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Abstract: Prediabetes raises cardiovascular disease risk, in part through elevated aortic waveforms.
While insulin is a vasodilatory hormone, the gut hormone relation to aortic waveforms is less clear.
We hypothesized that exercise, independent of intensity, would favor aortic waveforms in relation
to gut hormones. Older adults (61.3 ± 1.5 yr; 33.2 ± 1.1 kg/m2) with prediabetes (ADA criteria)
were randomized to undertake 60 min of work-matched continuous (CONT, n = 14) or interval (INT,
n = 14) exercise for 2 wks. During a 180 min 75-g OGTT, a number of aortic waveforms (applanation
tonometry) were assessed: the augmentation pressure (AP) and index (AIx75), brachial (bBP) and
central blood pressure (cBP), pulse pressure (bPP and cPP), pulse pressure amplification (PPA), and
forward (Pf) and backward pressure (Pb) waveforms. Acylated-ghrelin (AG), des-acylated ghrelin
(dAG), GIP, and GLP-1active were measured, and correlations were co-varied for insulin. Independent
of intensity, exercise increased VO2peak (p = 0.01) and PPA120min (p = 0.01) and reduced weight
(p < 0.01), as well as AP120min (p = 0.02) and AIx75120min (p < 0.01). CONT lowered bSBP (p < 0.02)
and bDBP (p < 0.02) tAUC180min more than INT. There were decreases dAG0min related to Pb120min

(r = 0.47, p = 0.03), cPP120min (r = 0.48, p = 0.02), and AP120min (r = 0.46, p = 0.02). Declines in AG
tAUC60min correlated with lower Pb120min (r = 0.47, p = 0.03) and cPP120min (r = 0.49, p = 0.02) were
also found. GLP-1active 0min was reduced associated with lowered AP180min (r = 0.49, p = 0.02). Thus,
while CONT exercise favored blood pressure, both intensities of exercise improved aortic waveforms
in relation to gut hormones after controlling for insulin.

Keywords: obesity; type 2 diabetes; arterial stiffness; endothelial function; physical activity

1. Introduction

Aortic waveforms are clinically relevant as they can reflect the load on the heart
and/or compliance of peripheral vessels [1–5]. While pulse-wave velocity is considered
the gold standard for arterial stiffness, the augmentation index (AIx75) is a surrogate
measure that enables pulse-wave reflection for the understanding of central and peripheral
hemodynamics [6]. AIx75 is thus influenced by central hemodynamics coupled with the
peripheral arterial tree. Pressure waves in the aorta can be separated into forward (Pf)
and backward waves (Pb). Pf is generated mainly by left ventricular contraction and
pulse-wave velocity, while backward pressure (Pb) is caused by the reflection of the Pf back
toward the heart due to varying characteristics of the vascular walls [4,5]. This is clinically
relevant towards understanding pulsatile components that influence central (aortic) and
peripheral (brachial) blood pressure, leading to CVD risk among older adults [7]. To date,
though, most research on aortic waveform components has focused on fasting measures
and have not considered the post-prandial state. This is physiologically important as the
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post-prandial state is considered a stronger predictor of cardiovascular disease (CVD) than
the fasting state alone [8].

Insulin is the prevailing post-prandial hormone secreted from pancreatic beta-cells
in response to carbohydrate and protein. It plays a key role in maintaining blood glucose
levels and promoting arterial compliance of blood vessels [9]. Arterial compliance is an
important mechanical property that contributes to regulation of blood pressure, flow, and
hemodynamic load on the heart [4,10]. Despite insulin acutely lowering AIx75 and pulse
wave velocity in healthy individuals [10], there is reduced endothelial responsiveness in
some [11,12], but not all [13–15], studies of adults with obesity. In turn, this has raised
questions on the possibility that other post-prandial hormones could influence vascular
function. Ghrelin is often recognized as an appetite-stimulating hormone secreted from
oxyntic glands in the stomach. Interestingly, exogenous ghrelin exerts beneficial hemody-
namic effects in healthy participants [16], as well as those with congestive heart failure, [17]
through, in part, the inhibition of proinflammatory cytokines [18]. In fact, ghrelin ad-
ministration increased vasodilation in response to acetylcholine via a nitric oxide specific
mechanism [19] in people with metabolic syndrome. Glucagon-like peptide (GLP-1), an
established incretin with known effects to promote beta-cell insulin secretion and delayed
gastric emptying, also increases macro- and micro-vascular dilatory effects with and with-
out insulin [20]. Additionally, glucose-dependent insulinotropic polypeptide (GIP), a
small-intestinal K cell derived hormone known to also increase insulin secretion, is noted to
raise adipose tissue blood flow during conditions of hyperglycemia and hyperinsulinemia,
although these effects may be attenuated in people with obesity [21–23].

