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Abstract: One of the most widespread biotas in the sea is the sponge. Callyspongia is a sponge
genus found in the seas, making it easily available. In this review, the pharmacological activity and
mechanism of action of the secondary metabolites of Callyspongia spp. are addressed, which may lead
to the development of new drugs and targeted therapeutic approaches. Several scientific databases,
such as Google Scholar, PubMed, ResearchGate, Science Direct, Springer Link, and Wiley Online
Library, were mined to obtain relevant information. In the 41 articles reviewed, Callyspongia spp. was
reported to possess pharmacological activities such as cytotoxicity against cancer cell lines (36%),
antifungal (10%), anti-inflammatory (10%), immunomodulatory (10%), antidiabetic and antiobesity
(6%), antimicrobial (8%), antioxidant (4%), antineurodegenerative (4%), antihypercholesterolemic
(2%), antihypertensive (2%), antiparasitic (2%), antiallergic (2%), antiviral (2%), antiosteoporotic (2%),
and antituberculosis (2%) activities. Of these, the antioxidant, antituberculosis, and anti-inflammatory
activities of Callyspongia extract were weaker compared with that of the control drugs; however, other
activities, particularly cytotoxicity, show promise, and the compounds responsible may be developed
into new drugs.

Keywords: Callyspongia spp.; secondary metabolite; pharmacological activity; mechanism; cytotoxic

1. Introduction

The ocean, which covers 71% of the earth’s surface, regulates our climate and contains
abundant resources [1]. The sea encompasses a large area, but it is well connected, and
the temperature is less extreme compared with that on land. Although containing more
biodiversity, only 16% of all species have been identified [2].

One of the most ubiquitous sea organisms is the sponge. Sponges are often abundant
in shallow water habitats, making them a unique biodiversity component [3]. They are
one of the most diverse sessile organisms, with approximately 8876 valid species identified
worldwide. Each has its unique characteristics, while some features are shared [4].

Callyspongia belongs to the family Callyspongidae. More than 60 species are widely
distributed in the tropical sea [5]. It is also found in the Indian, Western Atlantic, and
Eastern Pacific oceans, including Indonesia [6], the Red sea [7,8], Cuba [4], Barbados [9],
Brazil [10,11], and Ecuador [12]. At a depth of 6–10 m below sea level, Callyspongia spp.
can live under coral reefs, ranging from moderate to damaged conditions, or in habitats
dominated by hard coral, sand, and coral rubble [13].

Sponges from the Callyspongia genus are formed from primary, secondary, and tertiary
spongin fibers [4]. Callyspongia sponges are encrusting, form a single erect branch or a mass
of round branches, and many are bifurcated. The longest branch that has been observed is
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approximately 40 cm. The branches are approximately 100–150 mm in diameter and have
oscula or excretory organs that are slightly elevated, numerous, scattered throughout, and
0.5–2 mm in diameter. When pressed or cut, Callyspongia spp. secrete mucus. They have a
smooth surface [14]. Skeletal fractions, such as spicules and cell debris, constitute 69.8%
of the biomass of Callyspongia spp., the spongy cells (choanosomes) comprise 18.8%, and
bacterial pellets account for 11.3%. The skeleton fraction dominates the biomass, resulting
in the stiffer morphology of Callyspongia sponges [13].

The morphology of the callyspongia species varies. For example,
Callyspongia (Cladochalina) aerizusa (Figure 1e) and Callyspongia (Siphonochalina) siphonella
(Figure 1a) have a tubular and clustered form, but with different colors, tubes, and oscula size.
Callyspongia aerizusa has a green–orange color, whereas Callyspongia siphonella has pale laven-
der color. There are also species with varying forms, such as Callyspongia (Cladochalina) diffusa
(Figure 1b), which has a dull champagne pink or purplish-pink color, long or short thick
cylindrical branches that vary from fanlike to upright or irregular [15]. Other species have
unlikely forms, Callyspongia samarensis is called a spaghetti sponge because of its forms
(Figure 1d) [16]. The color of Callyspongia spp. also varies with bright colors, such as
Callyspongia truncate (Figure 1c), or deep colors like Callyspongia aerizusa.
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Sponges are a potential repository of new drugs. There are several drugs originating
from sponges that have entered clinical trials and approved, including cytarabine (Ara-C)
for cancer treatment and vidarabine as an antiviral [17]. In addition, Eribulin mesylate
(E7389) is an anticancer drug that is undergoing clinical phase 3 testing [18,19] Gemcitabine
(GEM) (Gemzar) is an anticancer agent which has entered clinical phase 2 [20], whereas
IPL576,092 (contignasterol derivative) is an anti-inflammatory compound that has entered
clinical phase 2 testing [21]. PM-10450 (Zalypsis®) [22], discodermolide, HT1286 (hemi-
asterlin derivative), LAF389 (bengamide B derivative), hemiasterlin (E7974), KRN7000
(agelasphin derivative) [23], PM-060184 [24], and NVP-LAQ824 (psammaplin derivative)
have entered clinical phase 1 trials as anticancer drugs [25].

Other pharmacological activities of sponge compounds include antibacterial, an-
tihyperlipidemic, antiproliferative, immunomodulatory, and anti-inflammatory effects
have been reported, including Callyspongia spp. [26,27]. Sponges contain multiple pri-
mary and secondary metabolites, such as fatty acids, alkaloids, steroids, nucleotides,
peptides, polyacetylenes, and terpenoids. A total of 212 compounds have been isolated
from Callyspongia spp. and their structures and bioactivities have been presented [28].
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This review summarizes the potential pharmacological activities exhibited by
Callyspongia spp. compounds that may be developed into new drugs. We also discuss
the related mechanisms that may contribute to targeted therapy.

