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Abstract: Huntington’s disease (HD) is a progressive, fatal neurodegenerative disease characterized
by motor, cognitive, and psychiatric symptoms. The precise mechanisms of HD progression are
poorly understood; however, it is known that there is an expansion of the trinucleotide cytosine-
adenine-guanine (CAG) repeat in the Huntingtin gene. Important new strategies are of paramount
importance to identify early biomarkers with predictive value for intervening in disease progression
at a stage when cellular dysfunction has not progressed irreversibly. Metabolomics is the study
of global metabolite profiles in a system (cell, tissue, or organism) under certain conditions and is
becoming an essential tool for the systemic characterization of metabolites to provide a snapshot of the
functional and pathophysiological states of an organism and support disease diagnosis and biomarker
discovery. This review briefly highlights the historical progress of metabolomic methodologies,
followed by a more detailed review of the use of metabolomics in HD research to enable a greater
understanding of the pathogenesis, its early prediction, and finally the main technical platforms in
the field of metabolomics.
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1. Introduction

Huntington’s disease (HD) is a rare genetically inherited neurodegenerative disorder of
the central nervous system characterized by unwanted choreatic movements, behavioral and
psychiatric disturbances, and dementia [1] HD affects approximately 1 in 10,000 people [2].
In general, a child whose parent (either sex) has HD has a 50% chance of inheriting the
disease. It is a lifelong condition for both the individual and family and progressively
worsens without treatment.

The proposed underlying mechanism of Huntington’s disease involves several key
aspects such as mutant Huntington protein formation, protein aggregation, toxicity and
neuronal dysfunction, impaired autophagy and proteasomal function, mitochondrial dys-
function, transcriptional dysregulation, and excitotoxicity. The expansion of trinucleotide
repeats in the HTT gene is central to the pathogenesis of Huntington’s disease. As the
CAG repeats expand, the length of the polyQ tract in the huntingtin protein increases.
This expanded polyQ tract is a key factor in the abnormal folding and aggregation of the
mutant protein. The exact molecular mechanisms by which mHTT induces toxicity and
disrupts cellular functions are complex and multifaceted. The age of onset and severity of
symptoms in HD are often correlated with the length of the CAG repeat expansion, with
longer repeats generally leading to earlier and more severe manifestations of the disease.
Understanding these mechanisms at the molecular level is crucial for the development
of targeted therapeutic strategies for Huntington’s disease [3,4]. HD appears to be more
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prevalent in people of European, North American, and Australian ancestry compared to
those of Asian background [5].

To date, studies have mainly focused on alleviating symptoms rather than determining
how to reverse the progression [3,6]. Although the mutant gene responsible for causing HD,
htt, was discovered 30 years ago, there is still no cure for the disease. Drugs currently in
clinical trials mostly target symptom control [6,7]. One of these investigational modalities
includes vesicular monoamine transporter type 2 (VMAT2) inhibitors that are now used to
treat HD-associated chorea. A newer VMAT2 inhibitor, deutetrabenazine (AUSTEDO™),
has an improved pharmacokinetic profile and was recently approved by the U.S. Food
and Drug Administration (FDA). Deutetrabenazine has fewer side effects and a longer
half-life than older VMAT2 inhibitors. Despite the emerging data indicating significant
symptomatic improvement of HD chorea, its long-term benefits remain unknown, and
large clinical trials are warranted [8]. An important limitation of VMAT2 inhibitors is their
contraindication in patients with a history of depression and suicidal ideation, which are
common in HD patients.

HD is a monogenic Mendelian disorder. Therefore, the pathogenesis of the disease
is molecular, not epidemiological. Family members are at higher risk of inheriting HD
than the population at large. To confirm the molecular biomarkers, a careful study of the
entire family, not just primary cases, is required. As in other neurodegenerative diseases,
the traits in Huntington’s are complex. The mutation leads to multiple internal alterations
with multiple external conditions across the lifespan. To characterize an HD biomarker
accurately, it is necessary to accumulate an appropriate collection of data that will reveal
the underlying mechanism of the disease. Thus, for biomedical researchers around the
world, a major goal is to identify new biomarkers and revise existing biomarkers for HD.
As a result, biomarker discovery will aid in early detection and help physicians monitor
the progression of the disease. For the past decade, advances in emerging technologies,
such as high-resolution liquid chromatography-mass spectrometry (LC-MS) and nuclear
magnetic resonance (NMR) imaging, have made it possible to explore the disease-causing
mechanisms of HD.

A significant obstacle in the realm of neurodegenerative diseases is the identification
of biological signatures that correlate with disease progression or react to interventions.
Underscoring the significance of early detection in Huntington’s disease is paramount, as
it sets the stage for timely interventions and treatments, particularly during the crucial
initial stages when their efficacy is expected to be most pronounced. Within the land-
scape of Huntington’s disease, evident disruptions in cellular metabolic processes become
apparent. Unveiling the complexities of metabolic changes linked to Huntington’s dis-
ease, metabolomics plays a key role in shaping personalized therapeutic approaches. This
in-depth comprehension opens avenues for precise and individualized interventions, po-
tentially enhancing the effectiveness of treatments and optimizing the overall care for those
impacted by Huntington’s. Metabolomics emerges as a crucial field in precisely identifying
distinct metabolic alterations linked to the disease [9–18].

The aim of this review is to examine and summarize the published literature on
metabolomic studies in humans, animals, and various biological fluids using existing
analytical techniques for HD. The study of metabolomic phenomena not only serves as
a reflection of genomics but also helps us better understand the functional activity of
proteins and other molecules. The field of metabolomics has been revolutionized in the past
decades, so we highlight the development of metabolomics to date. Lastly, we highlight the
differences between targeted and untargeted metabolomics, their challenges, and insights
into the practical considerations of targeted and untargeted metabolomics.

2. How It All Began: Ancient and Modern History

Evidence suggests that as far back as 2600 BCE, humans have had a thirst for health-
related information. Ancient Chinese cultures recognized the importance of different
signs for detecting disease. For example, as early as 2000–1500 BCE, sweet-tasting urine
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was considered indicative of disease (now known as diabetes). Likewise, Ancient Greek
history also affirms the idea that changes in tissue and biological fluids are tell-tale signs
of disease [19]. Clinical testing during the Middle Ages also involved biofluid tasting
(Figure 1). During the 13th century (1213–1288), metabolism was described by the polymath
Ibn al-Nafis, who stated that “the body and its parts are in a continuous state of dissolution
and nourishment, so they are inevitably undergoing permanent change” [20,21].
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smell, and taste of the patient’s urine. The medieval wheel complements modern metabolomic
research, as many diseases affect metabolism and many changes in metabolism can be detected in the
urine. The urine wheel was published in 1506 by Ullrich Pindar, in his book Epiphanie Medicorum.
The figure was adapted from Nicholson 2 [22].