Aerobic exercise improves blood pressure (BP), lipid profiles, and inflammation, often
in the absence of clinically meaningful weight loss [24–26]. Furthermore, acute exercise
can decrease fasting AIx75 during the immediate post-exercise period [27], although some
suggest the acute effect of aerobic exercise on AIx75 may last up to 24 h following the
last bout [28]. Lower AIx75 following exercise may be partially attributed to the working
muscles promoting reduced vascular resistance via enhancement of nitric oxide [29,30].
We also have shown that short-term interval (INT) exercise training reduces AIx75 during
the post-prandial, but not fasting, state in people with obesity [31]. While our later work
suggested that insulin may have, in part, contributed to these favorable reductions in
post-prandial AIx75, independent of exercise intensity, it is unknown whether ghrelin
and/or incretins play a role in aortic waveform changes following exercise, independent of
insulin. Furthermore, we did not determine if changes in AIx75 were depicted by improved
Pf or Pb waveforms, nor did we assess central compared with brachial blood pressures to
discern pulse pressure amplification—a CVD mortality risk factor [32]. Thus, we tested
herein the hypothesis that exercise, independent of intensity, would reduce post-prandial
aortic waveforms in older adults with prediabetes. We further hypothesized this change
would relate to changes in gut hormones implicated in regulating vascular function.

2. Methods
2.1. Participants

Twenty-eight older adults with obesity (61.3 ± 1.5 yr; 33.2 ± 1.1 kg/m2, Table 1)
were recruited via advertisements. Some of the AIx75 related outcomes, gut hormones,
and cardiometabolic data were previously reported [31,33,34]. Participants were screened
for prediabetes based on the American Diabetes Association criteria (75g OGTT) and
had to have impaired fasting glucose (100–125 mg/dL), impaired glucose tolerance (2-hr
plasma glucose 140–200 mg/dL), and/or elevated HbA1c (5.7–6.4%). Participants were
non-smoking, sedentary (exercise < 60 min/wk), and weight stable over the prior six
months (≤2 kg variation). People were excluded if they had chronic disease (i.e., renal,
hepatic, cardiovascular, etc.) or were on anti-diabetic or weight-inducing medications (e.g.,
GLP-1 agonists, sulfonylureas, biguanides, etc.). All participants underwent a physical
exam and stress test with an electrocardiogram to ensure their health status. Individuals
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provided written and verbal informed consent before participation as approved by the
University of Virginia Institutional Review Board (IRB-HSR #17822).

Table 1. Effect of continuous and interval exercise on anthropometrics, fitness, and glycemia.

CONT INT ANOVA
p Value

Pre Post Pre Post Test G × T

n (female) 14 (11) 14 (11)
Non-Hispanic white 12 13
Non-Hispanic black 1 1

Hispanic 1 0
Age, yr 62.1 ± 2.2 60.4 ± 2.0

Weight, kg 94.3 ± 4.7 94.0 ± 4.7 88.7 ± 3.6 87.9 ± 3.7 <0.01 0.07
BMI, kg/m2 34.5 ± 1.9 34.4 ±1.9 32.1 ±1.3 31.8 ± 1.3 <0.01 0.12

VO2peak, mL·kg−1·min−1 20.1 ± 1.2 20.6 ± 1.5 20.3 ± 1.1 22.1 ± 1.1 0.01 0.13
Glucose

Fasting, mg/dL 105.2 ± 2.5 103.3 ± 3.3 101.7 ± 1.7 102.7 ± 2.2 0.74 0.36
120 min, mg/dL 145.3 ± 8.7 132.9 ± 8.3 146.7 ± 11.1 128.9 ± 10.1 0.02 0.68

tAUC, mg/dL × 180 min 25,804.3 ± 1379.6 23,830.7 ± 1303.4 25,184.6 ± 1469.1 23,664.4 ± 1285.4 0.03 0.83

Note: Data are mean ± SEM. CONT = continuous exercise. INT = interval exercise. BMI = body mass index.
VO2peak = peak oxygen consumption. tAUC = total area under the curve.

2.2. Aerobic Fitness and Body Mass

Peak oxygen consumption (VO2peak) and heart rate (HRpeak) were determined using
a continuous incremental cycle ergometer exercise test and indirect calorimetry (Carefusion,
Vmax Encore, Yorba Linda, CA, USA) as described previously [31,33,34]. Body weight
was measured to the nearest 0.01 kg on a digital scale while height was measured with a
stadiometer to assess body mass index (BMI).

2.3. Metabolic Control

Participants were instructed to refrain from alcohol, caffeine, medication, and strenu-
ous physical activity for 24 h prior to each study visit. Participants were also instructed
to consume a diet containing approximately 250 g of carbohydrates during the 24 h pe-
riod prior to the pre-intervention testing to minimize influence on alterations in insulin
secretion and gut hormones. This diet was recorded and replicated on the day before
post-intervention testing. Participants were instructed to maintain non-exercise physical
activity and habitual diets throughout the intervention.