2. Materials and Methods

The literature review of Callyspongia spp. was based on topics related to pharmaco-
logical activity and the mechanism of action of secondary metabolites contained therein.
This review was conducted with a qualitative and quantitative approach to obtain informa-
tion from several scientific databases, including Google Scholar, PubMed, ResearchGate,
Science Direct, Springer Link, and the Wiley Online Library. Several keywords, such as
“Callyspongia sp.”, “metabolites”, and “pharmacology activity”, were used to procure rele-
vant resources. The inclusion criterion for selecting articles was that they should describe
the isolation and functional studies of secondary metabolites from Callyspongia sponges.
Articles describing the isolation and activities of fungi or bacteria in Callyspongia species
were excluded. The abstracts were carefully read to identify and select relevant articles.
From 72 identified articles after screening information sources, 41 published between 1980
and 2021 were selected and reviewed (Figure 2).
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3. Results

Sixteen pharmacological activities have been reported for Callyspongia spp. These
activities along with their descriptions are listed in Table 1.

Table 1. Pharmacological activities of Callyspongia spp.

Pharmacological Activity Callyspongia spp. Secondary Metabolite Description of Activity Ref.

Antidiabetic and
antiobesity

Callyspongia
truncata Callyspongynic acid IC50 against α-glucosidase:

0.25 µg/mL [29,30]

Callyspongia
samarensis - EC50 14.47 µg/mL

(AMPK Activation) [31]

Callyspongia sp. β-Sitosterol Activation of GLUT-4 and
insulin receptors [32]
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Table 1. Cont.

Pharmacological Activity Callyspongia spp. Secondary Metabolite Description of Activity Ref.

Antihypercholesterolemic Callyspongia sp.

Callyspongiamide A IC50 against SOAT-1 and SOAT-2:
0.78 ± 0.19 and 2.8 ± 0.72 µM

[5]Callyspongiamide B IC50 against SOAT-1 and SOAT-2:
1.2 ± 0.31 and 2.4 ± 0.96 µM

Disamide A IC50 against SOAT-1 and SOAT-2:
5.2 ± 0.93 and 4.2 ± 0.76 µM

Antihypertensive
Callyspongia

diffusa
Callypyrone A

IC50 against Angiotensin
I-converting enzyme (ACE):

0.48 mM [33]

Callypyrone B IC50 against ACE: 0.57 mM

Anti-inflammatory

Callyspongia crassa - 61.47% inhibition of
protein denaturation [34]

Callyspongia sp. - 97% inhibition of hemolysis (at a
dose of 3200 ppm) [35]

Callyspongia sp.

Cyclo[L-Hyp-L-Ala] Increase secretion of IL-10
(J774A.1 cells) by 1.65-fold

[36]
Cyclo[L-Pro-Gly] Increase secretion of IL-10

(J774A.1 cells) 1.29-fold

Cyclo[L-Pro-Phe] Increase secretion of IL-10
(J774A.1 cells) 1.54-fold

Cyclo[L-Pro-Ala] Increased secretion of IL-10
(J774A. 1 cells) 1.56-fold

Callyspongia sp. β-Sitosterol

• ED50 155.6 (mg/kg/ip) on
adrenal pituitary axis

• 54% of inflammatory effect
at dose 320 mg/kg (p.o.)

[37]

Callyspongia
siphonella Callysterol 19.5 ± 7.3 mL (Edema volume) [38]

Antifungal

Callyspongia aff.
implexa Gelliusterol E

IC50 against Chlamydia
trachomatis: 2.34 ± 0.22 µM (No
inclusion at a concentration of

40 µM)

[39]

Callyspongia
aerizusa

Callyaerin A Chlamydia albican inhibition with
a zone of inhibition of 25–30 mm

[6]Callyaerin B Chlamydia albican inhibition with
a zone of inhibition of 15 mm

Callyaerin E Chlamydia albican inhibition with
a zone of inhibition of 20 mm

Callyspongia sp. β-Sitosterol Average inhibition diameter
against Fusarium spp.: 10 mm [39,40]

Callyspongia sp. (-)-Siphonodiol MIC against Trichophyton
asteroides: 25.0 µg/mL [41]

Callyspongia
fibrosa 4-hydroxybenzoic acid Antifungal against

Ganoderma boninense [42,43]
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Table 1. Cont.

Pharmacological Activity Callyspongia spp. Secondary Metabolite Description of Activity Ref.