Compared with other omics, metabolomics studies change in small-molecule metabo-
lite concentrations, which help confirm an organism’s phenotype. Metabolites are, in
general, low-molecular-weight molecules (<1500 Da). The metabolome reveals important
changes in the genome, transcriptome, and proteome [23]. Over the past decade, there has
been a spike in interest in this field. Recent studies demonstrate that metabolomics plays a
central role in areas of biology, ecology, cancer, aging, and neurodegenerative disorders [24].
In general, fields such as genomics, transcriptomics, and proteomics help us determine
what might have happened or predict what may happen. In contrast, metabolomics and
lipidomics offer a continuous and up-to-date picture of the state of a biological system. Of
all the various omics approaches, to date, metabolomics offers the best potential for applica-
tions in biomarker discovery in systems biology [25,26]. Researchers have also shown that
metabolomics holds promise for determining neuroactive small-molecule metabolites that
are associated with communication between the gut microbiota and brain [27]. Great strides
have been made in metabolomics applications to the field of neurology, including neural
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development and neurodegenerative disorders, such as Parkinson’s disease, Alzheimer’s
disease, HD, and amyotrophic lateral sclerosis [28].

The naming of Huntington’s disease goes back to 1872 when George Huntington
published his first and only scientific paper on chorea. Although he was not the first to
describe the disease, the advantage of his study was that it documented the inheritance
of the disease through two older generations (father and grandfather) of Huntington.
Thus, the disease became known as Huntington’s chorea. For a long time, no significant
progress was made in further understanding Huntington’s chorea [29]. Modern interest in
Huntington’s chorea began in the 1980s. After researchers revealed extensive non-motor
symptoms and signs, the name was changed to Huntington’s disease (HD). A study in the
early 1980s confirmed a linkage on chromosome 4. It took a decade to confirm the gene
for HD, and after 1993, research on HD expanded significantly [29]. With the efforts of a
collaborative research group consisting of six teams in the United States and Great Britain,
the htt gene was discovered.

From the early 2000s to 2013, studies confirmed that the prevalence of HD varied
around the world. The differences in the prevalence are largely due to higher cytosine-
adenine-guanine [CAG] repeat sizes in normal alleles in European populations compared
to Asian populations [30]. Hence, reports indicate very low rates of HD in Japan and South
Africa and much higher rates in Europe (Figure 2). It is assumed that the disease spread
due to the migration of affected people from northwest Europe [31–33].
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Figure 2. Histogram of the published manuscripts on Huntington’s disease. The chart is derived
from the PubMed search engine by using the keyword “Huntington’s Disease.” The csv file format
was obtained in June 2021 to plot an individual histogram of each decade. (i) Huntington’s research
has continued to increase over the past two decades. (ii) The number of published manuscripts
increased recently compared to early 1900 to 2000.
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Previously unrecognized small populations with HD disease have been reclassified
more recently. These include HD cases from Lake Maracaibo, Venezuela, which are thought
to derive from a single ancestor [34]. This Venezuela project has become a landmark in the
history of HD because it confirmed the mapping and isolation of the HD gene. Although
the discovery of the HD gene has opened new research lines and led to new models to
predict the disease, the mechanism of how htt acquires abnormal functioning and cell death
remains elusive (Figure 2).

Despite ongoing efforts to find a possible cure for the disease, most drugs provide only
palliative relief [7]. One advantage of studying a monogenic Mendelian neurodegenerative
disorder is that pre-symptomatic biomarkers will help confirm the progression of the dis-
ease. Thus, it will be valuable for clinicians to address the disease state with a quantifiable
biomarker rather than a behavioral phenotype.

The history of the omics fields, including genomics, transcriptomics, proteomics,
metabolomics, and lipidomics, began with the Human Genome Project, which took place
from 1990 to 2003 [35]. After completing the Human Genome Project, researchers around
the world began to apply its methods to explore additional biological niches, such as the
transcriptome, proteome, and metabolome. Thus, omics emerged as an interdisciplinary
field consisting of genomics, transcriptomics, epigenomics, proteomics, metabolomics, and
lipidomics. It provides insights into the profiling and pathological complexity of systems
biology. For example, genomics is used to confirm the analysis of nucleotide sequences,
genome structure, and its composition. It also reveals genetic variants that can be used
to confirm the disease state and the response to treatment. Genome-wide association
studies (catalog: https://www.ebi.ac.uk/gwas/home, accessed on 21 July 2021) identify
thousands of genetic variants associated with complex diseases in human populations [1,36].
Ribonucleic acid (RNA) is considered the primary functional readout of deoxyribonucleic
acid (DNA). RNA performs an important function known as transcription and plays a vital
role in translation, which is studied by proteomics. The ENCODE Consortium confirmed
an integrated encyclopedia of DNA elements in the human genome. The ENCODE project
confirmed that only ~3% of the genome encodes proteins and that up to 80% of the genome
is transcribed (Consortium, EP 2012) [35].

In the last decade, the study of metabolomics and lipidomics has become more widespread.
The history of metabolomics profiling goes back to the early 1970s. Zlatkis and colleagues
performed urine profiling of 140 subjects or more [37]. Two years later, to improve the
diagnosis of human disease, Thompson and Markey compared separation methods to profiling
the urinary organic acids by GC-MS [38]. For over 40 years, researchers around the world
accumulated publicly available libraries under the standardized conditions of 70-eV electron
ionization energy. The most popular library is the U.S. National Institute of Standards and
Technology (NIST) [39], but larger, less well-curated versions are also available (e.g., the Wiley
registry [40], the open-access MassBank database [41], and the Golm repository) [42]. The
NIST14 library accumulated 242,477 unique compounds, of which roughly one-third have
recorded standardized retention times. enabling the use of two orthogonal parameters (mass
spectral and retention index matching) to identify compounds [43].