2.4. OGTT

Participants reported to the Clinical Research Unit (CRU) after an approximate 10 h
overnight fast. An IV catheter was placed in the antecubital fossa for blood draws to deter-
mine glucose and hormonal responses during a 75 g oral glucose load. Blood was collected
at 0, 30, and 60 min to capture acylated and des-ghrelin, GLP-1active, and GIP [32,33], while
glucose and insulin were additionally recorded at 90, 120, and 180 min. Post-intervention
assessments were obtained approximately 24 h after the last training session.

2.5. Pulse Waveform Analysis

The SphygmoCor XCEL system (AtCor Medical, Itasca, IL, USA) was used to charac-
terize hemodynamic and aortic waveform responses, as described before [24]. In short, this
included peripheral systolic (bSBP), diastolic (bDBP) and pulse pressure (bPP), heart rate
(HR), central systolic (cSBP), diastolic (cDBP) and pulse pressure (cPP), and the augmenta-
tion index (AIx), as well as wave deconvolution aspects of forward (Pf) and backward (Pb)
pressure and reflection magnitude (RM). The augmentation index was corrected to a stan-
dard HR of 75 bpm (AIx75) using the manufacture’s software. Pulse pressure amplification
(PPA) was calculated as a ratio (brachial PP/central PP). All measurements occurred while
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individuals were resting quietly in a semi-supine position in a temperature-controlled
room. A blood pressure cuff was placed on upper arm and measurements were recorded
in triplicate over a 10 min period and averaged. tAUC for aortic waveform measures was
calculated from the values obtained at 0, 60, 120, and 180 min of the OGTT.

2.6. Exercise Training

Participants were randomly assigned to either supervised CONT or INT training,
utilizing a block design that was stratified by a prediabetes phenotype. Twelve work-
matched bouts of cycle ergometry exercise were performed for 60 min/d over thirteen
days. CONT exercise was performed at an intensity of 70% HRpeak; whereas INT exercise
involved alternating 3 min intervals at 90% HRpeak followed by 50% HRpeak for the
60 min duration. The first 2 exercise sessions, however, were performed at 30 and 45 min,
respectively, at the desired intensity to ease participants into the intervention. Ad-libitum
water, but no food, was provided to the subjects. Heart rate (Polar Electro, Inc. Woodbury,
NY) and rating of perceived exertion (RPE) were monitored throughout exercise to ensure
appropriate intensity. Energy expenditure during CONT and INT exercise was calculated
using HR-VO2 regression analysis, as previously described [34].

2.7. Biochemical Analysis

Plasma glucose was measured immediately after collection using the glucose oxidase
method (YSI 2300 STAT Plus, Yellow Springs, OH, USA). Blood samples were collected in
chilled vacutainers that contained protease inhibitors. AG and dAG samples contained
aprotinin, DPP-IV, and AEBSF (EMD Millipore, Billerica, MA, USA). GLP-1 contained
aprotinin and DPP-IV, while insulin contained only aprotinin. Blood was centrifuged at
4 ◦C for 10 min at 3000 RPM. Following centrifugation, HCl was immediately added to
acidify the ghrelin sample. All blood was frozen at −80◦C until subsequent analysis. AG
and dAG concentrations, as well as GLP-1active and insulin, were determined using an
enzyme-linked immunosorbent assay (ELISA), as described before [32].

2.8. Statistical Analysis

Data were analyzed using GraphPad Prism version 9 (GraphPad Software, San Diego,
CA, USA). Non-normally distributed data were log-transformed for analysis. Baseline
differences were assessed using independent samples, two-tailed t-test, while repeated
measures analysis of variances (ANOVA) was used to determine group x time differences.
Pearson correlations were used to examine relationships, and insulin was used as a co-
variate for gut hormones to isolate effects. Statistical significance was accepted as p ≤ 0.05
and data are presented as mean ± SEM.

3. Results
3.1. Participant and Exercise Training Characteristics

Independent of intensity, exercise raised VO2peak (p < 0.01) and decreased BMI
(p < 0.01; Table 1). Exercise session adherence was excellent and similar between CONT
and INT (96.2 ± 2.2% vs. 95.6 ± 1.5%; p = 0.83). Despite INT having a higher heart
rate during training compared with CONT (77.8 ± 1.0% vs. 72.6 ± 1.3%; p < 0.01), there
were no significant differences between CONT and INT in RPE (12.5 ± 0.3 vs. 12.0 ± 0.5
a.u.; p = 0.46) or exercise energy expenditure (393.2 ± 16.3 vs. 384.5 ± 18.9 kcal/session;
p = 0.62).

3.2. Glucose Tolerance and Insulin

Although exercise did not reduce fasting glucose, it reduced both 120 min glucose
(p = 0.02) and glucose tAUC180min (p = 0.03), independent of intensity (Table 1). Further-
more, fasting insulin was not altered, but insulin tAUC180min was significantly reduced
following both exercise intensities (p < 0.01; Table 2).
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Table 2. Effect of continuous and interval exercise on fasting and post-prandial hormones.