Cytotoxicity against cancer
cell lines

Callyspongia
siphonella

-

IC50 against:

[34]
• Caco-2 cell line:

5.57 µg/mL
• MCF-7 cell line:

1.39 µg/mL

Neviotine-C

IC50 against:

[44]

• PC-3 cell line:
53.6 ± 0.17 µM

• A549 cell line:
87.2 ± 1.34 µM

• MCF-7 cell line:
45.5 ± 0.06 µM

Neviotine A

IC50 against:

• PC-3 cell line:
71.2 ± 0.34 µM

• A549 cell line:
76.3 ± 0.35 µM

• MCF-7 cell line:
46.3 ± 0.06 µM

IC50 against:

[45]
• MCF-7 cell line:

12.3 ± 0.7 µg/mL
• HepG-2 cell line:

11.8 ± 1.2 µg/mL

Sipholenol-A

IC50 against:

[44]

• PC-3 cell line:
7.9 ± 0.12 µM

• A549 cell line:
8.9 ± 0.01 µM

• MCF-7 cell line:
56.3 ± 0.17 µM

IC50 against:

[45]
• MCF-7 cell line:

19.2 ± 0.6 µg/mL
• HepG-2 cell line:

9.6 ± 0.8 µg/mL

Sipholenone A

IC50 against:

[44]

• PC-3 cell line:
53.9 ± 0.25 µM

• A549 cell line:
24.8 ± 0.22 µM

• MCF-7 cell line:
36.2 ± 0.13 µM

IC50 against:

[45]
• MCF-7 cell line:

3 ± 0.4 µg/mL
• HepG-2 cell line:

2.8 ± 0.4 µg/mL
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Table 1. Cont.

Pharmacological Activity Callyspongia spp. Secondary Metabolite Description of Activity Ref.

Sipholenol L

IC50 against:

• MCF-7 cell line:
4.0 ± 0.22 µg/mL

• HepG-2 cell line:
18.7 ± 0.9 µg/mL

Callyspongia crassa -

IC50 against:

[34]
• Caco-2 cell line:

13.05 µg/mL
• MCF-7 cell line:

9.47 µg/mL

Callyspongia sp. Callyspongiolide

IC50 against:

[46]
• L5178Y cell line: 320 nM
• Jurkat J16 T cell line: 70 nM
• Ramos B lymphocyte cell

line: 60 nM

Callyspongia sp. Callypeptide A

GI50 against:

[47]
• MDA-MB-231 cell line:

29 µM
• HT-29 cell line: 30 µM
• A549 cell line: 18.5 µM

Callyspongia sp.

Callyazepin

IC50 against:

[48]

• K562 cell line: 7.4 µM
• A549 cell line: 3.0 µM

(3R)-
methylazacyclodecane

IC50 against:

• K562 cell line: 3.2 µM
• A549 cell line: 3.8 µM

Callyspongia sp.
(CMB-01152)

Hymenialdisine

IC50 against:

[49]• SW620 cell line: 3.1 µM
• KB-3-1: 2.0 µM

Callyspongia schulzei -

IC50 against:

[50]

• HT-29 cell line:
35.57 ± 0.87 µg/mL

• T47D cell line:
37.98 ± 2.12 µg/mL

• Casky tumor cell line:
63.20 ± 0.76 µg/mL

Callyspongia
aerizusa

Callyaerin E IC50 against L5178Y cell line:
0.39 µM

[6]
Callyaerin H IC50 against L5178Y cell line:

0.48 µM

Callyspongia
truncata

Callystatin IC50 against KB cell line:
0.01 µg/mL

[51]
-

Further research:
IC50 against:

• KB cell line: 10 pg/mL
• L1210 cell line: 20 pg/ml
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Table 1. Cont.

Pharmacological Activity Callyspongia spp. Secondary Metabolite Description of Activity Ref.

Callyspongia sp.
(−)-(3R,18R) alcohol IC50 against TR-LE cell line:

0.11 µM
[52]

(+)-(3S,18S) IC50 against TR-LE cell line:
0.47 µM

Callyspongia sp.

Siphonodiol IC50 against HL-60 cell line:
6.5 µg/mL

[53]Callyspongidiol IC50 against HL-60 cell line:
2.8 µg/mL

14,15-
dihydrosphonodiol

IC50 against HL-60 cell line:
6.5 µg/mL

Callyspongia sp.

Callyspongenols A

IC50 against:

[54]

• P388 cell line: 2.2 µg/mL
• HeLa cell line: 4.5 µg/mL

Callyspongenols B

IC50 against:

• P388 cell line: 10 µg/mL
• HeLa cell line: 10 µg/ mL

Callyspongenols C

IC50 against:

• P388 cell line: 2.2 µg/mL
• HeLa cell line: 3.9 µg/mL

Callyspongenols D

IC50 against:

• P388 cell line: 0.4 µg/mL
• HeLa cell line:

0.066 µg/mL

Callyspongia
fistularis Callyspongamide A IC50 against HeLa cell line:

4.1 µg/mL [55]

Callyspongia sp.
Alkupikanye E IC50: 5 µg/mL

[56]
Alkupikanye F IC50: 10 µg/mL

Callyspongia sp.

-
IC50: 2 µg/mL against NIH3T3

cells transfected with the human
EGF receptor

[57]8-Bromooctyl
tert-butyldimethylsilyl
ether (fraction, n = 3)
9-(3-Pyridyl)nonyl

alcohol (fraction, n = 3)

IC50: 1.3 µg/mL against NIH3T3
cells transfected with human

EGF receptor gene

Callyspongia sp. Akaterpin IC50 against PI-PLC: 0.5 µg/mL [58]

Callyspongia
aerizusa

- IC50 against:

[59]

• A549 cell line: 9.38 µg/mL
• TE-8 cell line: 3.12 µg/mL
• HEP G2 cell line:

10.62 µg/mL
• MIA PaCa-2 cell line:

10.72 µg/mL
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Table 1. Cont.

Pharmacological Activity Callyspongia spp. Secondary Metabolite Description of Activity Ref.