Omics is now evolving to a multi-omics approach—a new area that deserves exploration
and includes the integration of genomics, transcriptomics, proteomics, and metabolomics. The
advantages and disadvantages of individual omics analysis have been reviewed [1,36,44] and
are summarized in Figure 3. The data integration of multi-omics analysis is complex. Thus,
each laboratory needs to follow standardized multi-omics sample preparation, data acquisition,
data handling, and data standardization protocols to avoid lab-to-lab variation, which can lead
to biased results. The proteome contains many proteins with a wide range of physicochemical
properties, such as size, charge, and hydrophobicity, which require different types of analytical
techniques. Proteomics is as important as genomics and transcriptomics because it provides
information about enzymes during metabolic processes. Nevertheless, proteomics studies
also confirm rapid changes in cell proliferation and migration and can document not only the
abundance of proteins but also dynamic protein–protein interactions [45].

https://www.ebi.ac.uk/gwas/home
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3. Published Metabolomics Studies on Huntington’s Disease
3.1. Animal Studies

In early HD studies, excitotoxicity-induced cellular death and mitochondrial damage,
which are two different degradation mechanisms found in the brains of HD patients,
were investigated by using toxin-induced HD models—for example, quinolinic acid and
3-nitropropionate injected into mice [46]. After the htt gene was discovered, similar genetic
defects were introduced into animal models. These knock-in and transgenic rodent models
better represent HD progression and pathology. Emerging molecular technologies resulted
in genetically modified animal models (mice and rats) in which researchers attempted to
express the genetic characteristics of HD. In these animal models, mutant htt proteins were
introduced by rodent germline genes. The resulting rat and mouse strains demonstrate
full-length or truncated versions of a mutated htt gene, which is introduced randomly
through the genomic transgene knock-in model or explicitly into the htt gene locus of
rodents. New transgenic mouse models such as the R6/1 (which expresses CAG repeats
114 times) and R6/2 (which expresses CAG repeats 150 times) are the most recent transgenic
mouse models. The mice have severe and early anatomical and behavioral symptoms of
HD and express the human htt gene, especially part of mutant exon 1. Transgenic mice
named N171-82Q express the first 171 amino acids of 82 CAG repeating htt proteins [47].
Compared with the R6/2 model, the behavioral and anatomic symptoms last longer in this
model. Cloning an artificial yeast vector, including very long polyglutamine sequences,
into the mouse genome is one way to create an artificial yeast chromosome (YAC1) [48],
and a similar process has been used to create a transgenic rat model [49] in which the rats
have serious anatomic and behavioral defects and express the CAG repeat 51 times.

The life span of rats is approximately one year longer than that of mice, and their be-
havior is more complex, which makes the transgenic rat model a useful tool for researching
long-term treatment [50]. Some specific regions of the brain can easily be encoded with
genetic mutations by using viral vectors. However, because of the technical difficulties in
creating genetic models, it is more effective to use nonhuman primates [46].

Several different animal models offer different advantages for studying HD. First,
large animal models have a humanoid metabolism, a brain and spinal cord closer to the size
of humans, and a complex immune system are likely to mimic important neuropathological
features in humans. Moreover, they have a long lifespan, which is particularly important for
long-term longitudinal observation. Given the similarities in pathophysiology to humans,
they not only allow for studying new treatment strategies but also provide invaluable
insights into HD etiology and prevention [51,52].

The recently developed high-definition sheep model (OVT73) offers this possibility [53].
These sheep have 73 full-length repeated CAG amplification units of human cDNA trans-
genes. However, they lack both clear behavioral changes and structural changes in the
brain [54], with only subtle neuropathology [55] and few postmortem (PM) changes in the
cerebellar and liver metabolism [56], indicating that the sheep, even at 5 years of age, are
still in the pre-symptomatic stage of HD. An advantage of the HD sheep model is that it can
be monitored long-term to document metabolic alterations in the course of development,
which enables the progression of the disease to be monitored through metabolic alterations
such as rate markers or disease progression [57].

In contrast, HD mouse models, such as R6/2, have been utilized successfully to
measure neuroprotective elements (for example, coenzyme Q10 [coQ10] of mitochondria),
particularly when used with remacemide [58]. However, in a clinical follow-up of patients
with HD, the administration of coQ10 even at very high doses did not demonstrate a
meaningful attenuation of HD patients’ functional decline [59,60]. Similarly, although
preclinical studies of creatine conducted in R6/2 mice showed significant results [58,61],
clinical experiments in patients with early stage HD failed [62]. These treatment failures
require us to ask: can preclinical studies in current high-definition animal models correctly
demonstrate the response in humans? According to the Unified Huntington’s Disease Rate
Scale (UHDRS) [63], a clinical rating scale to assess four domains of clinical performance
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and capacity in HD (motor function, cognitive function, behavioral abnormalities, and
functional capacity), the performance of the metabolic biomarkers used in clinical studies
is poor due to variability or long magnetic resonance imaging (MRI) response time. For
this reason, a two-pronged method may be required to develop more accurate biomarkers.

In recent years, researchers have developed a highly successful transgenic minipig HD
model. Libechov transgenic minipig models of HD (TgHD) [64] utilized a lentiviral method
to introduce a human mHTT exon1 (1548 amino acids), which has a truncated N-terminal
fragment. This fragment contains 124 glutamines (CAGCAA repeat sequence) under the
human htt promoter’s control. This is the first transgenic HD pig model to successfully
deliver germlines. The phenotype of the TgHD model appears to be mild disease. For up
to 16 months, no aggregation formed in the brain tissue, and there were no developmental
or motor deficits until 40 months [64]. Measurable and reliable phenotypes will facilitate
the effective preclinical testing of the model.

Metabolomics strategies based on targeted LC/MS were used to assess biochemical
changes in pre-symptomatic HD sheep in order to identify potential biomarkers [57]. The
metabolites include those previously associated with HD pathology (kynurenine, urea) and
metabolites that have been proposed as metabolic biomarkers of HD (amino acids that have
a branched chain). The current data [57] strongly support the idea that many metabolic
changes occur early in HD (even before symptoms) and may contribute to the damage and
progression of the disease. Another metabolic study used the HD sheep model in which
samples were collected under well-controlled conditions for 24 h to identify many more
dysregulated metabolites. Although a study of patients with HD did not show changes
in all the metabolites identified in the sheep model, all metabolic families or metabolites
identified in the sheep had been previously recognized as being associated with HD [57].
In another previously conducted study investigating metabolite profiles using LC/MS in a
transgenic sheep model of HD (OVT73) at pre-symptomatic ages, the circadian rhythmicity
of metabolites (notably, phosphatidylcholines, amino acids, urea, and threonine) was found
to be dysregulated in pre-symptomatic sheep. Alterations in the metabolomic profile could
be used to differentiate the HD sheep from controls at 5 years of age [54].