CONT INT ANOVA
p Value

Pre Post Pre Post Test G × T

AG
Fasting, pg/mL 66.1 ± 12.5 65.1 ± 10.0 83.3 ± 15.9 66.4 ± 8.9 0.32 0.41

tAUC × 60 min, pg/mL 1229.1 ± 206.6 1130.3 ± 135.4 1192.2 ± 167.4 1005.6 ± 127.3 0.20 0.94
dAG

Fasting, pg/mL 49.5 ± 8.4 52.5 ± 5.9 71.6 ± 13.5 64.8 ± 14.5 0.66 0.55
tAUC × 60 min, pg/mL 1049.5 ± 166.3 1186.3 ± 170.8 1615.0 ± 301.1 1481.0 ± 345.9 0.72 0.54

GIP
Fasting, pg/mL 62.9 ± 11.2 73.0 ± 15.1 59.5 ± 5.3 46.0 ± 7.0 0.73 0.03

tAUC × 60 min, pg/mL 8419.4 ± 1222.1 8666.7 ± 1175.0 10340.3 ± 603.6 10010.6 ± 1006.8 0.93 0.41
GLP-1

Fasting, pg/mL 5.9 ± 1.9 7.9 ± 2.3 6.3 ± 1.4 5.2 ± 1.1 0.38 0.12
tAUC × 60 min, pg/mL 337.6 ± 90.3 413.2 ± 97.0 378.8 ± 48.7 368.3 ± 44.8 0.73 0.26

Insulin
Fasting, µU/mL 13.1 ± 2.5 12.3 ± 2.1 12.2 ± 2.3 12.1 ± 2.5 0.65 0.57
120 min, µU/mL 101.0 ± 16.8 80.1 ± 11.6 93.0 ± 18.5 76.6 ± 15.9 <0.01 0.95

tAUC × 180 min, µU/mL 14,232.1 ± 2143.5 12,051.5 ± 1829.2 14,482.1 ± 2027.2 12,330.4 ± 1770.1 <0.01 0.98

Note: Data are mean ± SEM. CONT = continuous exercise. INT = interval exercise. AG = acyl ghrelin.
dAG = des-acyl ghrelin. GIP = glucose-dependent insulinotropic polypeptide. GLP-1 = glucagon-like peptide 1.

3.3. Hemodynamics

We report that AIx75 tAUC180min was lowered after both INT and CONT exercise
(p < 0.01; Figure 1), independent of heart rate changes in response to exercise (p = 0.66 and
p = 0.94, respectively; Table 3). CONT training elicited greater improvements than INT
in both bSBP tAUC180min (p = 0.02) and bDBP tAUC180min (p = 0.04; Table 3). However,
CONT and INT comparably reduced AP120min (p = 0.02) and increased PPA120min (p = 0.01),
although there was no influence on 120 min bSBP (p = 0.57) and cSBP (p = 0.96), or 120 min
bDBP (p = 0.45) and cDBP (p = 0.33; Table 3).

3.4. Gut Hormones

Fasting GIP increased with CONT but decreased after INT (p = 0.03). However, there
were no exercise-induced changes to GIP tAUC60min (p = 0.93; Table 2). Furthermore, there
was no significant effect of CONT or INT on fasting AG (p = 0.32) or dAG (p = 0.66), nor
AG or dAG tAUC60min after OGTT administration (p = 0.20 and p = 0.72, respectively).
Additionally, neither exercise intervention altered fasting or tAUC60min GLP-1active (p = 0.38
and p = 0.73, respectively; Table 2).

3.5. Correlations

Exercise-induced reductions in fasting insulin correlated with lower Pf120min (r = 0.54,
p = 0.01; Figure 2). Lower Pb120min correlated with declines in dAG0min (r = 0.47, p = 0.03)
and AG tAUC60min (r = 0.47, p = 0.03; Figure 2). Prior to covarying for insulin, however,
reductions in Pb120min correlated with neither dAG0min (r = 0.37, p = 0.08) nor AG tAUC60min
(r = 0.30, p = 0.18). Furthermore, reduced GLP-1active 0min was associated with lowered
AP180min after covarying for insulin (r = 0.49, p = 0.02; Figure 2) but not before (r = 0.32,
p = 0.19), and increased GLP-1active tAUC60min was associated with decreased Pf180min
(r = −0.51, p = 0.03; Figure 2) but not before (r = −0.18, p = 0.43).
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forms in the fasted or post-prandial states. While there were no changes to fasting (G) or tAUC (I) 
pulse pressure amplification (PPA), exercise, regardless of intensity, increased 120 min PPA (H). 
Data are mean ± SEM. * Denotes a significant (p ≤ 0.05) difference between pre- and post-exercise 
conditions. 
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bSBP        