Antimicrobial

Callyspongia crassa -

LC50 against:

[60]
• Staphylococcus

aureus: 215.2 ± 32.9 µg/mL
• Bacillus subtilis:

18.2 ± 3.56 µg/mL

Callyspongia
siphonella

Siphonocholin MIC against Pseudomonas
aeruginosa: 64 µg/mL [61]

Sipholenol L

Inhibition against:

[45]

• Staphylococcus aureus (Zone
of inhibition:
12.3 ± 0.72 mm)

• Bacillus subtitus (Zone of
inhibition: 14.5 ± 0.72 mm)

Neviotine A

Inhibition against:

• Staphylococcus aureus (Zone
of inhibition:
14.1 ± 0.72 mm)

• Bacillus subtitus (Zone of
inhibition: 17.2 ± 0.58 mm)

• Escherichia coli (Zone of
inhibition 12.7 ± 0.58 mm)

Sipholenone A

Inhibition against:

• Staphylococcus aureus (Zone
of inhibition:
8.2 ± 0.72 mm)

• Bacillus subtitus (Zone of
inhibition: 2.4 ± 0.58 mm)

• Escherichia coli (Zone of
inhibition 5.4 ± 0.58 mm)

Callyspongia aerizusa

Callyaerin A

Inhibition against:

[6]

• Escherichia coli (moderate)
with zone of inhibition:
10–15 mm

• Staphylococcus aureus (mild)
with zone of inhibition:
9 mm

Callyaerin E

Inhibition against:

• Bacillus subtilis (potent)
with zone of inhibition:
15–17 mm

• Escherichia coli (mild) with
zone of
inhibition: 9–11 mm

• Staphylococcus aureus (mild)
with zone of inhibition:
9–10 mm

Antioxidant

Callyspongia crassa - Percentage of inhibition: 58.1%
at 671 µg/mL [34]

Callyspongia
aerizusa -

Percentage of inhibition 56.6% at
0.5 µg/mL, 57.2% at 0.6 µg/mL,

and 58.4% at 0.7 µg/mL
[62]
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Table 1. Cont.

Pharmacological Activity Callyspongia spp. Secondary Metabolite Description of Activity Ref.

Antiparasitic Callyspongia sp. Isoakaterpine
IC50 against adenosine

phosphoribosyltransferase of
Leishmania spp: 1.05 µM

[11]

Antiallergic Callyspongia sp.

3-(2-(4-
hydroxyphenyl)-2-

oxoethyl)-5,6-
dihydropyridine-

2(1H)-one

IC50 againts RBL-2H3:
18.7 ± 6.7 µM [63,64]

Antituberculosis
Callyspongia

aerizusa

Callyaerin A MIC90 against Mycobacterium
tuberculosis: 2 µM

[64]

Callyaerin B MIC90 against Mycobacterium
tuberculosis: 5 µM

Antiviral
Callyspongia crassa - 85.3% against hepatitis A virus

(MIC 9.765 µg/mL)
[34]

Callyspongia
siphonella - 83.7% against hepatitis A virus

(MIC 0.625 µg/mL)

Immunomodulatory

Callyspongia sp. Niphatoxin C IC50 P2X7 antagonism: 11.5 µM [65]

Callyspongia sp. Siphonodiol

• Increases IL-12p70
secretion in
LPS-primed DCs

• Modulates dendritic cell
function for T1
cell proliferation

[66]

Callyspongia sp.

Callyspongidiol
Modulates dendritic cell

function for T1 cell proliferation
[53]14,15-

dihydrosphonodiol

Callyspongia sp. β-Sitosterol
Modulates dendritic cell activity
and increases peripheral blood

mononuclear cell viability
[67]

Callyspongia sp. -

Increase levels of IFN-γ and
TNF-α (Wistar strain mice) at

extract doses of 300 mg/kg and
400 mg/kg

[68]

Antineurodegenerative

Callyspongia
samarensis - IC50 against β-secretase: 99.82

µg/mL [31]

Callyspongia sp. Hymenialdisine

IC50 against:

[49]• GSK3β: 0.07 µM
• CK5.p25: 0.16 µM
• CK1δ: 0.03 µM

Antiosteoporotic Callyspongia
siphonella

Neviotine D IC50 against RANKL: 12.8 µM
[69]

Neviotine A IC50 against RANKL: 32.8 µM

IC50: Half maximal inhibitory concentration; EC50: Half maximal effective concentration; ED50: Median ef-
fective dose; MIC: Minimum inhibitory concentration; GI50: Half maximal growth inhibition; LC50: Median
Lethal Concentration.

4. Discussion

We have discussed the pharmacological activities of Callyspongia spp. that have been
previously reported.
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4.1. Antidiabetic, Antihypercholesterolemic, and Antiobesity

The active compound from Callyspongia truncata, callyspongynic acid (Figure 3), shows
higher antidiabetic activity by inhibiting α-glucosidase with an IC50 of 0.25 µg/mL [29,30]
compared with acarbose (IC50 1.3 µg/mL) [70]. Inhibiting this enzyme reduces caloric
intake by attenuating appetite, suppressing hunger, and increasing satiety [71,72], thereby
supporting weight loss [73] to a moderate level [74]. It is also one of the targets of diabetes
therapy. Compared with α-amylase, inhibiting α-glucosidase can improve hyperglycemia,
especially postprandial hyperglycemia, by decreasing glucose production (Figure 3) [75].

