehrlich et al. [64] reported that IAA and ILA attenuate
pro-inflammatory cytokine expression via the activation of the aryl hydrocarbon receptor.
Unexpectedly, Trp-derived indole is transferred into the liver and further converted to IS
by cytochrome P450 2E1 and sulfotransferases [65]. IS is cytotoxic at high concentrations
and enhances the expression of interleukin-6 and SAA [66]. Likewise, we found that the
IS/Trp ratio was positively correlated with SAA levels during the ketosis events. Our study
also found that IAA/Trp, ILA/Trp, and IS/Trp ratios increased in the ketotic group cows
at their respective calving dates. Thus, Trp metabolism may participate in the progression
of inflammation in dairy cows with ketosis through feedback regulation, which requires
further research.

5. Conclusions

Dairy cows experience excessive lipid mobilization and inflammation before a diagno-
sis of ketosis is made. We found that the Trp catabolism of gastrointestinal microbiota in
the ketotic dairy cows was enhanced on their respective calving dates. Despite the circu-
lating Trp deficit in cows during ketosis events, Trp metabolism was elevated and closely
correlated with inflammatory biomarkers. This study suggests that elevated tryptophan
metabolism may be a consequence of ketosis. Future studies are required to analyze the
regulatory enzymes involved in Trp metabolism and the downstream metabolites of KYN,
which may provide new therapeutic and preventative options.
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