Fasting, mmHg 131.1 ± 3.2 133.9 ± 3.4 140.2 ± 3.7 143.3 ± 5.0 0.66 0.58 
120 min, mmHg  135.9 ± 4.2 135.7 ± 3.8 143.4 ± 5.1 145.0 ± 4.6 0.57 0.88 
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min  24,681.4 ± 614.5 23,196.4 ± 844.6 25,412.3 ± 620.3 25,772.1 ± 654.3 0.34 0.02 
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Figure 1. Effect of continuous (CONT) and interval (INT) exercise on measures of aortic waveforms
and central hemodynamics. Exercise did not alter forward (A–C) or backward (D–F) pressure
waveforms in the fasted or post-prandial states. While there were no changes to fasting (G) or
tAUC (I) pulse pressure amplification (PPA), exercise, regardless of intensity, increased 120 min
PPA (H). Data are mean ± SEM. * Denotes a significant (p ≤ 0.05) difference between pre- and
post-exercise conditions.

Table 3. Effects of continuous and interval exercise on central and peripheral hemodynamics.

CONT INT ANOVA
p Value

Pre Post Pre Post Test G × T

bSBP
Fasting, mmHg 131.1 ± 3.2 133.9 ± 3.4 140.2 ± 3.7 143.3 ± 5.0 0.66 0.58
120 min, mmHg 135.9 ± 4.2 135.7 ± 3.8 143.4 ± 5.1 145.0 ± 4.6 0.57 0.88

tAUC, mmHg × 180 min 24,681.4 ± 614.5 23,196.4 ± 844.6 25,412.3 ± 620.3 25,772.1 ± 654.3 0.34 0.02
cSBP

Fasting, mmHg 124.9 ± 3.3 124.9 ± 3.1 134.9 ± 3.9 132.9 ± 4.9 0.14 0.09
120 min, mmHg 125.3 ± 3.6 123.0 ± 3.4 131.5 ± 5.0 130.4 ± 4.6 0.96 0.82

tAUC, mmHg × 180 min 22,866.9 ± 546.6 22,107.5 ± 479.5 23,225.0 ± 562.0 23,185.4 ± 620.3 0.45 0.32
bDBP

Fasting, mmHg 79.6 ± 3.1 81.1 ± 2.9 85.3 ± 3.5 83.7 ± 3.0 0.92 0.53
120 min, mmHg 79.0 ± 2.3 78.4 ± 2.4 80.0 ± 3.1 81.6 ± 2.9 0.45 0.19

tAUC, mmHg × 180 min 14,145.0 ± 392.9 13,305.0 ± 60.1 14,261.5 ± 351.0 14,481.4 ± 394.7 0.46 0.04
cDBP

Fasting, mmHg 80.9 ± 3.1 82.4 ± 2.9 84.5 ± 3.2 85.1 ± 3.0 0.98 0.55
120 min, mmHg 80.1 ± 2.2 74.4 ± 2.4 81.1 ± 3.0 83.6 ± 2.9 0.33 0.19

tAUC, mmHg × 180 min 14,449.3 ± 394.8 14,287.5 ± 414.0 14,513.1 ± 343.5 14,755.7 ± 402.4 0.89 0.41
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Table 3. Cont.

CONT INT ANOVA
p Value

Pre Post Pre Post Test G × T

bPP
Fasting, mmHg 54.3 ± 2.7 52.8 ± 2.9 62.4 ± 2.5 59.6 ± 3.6 0.23 0.80
120 min, mmHg 56.9 ± 3.4 57.3 ± 3.2 63.4 ± 4.1 63.4 ± 3.2 0.98 0.99

tAUC, mmHg × 180 min 10,620.0 ± 467.1 10,210.0 ± 401.3 11,173.8 ± 565.9 11,290.7 ± 483.7 0.58 0.10
cPP

Fasting, mmHg 44.0 ± 2.4 42.6 ± 2.5 50.6 ± 2.2 47.8 ± 3.4 0.16 0.98
120 min, mmHg 44.1 ± 2.8 43.2 ± 2.5 49.6 ± 3.5 47.3 ± 2.9 0.75 0.37

tAUC, mmHg × 180 min 8247.7 ± 423.8 7820.0 ± 321.6 8651.5 ± 473.6 8520.0 ± 414.7 0.35 0.34
AIx

Fasting, % 28.4 ± 2.3 28.8 ± 2.5 28.5 ± 3.3 25.9 ± 3.0 0.56 0.55
120 min, % 24.7 ± 2.1 18.4 ± 1.9 23.6 ± 3.2 17.0 ± 2.9 <0.01 0.66

tAUC, % × 180 min 4753.8 ± 278.1 3730.7 ± 280.3 4097.1 ± 386.5 3398.6 ± 419.5 <0.01 0.72
AP