Metabolic profiling has also been performed in a mouse model of HD, and the results
show that the levels of cholesterol synthesis precursors in the brain tissue of 6-week-
old R6/1 mice [65] increased, while the levels of N-acetyl aspartic acid (NAA), alanine,
and aspartic acid in the striatum of late-symptomatic R6/2 mice decreased [66]. An 1H-
NMR-based metabolomics study utilizing serum samples from rats showing symptoms
of HD revealed a marked reduction in NAA levels. In those rats, 51 units of transgenes
were re-amplified and transferred by CAG, thereby suggesting the early impairment of
mitochondrial function in HD [67].

A significant increase in urea cycle components, arginine and citrulline, and a sig-
nificant decrease in the plasma sphingolipid level occurred in the sheep model of HD.
The results of investigations [68] in two mouse models and HD carriers concur that blood
levels of citrulline are elevated and associated with abnormal nitric oxide and urea cycles.
Progressive neurodegeneration in HD involves a volume reduction of white and gray
matter as well as myelin degradation. Reduced levels of circulating sphingolipids could
be related to those findings. In addition to myelination/oligodendrocyte deficiency, the
destruction and/or degradation of sphingolipid synthesis likely has a major impact on cell
signaling, synaptic transmission, neurotransmitter receptors, and neural function. This
finding supports the observation that several urea metabolism genes, observed in HD
mouse models, may cause HD symptoms. The disorder of arginase 1 (Arg1) and argini-
nosuccinate synthase 1 (Ass1), the main components of the urea cycle, might accompany
toxic metabolite collections, thereby exacerbating HD neuropathology [69,70]. Other ab-
normalities in the urea cycle, such as enzyme inhibition, high citrulline blood levels, and
hyperammonemia, have been found in HD patients and two mouse models of HD [71,72].
Conversely, sheep models of HD show a decrease in 10 amino acids, including valine,
isoleucine, and leucine (proteinogenic branched amino acids), which have been identified
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as potential HD biomarkers [73]. HD sheep also have reduced levels of amino acids with a
branched sidechain, and the changes are seen at least 3 years after the onset of the disease.
Amino acids that have a branched sidechain can potentially be used as biomarkers of HD.
Based on measurements of five classes of metabolites analyzed using a logistic prediction
model, it was suggested that eight metabolic biomarkers should be used as an optimized
marker panel. Using these eight metabolites (threonine, C14:1, sphingomyelin (OH) C24:1,
lysophosphocholine a C17:0, phosphocholine aa C36:5, phosphocholine aa C40:4, valine,
and citrulline), 80% of HD sheep can be identified, with 90% confidence, as transgenic
animals. These eight reliable and relatively easy-to-measure biomarkers still need to be
translated into human research.

There have been many blood metabolomic analyses in the transgenic rat model of
HD. A recent NMR-based metabolomics study showed that the metabolites NAA, glu-
tamine, succinic acid, lipids, lactate, and glucose, were elevated. Possible explanations
for increased glutamine and glucose concentrations observed in HD patients have been
proposed: Sibson et al. [74] found that the formation of glutamate and the consumption
of glucose has a 1:1 stoichiometry. The increase in glutamine levels may indicate a de-
crease in glutaminase activity. Glutaminase, an enzyme found in neuronal mitochondria, is
responsible for converting glutamine to glutamic acid. The interruption of the glutamate–
glutamine cycle could indicate a problem with energy metabolism and mitochondrial
respiration [66]. Thus, the reduction of glutaminase activity prevents the conversion of
glutamine [66]. Consequently, neurons lack glutamate for neurotransmission. This may
also reflect mitochondrial dysfunction. There is also evidence for decreased glucose utiliza-
tion and reduced succinate concentrations. These findings could be due to an impairment
of glycolysis or of the TCA cycle. One possibility would be an impairment of aconitase
activity, which would then lead to an increase in citrate and the inhibition of glycolysis. A
decrease in aconitase activity was recently found in HD postmortem tissue as well as in
the transgenic HD mice [75]. The precise nature of the metabolic defects in both transgenic
HD mice and HD patients requires further investigation. The succinic acid concentration
in blood of transgenic HD rats was elevated, likely because of succinite dehydrogenase
(a mitochondrial enzyme that has two different functions) inhibition [67]. First, it is ox-
idized to fumaric acid in the citric acid cycle by succinite dehydrogenase. Second, the
mitochondrial electron transport chain II complex of the respiratory chain is connected
to this enzyme [76]. Mitochondrial complex II activity also decreases in HD patients [75].
Therefore, the recently discovered concentration of succinic acid is consistent with previous
results. It is known that reduced NAA concentration is a sign of neuronal dysfunction [66].
In HD [66,77] and other neurological diseases [78,79], the reduction of NAA content has
been well documented. In addition, in HD, the number of CAG repeats and the symptom’s
durability is obviously related to N-Acetyl-L-aspartic acid (NAA) [80]. L-N-acetylaspartyl
transferase, the enzyme responsible for NAA synthesis, is found only in mitochondria [79].
Because the concentration of NAA seems to be reduced by mitochondrial respiratory chain
inhibitors [77], the diminished NAA content could indicate that energy production in
mitochondria is impaired [66].