Compounds, such as callyspongiamide A and B as well as disamide A (Figure 3),
exert antihypercholesterolemic activity, which can also lead to an antiobesity effect by
inhibiting sterol O-acyltransferase (SOAT), the enzyme that catalyzes the formation of
cholesteryl ester [76]. In addition, other sterols may be used as activators or substrates of
this enzyme [77], which implicates it as a potential drug target [61] in hypercholesterolemia;
however, the underlying mechanism remains unknown.

In a cell-based testing assay, the IC50 values of callyspongiamide A against SOAT 1 and
SOAT 2 were 0.78 ± 0.19 and 2.8 ± 0.72 µM, those of callyspongiamide B were 1.2 ± 0.31
and 2.4 ± 0.96 µM, whereas those of disamide A were 5.2 ± 0.93 and 4.2 ± 0.76 µM.
Although each compound markedly inhibited SOAT 2, as evidenced by the lower IC50
compared with the control beauveruolide III (IC50 > 20 µM), only callyspongiamide A
significantly inhibited SOAT 1 [5].

Callyspongia sp. also contains β-Sitosterol. This compound exhibits potent antidiabetic
activity related to insulin receptor activation and increased glucose transporter 4 (GLUT-
4) translocation to adipose tissue [78,79]. In addition, these compounds can potentially
maintain glucose homeostasis through sensitization of insulin resistance by increasing
the expression of peroxisome proliferator-activated receptor and GLUT-4 (Figure 4) [80].
Another study on HFD-fed and sucrose-induced type-2 diabetic rats indicates that β-
Sitosterol enhances the glycemic regulation [32,79].
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The methanolic extract of Callyspongia samarensis also exerts antidiabetic activity by en-
hancing the activity of AMP-activated protein kinase (AMPK) with an EC50 of 14.47 µg/mL,
which is more potent compared with the positive control aspirin (EC50 100 µg/mL). This
activity may originate from compounds with phenolic groups in the extract [31]. AMPK is
an important target for treating type-2 diabetes because its activation affects various aspects
of cellular metabolism. It increases glucose metabolism, uptake in the bone and muscle,
fatty acid oxidation in the bone, muscle, and liver, mitochondrial oxidative capacity, and
insulin sensitivity, whereas it decreases fatty acid synthesis in the liver through GLUT-4
expression (Figure 4) [81–84].

4.2. Antihypertensive

Callypyrone A and callypyrone B (Figure 3) from Callyspongia diffusa exhibit anti-
hypertensive activity by inhibiting angiotensin I-converting enzyme (ACE), which leads
to a reduction in angiotensin production. Because angiotensin can constrict blood ves-
sels and increase the heart work rate [85], ACE inhibition results in vasodilation and a
decrease in blood pressure (Figure 5). The IC50 values of these two compounds against
ACE were 0.48 mM and 0.57 mM, respectively [33], weaker than the standard drug, cap-
topril (IC50 0.36 mM) [33]. From the results, Callypyrone A and callypyrone B are not
considered antihypertensive.

4.3. Anti-Inflammation

Diketopiperazines derived from Callyspongia sp., such as cyclo(L-Hyp-L-Ala), cyclo(L-
Pro-Gly), cyclo(L-Pro-Phe), and cyclo(L-Pro-Ala), at a concentration of 5 µg/mL, showed
anti-inflammatory activity by increasing the secretion of the anti-inflammatory cytokine,
interleukin-10 (IL-10) (Figure 6). IL10 levels were increased by 1.65-, 1.29-, 1.54, and
1.56-fold in J774A.1 cells, respectively [36].
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The anti-inflammatory activity of β-Sitosterol is independent of the adrenal pituitary
axis. It inhibits the maturation of IL-1β via the NOD-, LRR-, and pyrin domain-containing
protein 3 (NLRP3) inflammasome and inhibits other inflammatory cytokines, such as IL-6
and tumor necrosis factor-α [86]. In a carrageenin-induced edema model in bilaterally
adrenalectomized rats, β-Sitosterol exhibited a 54% anti-inflammatory effect at a dose of
320 mg/kg, which was weaker than the control, oxyphenbutazone, which had a 74% anti-
inflammatory effect at a dose of 100 mg/kg [37]. Therefore, β-Sitosterol has no potential as
an anti-inflammatory agent.

Niphatoxin C significantly affects the viability of pre-monocytic THP 1 cells, which
express the P2X7 receptor [65]. Activation of this receptor promotes inflammation by
releasing inflammatory cytokines, such as IL-18 and IL-1β, and by activating the NLRP3
inflammasome [87,88]. Thus, an antagonist of this receptor may inhibit the secretion of
these cytokines (Figure 7). Furthermore, it can inhibit allograft rejection [87], sterile liver
inflammation [88], and can potentially treat inflammatory diseases, such as osteoarthritis,
rheumatoid arthritis, and chronic obstructive pulmonary disease [28,37].
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Callysterol (Figure 3) from Callyspongia siphonella exhibits anti-inflammatory activity
against rat paw edema that was similar to the control drug, cortisone. The activity was mea-
sured by a reduction in edema volume of 19.5 ± 7.3 mL for callysterol and 17.0 ± 7.0 mL for
cortisone, whereas the negative control was 61.9 ± 4.7 mL [38]. Callyspongia crassa extracts
also showed anti-inflammatory effects with a 61.47% inhibition of protein denaturation [34].
Alkaloids are considered responsible for these anti-inflammatory mechanisms [89], which
vary according to the metabolite. The alkaloid that has been identified from ethanolic
extract of Callyspongia siphonella was 5-bromo trisindoline and 6-bromo trisindoline [7].
Although the specific mechanism of 5-bromo trisindoline and 6-bromo trisindoline is un-
known, some indole alkaloids were known to interfere with the nuclear factor-κB and c-Jun
N-terminal kinase signaling pathways [90,91], preventing the synthesis or action of specific
pro-inflammatory cytokines, and suppressing histamine release and nitric oxide production
(Figure 7) [92,93]. Alkaloids are effective for treating inflammatory bowel disease [94–97].