Fasting, mmHg 15.4 ± 1.1 15.6 ± 1.4 19.1 ± 2.2 16.7 ± 2.2 0.26 0.35
120 min, mmHg 13.6 ± 1.3 10.8 ± 1.1 16.5 ± 1.8 10.6 ± 2.1 0.02 0.52

tAUC, mmHg × 180 min 2809.3 ± 209.8 2222.5 ± 162.8 2765.0 ± 242.0 2190.0 ± 256.5 <0.01 0.79
HR

Fasting, beats min−1 60.0 ± 2.4 60.0 ± 2.9 58.7 ± 3.0 59.8 ± 2.2 0.66 0.22
120 min, beats min−1 62.9 ± 1.9 61.9 ± 2.2 61.1 ± 2.4 62.2 ± 1.9 0.94 0.35

tAUC, mmHg × 180 min 11,259.2 ± 348.0 11,357.5 ± 432.5 11,113.8 ± 429 11,112.5 ± 325.2 0.73 0.85

Note: Data are mean ± SEM. CONT = continuous exercise. INT = interval exercise. bSBP = brachial systolic
blood pressure. cSBP = central systolic blood pressure. bDBP = brachial diastolic blood pressure. cDBP = central
diastolic blood pressure, bPP = brachial pulse pressure, cPP = central pulse pressure, AIx = augmentation index,
AP = augmentation pressure, and HR = heart rate.

Metabolites 2023, 13, x FOR PEER REVIEW 8 of 14 
 

 

Exercise-induced reductions in fasting insulin correlated with lower Pf120min (r = 0.54, 
p = 0.01; Figure 2). Lower Pb120min correlated with declines in dAG0min (r = 0.47, p = 0.03) and 
AG tAUC60min (r = 0.47, p = 0.03; Figure 2). Prior to covarying for insulin, however, reduc-
tions in Pb120min correlated with neither dAG0min (r = 0.37, p = 0.08) nor AG tAUC60min (r = 
0.30, p = 0.18). Furthermore, reduced GLP-1active 0min was associated with lowered AP180min 
after covarying for insulin (r = 0.49, p = 0.02; Figure 2) but not before (r = 0.32, p = 0.19), 
and increased GLP-1active tAUC60min was associated with decreased Pf180min (r = −0.51, p = 
0.03; Figure 2) but not before (r = −0.18, p = 0.43).  

 
Figure 2. Correlations in fasted and post-prandial gut hormone changes following the intervention. 
The change (∆) in insulin120min to the ∆ in pulse pressure amplification (PPA)120min (A). The ∆ in acyl-
ated-ghrelin (AG) tAUC to the ∆ in backward pressure (Pb)120min (B). The ∆ in AG tAUC to the ∆ in 
central pulse pressure (cPP)120min (C). The ∆ in fasting des-acylated ghrelin dAG to the ∆ in Pb120min 

(D). The ∆ in fasting dAG to the ∆ in cPP120min (E). The ∆ in fasting glucagon-like peptide (GLP-1) to 
the ∆ in augmentation pressure (AP)180min (F).  

4. Discussion 
The primary finding from the present study is exercise, independent of intensity, re-

duced post-prandial AIx and AP, as well as increased post-prandial PPA in older adults 
with prediabetes. However, CONT exercise yielded lower blood pressure responses dur-
ing the OGTT than INT. This contrasts prior work suggesting INT may be better at reduc-
ing fasted blood pressure, particularly during the immediate post-exercise period (~1 h) 
[35]. The exact cause of improved post-prandial blood pressure following CONT and INT 
is beyond the scope of this work, but we [36] and others have reported that CONT exercise 
favors increased conduit artery blood flow during an OGTT [37] and/or brachial flow-

Figure 2. Correlations in fasted and post-prandial gut hormone changes following the intervention.
The change (∆) in insulin120min to the ∆ in pulse pressure amplification (PPA)120min (A). The ∆ in
acylated-ghrelin (AG) tAUC to the ∆ in backward pressure (Pb)120min (B). The ∆ in AG tAUC to the
∆ in central pulse pressure (cPP)120min (C). The ∆ in fasting des-acylated ghrelin dAG to the ∆ in
Pb120min (D). The ∆ in fasting dAG to the ∆ in cPP120min (E). The ∆ in fasting glucagon-like peptide
(GLP-1) to the ∆ in augmentation pressure (AP)180min (F).