A few studies investigated alterations in cerebrospinal fluid (CSF) in HD. As men-
tioned earlier, there are limitations to studying CSF biochemically. Recent investigations
revealed that the level of glucose and lactate in CSF samples are correlated with the disease
status. In both serum and CSF samples, elevated glucose is thought to be a pre-symptomatic
metabolic biomarker of HD. Although the literature [77,81] described evidence of diabetic
patients with HD, the serum glucose levels in transgenic rat models did not change with
age [49]. Thus, the observed glucose difference might be generated by a disorder in another
metabolic pathway. There is ample proof of impaired glucose metabolites in HD [77,82]. In
addition, the theory that HD transgenic rats lack oxidative energy metabolism is supported
by a difference in lactic acid levels between transgenic animals and controls. A reduction
of nicotinamide adenine dinucleotide (NAD+ to NADH) is necessary to convert glucose
to pyruvate during glycolysis. Pyruvate is oxidized to acetyl-CoA then enters the citric
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acid cycle in the aerobic respiration of cells. Reduced NAD+ produced during glycolysis
reactions is oxidized through the electron transport chain of mitochondria. However, the
disruption of the citric acid cycle or the electron transport chain of mitochondria might
obstruct pyruvate from entering energy metabolism driven by oxidation. Because reduced
NAD+ must be re-oxidized to NAD+ to stabilize the state, another method of transfer-
ring electrons might be used; that is, pyruvate being reduced to lactic acid through a
reaction catalyzed by lactate dehydrogenase. Consequently, the end-product of anaerobic
glycolysis (lactic acid concentration) increases, which also results in insufficient energy
metabolism [83].

3.2. Human Studies

Central and functional changes in the brain can be used as putative biomarkers for
HD. However, one should be aware that insights provided by animal studies frequently fail
to translate to humans [84], and it is very difficult to achieve clear conclusions to be drawn
from animals to human [85]. Therefore, it is tremendously important, when possible, to
provide optimal pathology specimens. By determining specific metabolic characteristics
of HD via clinical samples, we can significantly refine our knowledge about pathologic
aspects of this disease. Designated profiles can be used to screen patients and to monitor
pharmacovigilance and efficacy. Such knowledge will also allow for timely diagnosis
because clinical evaluation scores and HD disease progression can vary greatly.

Using LC-MS, Graham et al. accurately identified and quantified 185 metabolites in
the PM frontal lobe and striatum, which are the most severely affected regions, of HD pa-
tients and compared the results to healthy controls. In this study, the findings link changes
in energy metabolism, the oxidation of fatty acids, and phospholipid metabolism to HD
pathology and also demonstrate significant reductions in neurotransmitters. A further
significant difference in the metabolic profile of two brain regions was observed, which
might be explained by extensive nerve loss in the striatum. A multivariate analysis of
the data acquired from the frontal lobe and striatum shows that most of the differences
in HD samples pertain to the metabolite acyl-carnitine, a naturally occurring compound
that transports long-chain fatty acids to the β-oxidation system of mitochondria and phos-
pholipids. Acyl-carnitine has important functions, such as producing platelet-activating
factors, regulating enzyme activity, regulating membrane fusion and antioxidant properties,
and controlling apoptosis [86]. In the lower brain, acyl-carnitine concentration in HD
samples is consistent with other studies that have shown impaired oxidative damage and
shortage of energy metabolism, and mitochondrial succinate dehydrogenase in the brain
of patients with HD. The striatum of HD brain shows remarkably diminished glutamic
acid concentration, which could be due to the reduced number of neurons in this area.
One of the polyamines, spermidine, is elevated in the striatum. Using a 1H NMR-based
metabolomics approach, Graham et al., for the first-time, investigated HD in the striatum
and frontal lobe of a PM human brain [87]. They reported that the major metabolites that
were significantly affected (p < 0.05) in the frontal lobe of HD specimens were l-leucine,
myo-inositol, l-phenylalanine and tyrosine. The metabolite concentrations significantly dif-
ferent (p < 0.05) in the striatum of HD specimens were: 4-aminobutyrate, aspartate, formate,
l-glutamic acid, glycine, inosine, l-leucine, niacinamide, myo-inositol, l-phenylalanine,
taurine, tyrosine, uracil, urea and valine. In this study, the predictive models based on
the metabolite data were able to accurately discriminate between the striatum of control
subjects and HD patients. It was shown that identified metabolites could be considered
potential biomarkers for detecting and monitoring HD. Moreover, as NMR and MRS are
based on the same working principles, it is quite likely that in vivo magnetic resonance
spectroscopy methodologies could be employed as well.

HRMS, 1H-NMR, and LC/MS data are difficult to compare directly due to their different
quantification and extraction procedures. However, the results of these three experimental
methods overlap: the affected metabolites and fold changes are similar. For example, as
measured by HRMS, taurine, glutamic acid, and kynurenine in the striatum are significantly
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reduced [88]. Elevated urea levels were found in the postmortem HD brain [89]. It was
found by 1H-NMR that the amounts of alanine, phenylalanine, tyrosine, glutamine, and
leucine in the frontal lobe were reduced [87]. All the studies mentioned above indicate that a
fully quantitative and targeted method for profiling biochemical pathways in PM human
brain tissues has advantages in HD investigations. Widespread application of methods for
metabolite profiling can help us understand the pathophysiology of HD and could even help
to diagnose diseases in the future. The panel of prospective biomarkers identified for HD
brain pathology could be a potential pre-symptomatic diagnostic test available for clinicians
in the future.

The collection of serum samples for metabolic analysis is easy and minimally invasive
compared to collecting other study materials such as antemortem brain tissue or CSF, either
for longitudinal studies or for use in preclinical and clinical settings. However, only a
few studies have investigated metabolomics of HD in blood products from HD patients.
Mastrokolias et al. studied disorders of the metabolic pathway as well as metabolic markers
of HD status and progression in serum [90]. In that study a targeted mass spectrometry-
based metabolomics approach has been carried out to measure serum metabolite levels
in HD sufferers. A well-defined linear model based on UHDRS identified 10 metabolites
the concentration of which is closely related to the condition and severity of HD. Eight
of the ten metabolites are phosphatidylcholines, and two are amino acids (threonine and
serine). Comparison of such data with data from untargeted studies (for a description,
see Section 4) showed a strong positive correlation between the same metabolites. In
addition, such comparability shows that the latest results are harmonious and beneficial to
prospective research on comprehensive metabolic analysis using different platforms [91,92].
Those findings are consistent with the findings of a study that described a decline in the
level of phosphatidylcholine in lipid extract from the precortical area of HD rats treated
with the mitochondrial toxin 3-nitropropionic acid (3-NP) [93]. Phosphatidylcholine is the
main phospholipid in membranes and is thought to play an important role in cellular fate
and neuronal differentiation [94]. In the past, it has been shown that choline-containing
foods were effective replacement therapy particularly, a potential substrate for acetylcholine
synthesis in the brain [95]. Mastrokolias et al. [90] found higher levels of threonine and
serine in patients with HD compared with controls. The hydroxylated amino acid serine
has a crucial function in the metabolism of pyrimidine and purine because it is the initial
precursor of some nonessential amino acids in the body. Some other metabolites, such as
folic acid and sphingolipids, are derived from serine because it is the main donor of carbon
moieties in the biosynthetic pathway. Hence, the reason for the increase in serine may be
that, in HD, the mentioned amino acids are designed to produce phospholipids, and their
levels decrease with the severity of the disease. In addition, the amino acid isomers of
D-serine can activate N-methyl-D-aspartatic acid (NMDA) receptors and therefore can act
as neuromodulators. NMDA receptors are involved in many biochemical pathways relating
to development, learning, and memory. An excessive induction of NMDA receptors might
be related to HD and other neurodegenerative diseases [96].