4.4. Antifungal

Callyaerin A, B, and E (Figure 3) from Callyspongia aerizusa were shown to potently
inhibit Candida albicans, with zones of inhibition of 25–30 mm, 15 mm, and 20 mm, respec-
tively using the same concentration. Callyaerin A and E were more potent than callyaerin
B [6].

Gelliusterol E from Callyspongia aff. implexa also exerts activity against chlamydial
fungi in a dose-dependent manner by inhibiting the formation and growth of chlamydial
inclusions. At the highest concentration tested (40 µM), no inclusions were observed,
similar to the effect of the control, tetracycline. Thus, this compound not only inhibits
the formation of Chlamydia, but also affects its development cycle [39]. In addition, the
structure of gelliusterol E is similar to that of cholesterol, which is needed for the growth of
Chlamydia trachomatis. Furthermore, this compound inhibits lipid acquisition and fungal
growth [98].

β-Sitosterol compounds found in Callyspongia sp. also exhibit antifungal activity
against Fusarium spp, with 10 mm of average inhibition diameter [39,40]. (-)-siphonodiol
from sponges display antifungal activities against Trichophyton asteroids, with moder-
ately strong activity (MIC 25.0 µg/mL) [41]. Meanwhile, 4-hydroxybenzoic acid against
Ganoderma boninense and (−)-loliolide display a broad spectrum of activity [42,43]. Active
secondary metabolites that attack fungi are responsible for these antifungal activities, but
their specific mechanisms of action remain unclear [99].

4.5. Cytotoxicity against Cancer Cell Lines

Callyspongia siphonella and Callyspongia crassa crude extracts were cytotoxic against a
colon cancer (Caco-2) cell line with IC50 values of 5.57 µg/mL and 13.05 µg/mL, respec-
tively, and against breast cancer (MCF-7) cell line with IC50 values of 1.39 µg/mL and
9.47 µg/mL [34]. Neviotine-C, neviotine A, sipholenol-A, and sipholenol from
Callyspongia siphonella also exhibited cytotoxicity against cancer cell lines (Table 1).
Sipholenol-A showed higher activity against the PC-3 and A549 cell lines (IC50:
7.9 ± 0.12 µM and 8.9 ± 0.01 µM), sipholenol L against the HepG-2 cell line (IC50:
18.7 ± 0.9 µg/mL), and sipholenone A against the MCF-7 cell line (IC50: 36.2 ± 0.13 µM or
3 ± 0.4 µg/mL) [44,45].

Callyspongiolide, extracted from Callyspongia sp., exhibited an IC50 of 320 nM against
a mouse lymphoma cell line (L5178Y), 70 nM against human Jurkat J16 T cells, and 60 nM
against Ramos B lymphocyte cells [46]. Callypeptide A (Figure 3) inhibited the growth
of human cancer cells with GI50 values of 29 µM against breast adenocarcinoma (MDA-
MB-231), 30 µM against colorectal carcinoma (HT-29), and 18.5 µM against lung carcinoma
(A549). Its activity was weaker compared with doxorubicin as a control (GI50 values of 0.30,
0.40, and 0.35 µM, respectively) [47].

Callyazepine and (3R)-methylazacyclodecane (Figure 3) exhibited IC50 values of
7.4 µM and 3.2 µM against K562 cells, and 3.0 µM and 3.8 µM against A549 cells, re-
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spectively [100]. Hysmenialdisine from Callyspongia sp. had an IC50 value of 3.1 µM against
colonic adenocarcinoma cells (SW620) and 2.0 µM against epidermoid carcinoma cells
(KB-3-1) [49]. In addition, it produces akaterpine, which exhibited an IC50 of 0.5 µg/mL
against phosphoinositide-specific phospholipase C [58]. Callyspongamide A (Figure 3),
isolated from Callyspongia fistularis, had an IC50 of 4.1 µg/mL against HeLa cells [55].

Methanolic extract of Callyspongia aerizusa had IC50 values of 9.38 µg/mL against A549
cells, 3.12 µg/mL against TE-8 cells, 10.62 µg/mL against HepG-2 cells, and 10.72 µg/mL
against MIA PaCa-2 cells [59]. It also produces callyaerin E and H (Figure 6), which
exhibited IC50 values of 0.39 µM and 0.48 µM against L5178Y cells [6]. Callyspongia aerizusa
extract stimulates the expression of caspase-9, which in turn activates caspase-3, and
subsequently downregulates Bcl-2, a key regulator of antiapoptosis (Figure 8) [59].
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Callystatin (Figure 3) from Callyspongia truncata exhibited IC50 values of 0.01 µg/mL
against KB cells and 20 pg/mL against L1210 cells [101]. Callyspongia sp. also contains
two unknown compounds with antiproliferative activity against TR-LE cells: (−)-(3R,18R)
alcohol with an IC50 of 0.11 µM and (+)-(3S,18S) with an IC50 of 0.47 µM [52].