Metabolites 2023, 13, 137 8 of 13

4. Discussion

The primary finding from the present study is exercise, independent of intensity,
reduced post-prandial AIx and AP, as well as increased post-prandial PPA in older adults
with prediabetes. However, CONT exercise yielded lower blood pressure responses during
the OGTT than INT. This contrasts prior work suggesting INT may be better at reducing
fasted blood pressure, particularly during the immediate post-exercise period (~1 h) [35].
The exact cause of improved post-prandial blood pressure following CONT and INT is
beyond the scope of this work, but we [36] and others have reported that CONT exercise
favors increased conduit artery blood flow during an OGTT [37] and/or brachial flow-
mediated dilation [38]. As flow-mediated dilation is a non-invasive measure of nitric oxide
bioavailability, it is possible that the rhythmic nature of muscle contraction during CONT
exercise promoted endothelial function. In either case, few data are available examining
aortic waveforms following short-term exercise [39–41]. Our current findings of no change
in Pf or Pb contrast some prior work displaying reduced Pf and Pb following lower body
exercise in the immediate post-exercise period for up to 2 h [41]. However, this latter study
was conducted in participants who were young, healthy adults (26.0 ± 3.0 yr), and aortic
waveform measures were taken every 20 min up to 2 h after exercise, thereby making
comparisons difficult to our older participants (61.3 ± 1.5 yr). Taken together with this
immediate post-exercise work, our data suggests these effects are short-lived, potentially
since we observed no effect on fasting indices 24 h after the last training session. Another
study looking at resistance exercise in healthy adults on aortic waveforms reported that
AIx increased 1 h following the bout [40], and other work saw similar increases in AIx
10 min after a bout of resistance exercise, but no changes in central or brachial blood
pressures [39]. The mechanisms mediating this contrary response to aerobic exercise are
unclear but might relate to upper versus lower body exercise and stimulation of muscle
mass. Further investigation is warranted in this area given recent work suggesting cardiac
adaptations to aerobic and resistance exercise are unique [42]. In either case, our findings
extend upon this exercise work by showing favorable effects in the post-prandial period in
older adults with prediabetes.

Post-prandial gut hormones have been purported to influence vascular function [43–45].
Contrary to our hypothesis, gut hormones alone did not associate with any aortic wave-
forms measured in this study. This is surprising, given AG and dAG have both been
implicated in vasomotor tone and nitric oxide-mediated endothelial function [43]. Indeed,
AG and dAG were also both shown to inhibit ET-1-mediated vasoconstriction when applied
to artery segments [43]. Additionally, GLP-1 has been shown to enhance muscle microvas-
cular perfusion in healthy humans, as well as increase brachial artery diameter and flow
velocity through PKA (protein kinase A)-mediated eNOS activation [45]. Lastly, GIP has
been demonstrated to increase blood flow and triglyceride clearance in abdominal adipose
tissue of lean humans via the recruitment of capillaries promoting lipoprotein lipase activity
on triacylglycerol particles [43]. While much of these data demonstrate favorable effects
of gut hormones on the vasculature, direct infusion, rather than oral ingestion, was used.
Hence, we looked to expand on this work by testing if exercise would influence aortic wave-
forms via modulation of gut hormones during an OGTT. In our study, neither fasting or
post-prandial AG, dAG, or GLP-1active was altered compared with pre-intervention, and the
change in these hormones did not correlate independently with aortic waveform responses.
Why these hormones did not change more robustly is difficult to address, but total ghrelin
often increases following weight loss greater than 3 kg, which is considerably more than the
present study [46]. Another possibility is that gut hormone sensitivity changes may have
occurred after exercise training, such that changes in gut hormones were not observed [47].
Indeed, recent work highlights improved GLP-1 sensitivity following endurance exercise
in women with obesity. Given we did not measure gut hormone sensitivity, we cannot
determine if a lack of change in hormones reflects a more sensitive system [48]. Regardless,
our work suggests that two weeks of exercise is capable of improving aortic waveforms and
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blood pressure in older adults with prediabetes, and the gut hormones measured herein do
not appear independently related.