The level of threonine, an essential amino acid, also changes in HD [90]. Serine and
threonine together form the only proteinogenic amino acids with altered levels in HD. Thre-
onine can either be thiolyzed to acetyl-CoA or converted to pyruvic acid, which might be a
neuroprotective agent in neurological diseases, by increasing the outflow of glutamic acid
from the brain, removing H2O2, and exerting anti-inflammatory effects [97]. In a rat model
of quinolinic acid–induced HD, pyruvate administration had neuroprotective effects [98].
Thus, the increased threonine level in mutation carriers might be a compensation mecha-
nism to produce more substrates for neuroprotective molecules, such as threonine and/or
pyruvate-metabolizing enzymes.

One of the novel findings in the study by Mastrokolias et al. [90] is a negative correla-
tion between the eight groups of phosphatidylcholine metabolites and disease progression.
The reduced levels of such metabolites indicate altered lipid metabolism in neurodegenera-
tive diseases, suggesting that the use of phosphatidylcholine could be a potential treatment
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option [99,100]. The finding of increased amino acid content is partially consistent with
earlier studies that also found elevated serine levels, but the results were not in the striatum;
they were for the Brodmann area 10 in HD patients [101]. Those results contradict the
results of another study that described the reduction of serine and four other amino acids
in plasma samples of carriers of the HD mutation [102]. Mochel et al. found that isoleucine,
leucine, and valine metabolite levels in plasma samples of HD patients were lower than
those obtained before the onset of symptoms and those from the control group [73]. This
longitudinal metabolic difference can even be better monitored by utilizing multiple plat-
forms and improving the protocols for measuring metabolites. In addition, the difference
can be associated with UHDRS score thresholds used to differentiate symptoms, sample
sizes, and early and mild HD patient groups. Another possible reason for this difference
could be the use of serum versus plasma samples. Because the concentration of metabolites
in serum samples is usually high, the analytical platform used in that study has shown
serum to be more sensitive than plasma [103]. Considering the phenotypic variability
of HD and the different rates of progression in HTT mutation carriers, it is necessary to
validate the findings and improve the research outcomes through further studies, prior
to translating them into clinical trials. The overlap of metabolite concentrations between
groups (HD patients, pre-symptomatic carriers, and healthy subjects) can be reduced via
additional validation experiments to differentiate concentration thresholds that can be
utilized to distinguish stages of HD disease progression.

In a study by Cheng [104], a panel of metabolites from carnitine, amino acid, and
phosphatidylcholine species were used in a global metabolomics screening of plasma
from 15 HD patients and 17 controls to distinguish the HD patient group from the con-
trol group. The quantification of 184 related metabolites (including carnitine, amino acid
and phosphatidylcholine species) in 29 HD patients, 9 pre-symptomatic HD carriers and
44 controls further showed 1 up-regulated (glycine) and 9 down-regulated metabolites
(taurine, serotonin, valine, isoleucine, phosphatidylcholine acyl-alkyl C36:0, phosphatidyl-
choline acyl-alkyl C34:0 and, lysophosphatidylcholine acyl C20:3). These metabolic profiles
strongly indicate that disturbed metabolism is involved in the pathogenesis of HD and
provide novel insights into the development of novel treatment strategies for HD.