The US National Cancer Institute classifies the cytotoxicity of a compound as high if
its IC50 < 20 µg/mL, moderate if it falls between 21–200 µg/mL, weak if it falls between
201–500 µg/mL, and non-cytotoxic if the IC50 > 500 µg/mL [102]. Based on these criteria,
most Callyspongia extracts possess high cytotoxic activity, except that of Callyspongia schulzei,
which exhibits moderate activity, but no study was conducted against non-cancerous
cell line except for Callyspongia aerizusa extract. Cytotoxicity of the methanol extract of
Callyspongia aerizusa against TE-8 cells (IC50 3.12 µg/mL) was more effective compared
with that of the control drug, cisplatin (IC50 8.1 µg/mL/27 µM), meanwhile this extract
was non-cytotoxic for non-cancerous cell (HET-1A cell) up to 1000 µg/mL. The compounds
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responsible for suppressing A549 cell proliferation were identified as ergots-22-en-3-one
and ergost-7-en-3-ol [59,103].

4.6. Antimicrobial and Antiparasitic

Isoakaterpine compounds from Callyspongia sp. exert antiparasitic activity by inhibit-
ing adenosine phosphoribosyltransferase, one of the functional routes in Leishmania adenine
metabolism, with an IC50 of 1.05 µM [11,104], resulting in death of the parasite (Figure 9).
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Besides antiparasitic activity, the subgenus Callyspongia possesses antituberculosis
activity resulting from callyaerins A and B (Figure 5) isolated from Callyspongia aerizusa.
Their MIC90 values (2 µM and 5 µM, respectively) were less effective compared with
the controls, rifampicin (<1 µM), ethambutol (1.25 µM), and isoniazid (0.625 µM). Beside
the weaker activity compared with the control, there is no in vivo data to support this
activity. These compounds inhibited the growth of Mycobacterium tuberculosis as evidenced
by reduced cell viability using the resazurin dye reduction method and measuring cell
fluorescence [105].

Siphonocolin from Callyspongia siphonella exhibited antimicrobial activity against
Pseudomonas aeruginosa with an MIC of 64 µg/mL [61]. Moreover, neviotine A, sipholenol
L, and sipholenone A from Callyspongia siphonella also exhibited antimicrobial activity
against Staphylococcus aureus, Bacillus subtilis, and Escherichia coli (Table 1). Neviotine has
higher antimicrobial activity with a zone of inhibition against Staphylococcus aureus of
14.1 ± 0.72 mm, against Bacillus subtilis of 17.2 ± 0.58 mm, and against Escherichia coli of
12.7 ± 0.58 mm [45].

Callyspongia crassa extract potently inhibited Bacillus subtilis and Staphylococcus aureus
with zones of inhibition of 16–25 mm (at concentration 500 µg/mL), 9–15 mm and 16–25 mm
(at concentration 250 µg/mL) respectively, while exhibiting high activity against marine
bacteria. The IC50 of the extract was determined by a microdilution test and ranged
from 5 µg/mL to 500 µg/mL. Callyspongia crassa is the most active among the Red sea
sponges against Bacillus subtilis, with an LC50 18.2 ± 3.56 µg/mL, but was weak against
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Staphylococcus aureus with an LC50 215.2 ± 32.9 µg/mL [60]. Callyaerin A also exhibits
antimicrobial activity against Escherichia coli and Staphylococcus aureus, with zones of inhibition
of 10–15 mm and 9 mm, respectively, whereas callyaerin E has activity against Escherichia coli,
Bacillus subtilis, and Staphylococcus aureus, with zones of inhibition of 9–11 mm, 15–17 mm,
and 9–10 mm, respectively [6].

4.7. Antioxidant

Sponge extracts inhibited oxidative stress and carbohydrate hydrolysis enzymes lin-
early in a dose-dependent manner. Based on the 2,2-diphenyl-1-picryl-hydrazyl-hydrate
assay, a Callyspongia aerizusa extract displayed an antioxidant activity of 56.6% at 0.5 µg/mL,
57.2% at 0.6 µg/mL, and 58.4% at 0.7 µg/mL, indicating that it may be classified as an
antioxidant (>50%). Callyspongia crassa extract showed an antioxidant activity of 58.1%
at 671 µg/mL, which was lower than the control, ascorbic acid (>90%), likely because
Callyspongia was used in the form of an extract [34,62].

4.8. Antiallergic

The compound 3-(2-(4-hydroxyphenyl)-2-oxoethyl)-5,6-dihydropyridine-2(1H)-one
was isolated from an ethanol extract of Callyspongia sp. [63]. This δ-lactam derivative was
predicted to possess antiallergic activity based on its in silico inhibition of β-hexosaminidase
(β-hex), which was determined using Origin 8.0. This compound inhibited β-hex activ-
ity in rat basophilic leukemia cells (RBL-2H3) with an IC50 of 18.7 ± 6.7 µM, which was
weaker than the positive control, ketotifen fumarate (IC50 15.0 ± 1.3 µM), but more po-
tent than azelastine (IC50 32.0 µM) [64]. β-hex is released from mast cell degranulation,
thus its activity can be used as a biomarker of mast cell allergic response to quantify
degranulation [106–108].