In human endothelial cells, insulin binds to the insulin receptor (IR) and tyrosine
kinase phosphorylates IRS-1. This phosphorylation leads to the downstream binding
and activation of PI3K and Akt. Thereafter, Akt phosphorylates and activates eNOS for
nitric oxide production [49]. Nitric oxide promotes the relaxation of smooth muscle cells
lining the vessel walls, which ultimately increases perfusion and delivery of glucose and
insulin to target tissues [37]. Endogenous insulin is influenced significantly by each of
the gut hormones measured in this study. For example, a primary function of GLP-1
and GIP is the promotion of pancreatic insulin secretion [50]. Additionally, ghrelin has
been reported to blunt beta-cell insulin secretion [51,52]. Thus, it would be reasonable to
expect that changes in ambient insulin concentration during the post-prandial state might
influence the relationship between gut hormones and aortic waveforms. Interestingly, dAG,
AG, and GLP-1active correlated with changes in aortic waveforms only after covarying for
changes in insulin tAUC. Specifically, reductions in fasting dAG and AG tAUC were both
associated with lowered Pb120min. This is clinically relevant as lower Pb suggests reduced
impedances from the vascular walls producing a partial wave reflection back towards the
heart [4,5]. Given, though, that ghrelin infusion has been shown to promote endothelial
function, it is interesting that reductions in these hormones were associated with favorable
Pb120min results. A possible reason for this relates to ghrelin inducing reduced beta-cell
function and/or promoting insulin resistance [53]. In the present study, insulin levels were
reduced after both CONT and INT, perhaps suggesting the vasculature became more insulin
responsive with less ambient ghrelin in circulation. Furthermore, this may explain the lack
of change in post-prandial AG and dAG seen in both CONT and INT, as insulin infusion
has been shown to decrease circulating total ghrelin [54]. Alternatively, it remains possible
that the interaction between ghrelin and insulin influenced cellular signals (e.g., Akt) to
modulate vessel function [55]. Indeed, lower fasting insulin correlated with lower Pf120min.
This would be consistent with the reduced left ventricular workload and higher PPA seen
with our intervention. In fact, increases in PPA are favorable as they demonstrate central
arterial compliance leading to lower cPP relative to bPP [56]. Interestingly, increases in
GLP-1active tAUC60min were associated with reduced Pf180min. Consistent with prior work,
infusion of GLP-1 into healthy participants improved endothelial function [46]. In turn,
better peripheral blood flow may enable greater delivery of insulin to reduce load on the left
ventricle [57], which mirrors our reduced post-prandial AIx and AP, independent of heart
rate, following exercise. Collectively, insulin appears to be a central post-prandial hormone
regulating vascular function following exercise training in older adults with prediabetes.

This study has limitations that may impact our interpretations. The present study may
be underpowered to detect statistical differences in some vascular outcomes. Based on
tAUC data for Pf and Pb, the sample size required to detect an effect with 0.80 power at
0.05 significance was calculated for Pf (delta = 254, standard deviation (SD) = 687, n = 59)
and Pb (delta = 117, SD = 446, n = 59) to inform future studies examining exercise and
pressure waveforms. Interestingly, other work from our lab in women with obesity has
similarly reported reductions in AIx75 following 2 weeks of exercise without concurrent
changes in Pb or Pf [24]. Why we detect changes in AIx75, as well as blood pressure,
is beyond the scope of this study but may be attributable to the software’s sensitivity
to detect changes in the indirect measure of the waveforms during analysis and/or the
use of an OGTT vs. direct hormone infusion, given insulin infusion has previously been
shown to lower Pb in about 20 subjects [58]. A 75 g OGTT, rather than a mixed meal,
was used to characterize post-prandial gut hormones. This may limit generalizability of
the findings as macronutrients have been demonstrated to affect post-prandial ghrelin.
For instance, ghrelin suppression occurs more from protein than carbohydrate or lipid-
based meals [59]. Furthermore, food intake sequence has been shown to influence incretin
responses. Incretin responses to carbohydrates in a meal are blunted when protein is
consumed beforehand [60]. In either case, OGTT and mixed-meal tolerance tests show
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similar directional post-prandial gut hormone responses [61,62], with some alterations in
magnitude of GLP-1 stimulation [63] and ghrelin suppression [64]. Another consideration
is that gut hormones were measured at 0, 30, and 60 min of a 75 g OGTT. These limited
timepoints may underestimate the effects of exercise on the hormones of interest. However,
studies have demonstrated peak suppression of ghrelin, in addition to stimulation of GIP
and GLP-1, occurs within the first 60 min of the OGTT [65], suggesting we are likely to
depict initial gut hormone responses. However, it is possible that differences in gut hormone
clearance rates could influence the vasculature. This study was also completed with an
absence of healthy controls. Obesity status itself may blunt GLP-1 secretory responses to
aerobic exercise [66], as well as mitigate AG increase following exercise [67]. Moreover,
the present study features a modest sample size and primarily white women, highlighting
additional attention to diverse groups of people is warranted. A non-exercise control
was not included, so the independent effects of exercise may be over-/under-estimated.
The study also consisted mostly of older white women, thereby limiting these findings to
younger men and women from diverse backgrounds. Lastly, we used aortic waveforms
to characterize vascular function. While some suggest AIx may be used as an indicator
of arterial stiffness, it is worth nothing that pulse wave velocity (PWV) is considered the
better non-invasive measure of arterial stiffness. Thus, we are not able to state whether gut
hormones impact arterial stiffness, but instead focused on analysis of changes in aortic load
and/or peripheral arterial compliance.

In conclusion, two weeks of exercise improved post-prandial aortic waveforms in older
adults with prediabetes, independent of intensity. Furthermore, CONT exercise favored
reductions in post-prandial blood pressure when compared with INT exercise. While gut
hormone changes after exercise training were not independently related to improvements
in central hemodynamics, covarying for insulin revealed significant relationships. This
observation suggests gut hormones may interact with insulin to influence aortic waveforms
in older adults with prediabetes. Therefore, additional studies are necessary to elucidate
the underlying pancreatic-gut “cross-talk” mechanism with the vasculature to optimize
CVD risk reduction.
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