Studies on a large number of patients with HD at different phases of the disease have
shown that the level of branched-chain amino acids in patients with HD is significantly
lower than those of controls, which is related to disease progression and weight loss [73,105].
The other amino acid that is at a remarkably low concentration in early and symptomatic
patients is leucine, a well-known activator of the mammalian target of rapamycin (mTOR),
a protein kinase controlling cell growth, proliferation, and survival, leading to increased
autophagic proteolysis. Gruber et al. suggested that serine and asparagine could be poten-
tial biomarkers in HD plasma [102]. However, because CSF is part of the CNS, it is more
suitable for studying diseases that affect the brain. More than 450 metabolites have been
identified and quantified in human CSF [106], some of which have been studied in HD [107]
and other neurological diseases, such as multiple sclerosis [108], Alzheimer’s disease [109],
and Parkinson’s disease [110]. A recent pilot study that conducted a cross-sectional analysis
of plasma and CSF metabolomic markers in HD demonstrated significantly higher plasma
levels of arginine, citrulline, and glycine, with decreases in total and D-serine, cholesterol es-
ters, diacylglycerides, triacylglycerides, phosphatidylcholines, phosphatidylethanolamines,
and sphingomyelins. In CSF, on the other hand, disease progression was associated with
nominally significant increases in NAD+, arginine, saturated long-chain free fatty acids,
diacylglycerides, triacylglycerides, and sphingomyelins. These data indicated altered urea
cycle, glycine, and serine metabolism as underlying mechanisms for the progression of HD
pathology, which warrants further investigation and validation in a larger cohort [60]. In
an attempt to translate CAG expansion in the HTT gene into the clinical phenotype of HD,
Herman et al. [107] examined the CSF from premanifest and manifest HD patients, as well
as control participants, using LC-MS. In that study, inter-group differences demonstrated
that tyrosine metabolism, including tyrosine, thyroxine, L-DOPA, and dopamine, was
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significantly changed in manifest vs. premanifest HD. These metabolites were shown to
have a moderate to substantial association with disease severity and symptoms. Thyroxine
and dopamine levels were also linked to the five-year risk of onset in premanifest HD
patients. The phenylalanine and purine metabolisms were also changed, albeit less so in
relation to illness severity. Reduced lumichrome levels were prevalent in mutant HTT carri-
ers, and the levels were associated with the five-year risk of disease onset in premanifest
carriers. In a recent study utilizing 1H NMR spectroscopy, Chang et al. investigated the
alternations of lipoprotein profiles in the plasma and associated levels of metabolites as
biomarkers of HD [111]. It was found the levels of HDL3-FC, HDL4-CH, HDL4-ApoA1
and HDL4-FC were significantly decreased in HD patients. There is evidence to suggest
that HDL contains anti-apoptotic, antioxidant, anti-thrombotic, and anti-inflammatory
properties [112]. Pradhan and his colleagues have presented a systems biology approach
utilizing multi-omics data and their validation by using a yeast model to further elucidate
pathways involved in the pathogenesis of HD [113]. In silico metabolomic analysis of
pre-symptomatic and symptomatic HD patients showed that the deregulated pathways
include metabolic pathways of various amino acids, glutathione metabolism, longevity,
autophagy, and mitophagy. Peripheral biomarkers are essential for monitoring therapeutic
effects and disease progression and for preventing disease symptoms. For example, total
htt protein was measured in the saliva of 98 patients with manifest HD, gene-positive
premanifest HD, and control subjects (matched for sex and age) [114]. Other saliva assays
were also conducted using standardized ELISA, including inflammation biomarkers such
as C-reactive protein, cortisol, interleukin-1β, and interleukin-6. The measurement of saliva
proteins, especially htt, has potential as an important non-invasive biomarker for the onset
of HD symptoms and disease progression. However, no metabolic data were found in the
saliva of HD patients. Nevertheless, it is worth exploring saliva to find new biomarkers in
this useful and practical biological material. In that respect, the great potential of saliva for
the investigation of HD through metabolomics has been greatly demonstrated by Corey-
Bloom et al. [115]. Because oxidative stress is a common pathogenic process in various
neurodegenerative disorders, including HD, the authors evaluated whether uric acid (UA)
may be utilized as a potentially useful biomarker. Therefore, in that study, UA levels in
peripheral fluids and postmortem brain tissues from HD patients were measured, and their
potential correlations with the disease and clinical information were examined. In this
study, the findings in plasma were consistent with previous research in other neurodegen-
erative disorders, where lower blood and brain levels of UA were reported in Parkinson’s
disease, amyotrophic lateral sclerosis, and Alzheimer’s disease patients [116–119]. It has
been shown that UA data in saliva mimicked some features of plasma and that UA levels in
saliva correlated with UA levels in plasma, suggesting that at least part of the UA present
in saliva is of blood origin.

4. Main Analytical Platforms and Metabolomics Workflow in HD Research

Advanced analytical techniques, including nuclear magnetic resonance (NMR) spec-
troscopy, gas chromatography (GC), and liquid chromatography (LC) combined with
mass spectrometry (MS) enable researchers to characterize past and ongoing physiological
changes and to map the composition and magnitude of those changes in the metabolome.
LC/MS-based metabolomics and lipidomics have been revolutionized in the past decade
in the fields of chronic disease, aging, neurological disorders, biomarker discovery, microbi-
ology, metabolic disorder, drug discovery, and precision medicine. Compared with other
analytical techniques, LC/MS has the advantages of high sensitivity, selectivity, and the
capability to identify known and unknown analytes of interest [120–122]. Nevertheless, the
high reproducibility of NMR-based techniques is superior to that of MS (see Figure 4). Due
to certain advantages provided by NMR and MS, to date, most metabolomic studies of HD
have utilized LC/MS or NMR. Therefore, we focus on exploring the principles of those
analytical platforms.
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4.1. Nuclear Magnetic Resonance (NMR) Spectroscopy

The phenomenon of nuclear magnetic resonance (NMR) was first described in 1946 by
Bloch and Purcell [123]. Atoms with an odd mass number, such as 1H, 31P, 15N, 17O, and
13C, have the quantum property of “spin” and behave as dipoles aligning along the axis of
an applied magnetic field. During relaxation after excitation, radiofrequency signals are
generated, which can be expressed as a frequency spectrum that can be further converted
to chemical shift values by Fourier transformation. NMR spectroscopy is a powerful and
versatile analytical technique that allows for the visualization of single atoms and molecules
in various media in solution as well as in a solid state [124–126]. It is a nondestructive, non-
invasive, non-equilibrium-disturbing technique that gives a molecular response that allows
researchers to both elucidate and quantify structure simultaneously, while also providing
information about the dynamics of organic molecules. With minimal sample preparation,
NMR enables the fast and comprehensive detection, characterization, and quantification
of various endogenous metabolites and has a high level of experimental reproducibility.
Unlike most other metabolomic platforms, NMR is not restricted to biofluid or tissue extract
for analysis. It is well suited for studying intact tissues, organs, and other solid or semisolid
samples through solid-state NMR and magic-angle sample spinning [127–130]. Primary
metabolites (compounds ubiquitous in living organisms and essential for life, such as
carbohydrates, essential amino acids, and the polymers derived from them) are composed
of hydrogen, carbon, nitrogen, oxygen, and phosphorus, all of which have magnetic
isotopes (1H, 13C, 15N, 17O, 31P) that can be detected by NMR [131]. NMR spectrometers
are equipped with electromagnetic radiation (EMR) sources that can be tuned to different
frequencies so that they can be used to obtain NMR spectra from different kinds of nuclei.
NMR spectrometers are available with field strengths up to 28 Tesla, which corresponds to
a 1H-NMR frequency of 1.2 GHz (177). However, most metabolomic analysis is conducted
on instruments that operate in the range of 300–700 MHz (Table 1) (178). NMR analysis can
be undertaken using any available operating frequency; however, the higher resolution
and sensitivity obtained at higher frequencies are advantageous (179), as increasing field
strength increases the spectral resolution and reduces the number of overlapping signals
in the spectra. Hence, the spectrometers at the upper end of the frequency range are most
effective for metabolite mapping by 1H-NMR [132].

Table 1. Types of NMR that can be used for lipidomic and metabolomic studies, by incorporating
magnets of varying strengths for analysis.

Frequency (MHz) Findings Reference

400

A 1H-NMR-based metabolomics approach was used in a temporal
region–specific investigation of the metabolome of neuron-specific 26S
proteasome knockout mice characterized by progressive neurodegeneration
and Lewy body-like inclusions in the forebrain.