4.9. Antiviral

Callyspongia crassa and Callyspongia siphonella extracts exhibited cytotoxic effects on
Vero cells, which were cultured for the isolation and multiplication of enterovirus and
hepatitis A virus, with MICs of 9.765 µg/mL and 0.625 µg/mL, respectively. The max-
imum non-toxic concentrations of these extracts were 4.9 and 0.3 µg/mL, respectively.
Callyspongia crassa crude extract had an antiviral activity of 85.3%, whereas the antiviral
activity of Callyspongia siphonella extract was 16.4% [34].

4.10. Immunomodulatory

Callyspongia extract at doses of 300 mg/kg and 400 mg/kg body weight, increased
S. aureus-induced production of interferon-γ (IFN-γ) (455.265 pg/mL and 384.319 pg/mL)
and tumor necrosis factor-α (TNF-α)(954 pg/mL and 1042 pg/mL) in male Wistar rats.
It was more effective compared with 0.5% carboxymethyl cellulose sodium as negative
control (160.314 pg/mL for INF-γ and 785.5 pg/mL for TNF-α) and bay leaf extract as
positive control (353.486 pg/mL for INF-γ and 976 pg/mL for TNF-α) [68]. β-Sitosterol
compounds from Callyspongia spp. modulate the activity of dendritic cells and increase
the viability of peripheral blood mononuclear cells [67]. Siphonodiol, callyspongidiol, and
14,15-dihydrosphonodiol modulate the function of dendritic cells for T1 cell proliferation
as well as IL-2 and IFN-γ production [66]. IL-2, along with other ILs, regulates innate
and adaptive immunity by promoting an increase in the population of various immune
cells [109,110]. Meanwhile, IFN-γ activates macrophages and enhances their immune
response [111]. Callyspongia extract can stimulate the branch of the immune system involved
in forming a receptor complex with gp130 to eventually inhibit the bioactivity of IL-6
(Figure 10) [112,113].
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4.11. Antineurodegenerative

• β-secretase 1

Selectively inhibiting β-secretase 1 in specific subcellular compartments is an effective
strategy to reduce the accumulation of neurotoxic amyloid plaques [114]. The methanol
extract of Callyspongia samarensis significantly and non-competitively inhibited β-secretase
1 (IC50 99.82 µg/mL). An acute oral toxicity test revealed that the extract was non-toxic,
with an LD50 value of less than 2000 mg/kg. Moreover, an unknown compound in the
extract, with a mass/charge ratio of 337.9 [M + H]+, was able to permeate the blood–brain
barrier, making it a suitable candidate for developing central nervous system drugs [31].

• Kinase inhibitor

Kinases have a role in neurodevelopmental and central nervous system physiology.
Activation of the glycogen synthase kinase 3β (GSK3β) results in tau phosphorylation,
amyloid-β accumulation, microglia activation, neurogenesis, and memory abnormali-
ties [115]. This suggests that its inhibition restores and repairs pathways and neurogenesis
(Figure 11) [116,117]. Hymenialdisine, isolated from Callyspongia sp. (CMB-01152), inhibits
casein kinase 1, cyclin-dependent kinase 5, and GSK3β with IC50 values of 0.03 µg/mL,
0.16 µg/mL, and 0.07 µg/mL, respectively. They abnormal hyperphosphorylate highly
soluble microtubule-associated proteins to produce neurofibrillary tangles [49].
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4.12. Antiosteoporotic

Neviotine A and D are isolated triterpene-type compounds from Callyspongia siphonella.
These compounds possess antiosteoporotic activity by inhibiting receptor activator of
nuclear factor-kB ligand (Rankl) with IC50 values of 32.8 µM and 12.8 µM (quercetin
as positive control: 25 µg/mL) [69]. The interaction between Rankl and Rank receptor
translocate the tumor necrosis factor receptor-associated factors (TRAF6) to the RANK
cytoplasmic domain, results in the activation of ERK, p38, and JNK via activation of
signaling cascades and downstream targets. Thus, AP-1 and NF-kB transcription factors
were activated and stimulated the formation and activity of osteoclasts, which affect
resorption activity [118]. Neviotine A and D inhibit cell differentiation into multinucleated
tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, which was upregulated via
RANKL-induced osteoclastogenesis (Figure 12) [69,119].
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5. Conclusions

In the 41 articles we reviewed, the pharmacological activities that Callyspongia spp. is
reported to possess include cytotoxic against cancer cell line (36%), antifungal (10%), anti-
inflammatory (10%), immunomodulatory (10%), antidiabetic and antiobesity (6%), antimi-
crobial (8%), antioxidant (4%), antineurodegenerative (4%), antihypercholesterolemic (2%),
antihypertensive (2%), antiparasitic (2%), antiallergic (2%), antiviral (2%), antiosteoporotic
(2%), and antituberculosis (2%) activities (Figure 13). The most studied pharmacological
activity is cytotoxicity against cancer cell lines. Most of the research was limited to in vitro
testing and there is insufficient in vivo data to support such activity. In addition, not all
secondary metabolites responsible for certain activities have been identified. Several activi-
ties require modification and further study because of a lack of testing or low activity. For
example, the antiallergic activity of Callyspongia sp. predicted from in silico results or the
antioxidant, antituberculosis, and anti-inflammatory activities of Callyspongia extract were
weaker compared with those of the control drugs. Although many promising compounds
with a high potential to become drugs remain to be comprehensively evaluated in vivo,
Callyspongia with its known mechanisms of action, such as antidiabetic and cytotoxic effects,
may be further developed for targeted therapy.
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