[133]

500

1H-NMR metabolic profiling was used to characterize metabolic aberrations in
a yeast model of HD that is attributable to the mutant huntingtin protein’s
gain-of-toxic-function effects.

[134]

600
1H-NMR metabolic profiling of postmortem striatum and frontal lobe from
HD patients provided new insights into disease pathophysiology.

[87]

700
Proton NMR spectroscopic investigation of serum and cerebrospinal fluid
(CSF) taken from pre-symptomatic HD transgenic rats and their wildtype
littermates suggested a defect in energy metabolism.

[67]

800

1H-NMR spectroscopic analyses of CSF specimens were conducted to develop
a biomarker panel for multiple sclerosis (MS); it yielded reproducible detection
of 15 metabolites from MS (n = 15) and non-MS (n = 17) patients.

[67,108]
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Detection Mechanism of NMR

Although NMR is an established method in many scientific fields, including chemistry,
biology, physics, and medicine [135], it took almost 70 years for it to attain its current
interdisciplinary status. Among spectroscopic methods, NMR spectroscopy uses the lowest
irradiation energy for excitation. Consequently, the relaxation and sensitivity of NMR
spectroscopy are specifically different from other spectroscopic methods [136]. Because
a nucleus is a charged particle in motion, it will develop a magnetic field. 1H and 13C
have nuclear spins of 1/2 and so behave similarly to a bar magnet. In the absence of a
magnetic field, these nuclear spins are randomly oriented, but when a field is applied, they
line up parallel to the applied field, either spin-aligned or spin-opposed [137]. The basic
arrangement of an NMR spectrometer is shown in Figure 4. The sample tube is positioned
in the magnetic field and excited by pulsations originating from the radio frequency input
cable. The realigned magnetic fields of the nuclei induce a radio signal in the output circuit,
which is used to generate the output signal. The radio signal produced by the aligned nuclei
corresponds to a radio frequency in the EMR spectrum, allowing for identification [137].
Figure 4 shows the initial signals from the NMR generated in what is known as a free
induction decay (FID) file. Further analysis of these signals using Fourier transformation
converts the EMR frequencies into a spectrum for peak assignment (Figure 4).
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(FT); 2-week-old plant material. (iv) The spectrum produced after FT. The 1H-NMR spectrum corresponds to the free induction decay (FID) file used to produce
panel (iii). (v) 1H-NMR spectrum of Drosophila melanogaster metabolites [139].
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Because hydrogen nuclei (protons) were the first nuclei studied by NMR, the acronym
“NMR” is generally assumed to mean 1H-NMR. The high sensitivity of 1H-NMR enables
any proton-containing molecule with a molecular weight of less than 30,000 Da to be de-
tected; this high sensitivity stems from a hydrogen proton’s favorable magnetic properties
and its high natural abundance (99.985%) [131]. Therefore, in practice, NMR can simultane-
ously detect all proton-containing compounds in a sample, including carbohydrates, amino
acids, organic and fatty acids, amines, esters, ethers, and lipids, all of which are present in
any tissue [140]. Simple one-dimensional (1D) 1H-NMR spectra have certain advantages
over all other forms of NMR spectroscopy for quantifying metabolites, as data collection is
carried out under fully relaxed conditions with no polarization transfer requirement [141].
Thus, 1H-NMR signals acquired in this way provide a real representation of the distribution
of proton nuclei within the molecules and the different concentration levels of the corre-
sponding metabolites in a complex mixture. Although NMR has the potential to provide a
relatively unbiased fingerprint, typically, its output contains hundreds of overlapping peaks
that render traditional NMR-based analytical practices, such as resonance assignment and
peak integration, a challenge (Figure 4, panel iv) [142]. Well-isolated peaks generally scale
in a discrete linear fashion, whereas overlapping peaks sum the total of the overlapping
resonances. This does not affect the reproducibility of the technique but does hinder the
accurate quantification of some compounds via integration. One way to address peak
overlapping is to perform NMR experiments with stronger magnets and higher magnetic
fields, which increases spectral dispersion. The effect of overlapping peaks can also be
minimized either by using two-dimensional spectroscopy, a well-established technique in
metabolomics [143], or by probing alternative NMR-active nuclei, such as 31P, 15N, or 13C.
Whereas 1H-NMR spectroscopy is characterized by narrow line widths and a relatively nar-
row chemical shift dispersion (of ~10 ppm), 13C NMR spectroscopy has narrow line widths
combined with a rather broad (~200 ppm) chemical shift dispersion. Therefore, 13C-NMR
has significantly better resolution than 1H-NMR. However, the low natural abundance of
13C (~1.1%) coupled with the inherent low sensitivity of the 13C nucleus (compared with
other common nuclei observed by NMR, such as 1H, 19F, or even 31P) substantially hinders
the application of 13C-NMR spectroscopy to metabolomics, unless a signal intensity of 13C
enhancement is achieved through ingenious spin-manipulation methods, such as distortion-
less enhancement by polarization transfer [144] or through the use of improved hardware
and probe designs [145]. Similar to 13C-NMR, 15N-NMR can also provide characteristic
spectra of wide range with narrow signals (~100 ppm), which potentially enables very
accurate metabolite quantification; however, its low natural abundance (0.37%) and low gy-
romagnetic ratio (7.62 MHz/T) cumulatively render direct detection impossible as the 15N
nucleus is 262,000 times less sensitive than the 1H nucleus. Therefore, the use of 15N-NMR
spectroscopy in metabolomics is only possible when smart isotope tagging strategies, in
which metabolites with carboxyl groups are chemically tagged with 15N-ethanolamine, are
combined with indirect detection [146,147]. Although 31P is nearly 100% abundant, it has a
relatively wide spectral dispersion and has a sensitivity of 6.6 × 10−2 relative to 1H. Its util-
ity in metabolomics studies is limited because most metabolites do not contain phosphorus
atoms. However, labeling lipid metabolites containing hydroxyl, aldehyde, and carboxyl
groups with 31P reagent 2-chloro-4,4,5,5-tetramethyldioxaphospholane (CTMDP) enables
the efficient use of 31P-NMR spectroscopy in metabolomics studies [148].

In metabolomics, two-dimensional (2D) NMR can be utilized to solve resonance over-
lapping problems by spreading the peaks into a second dimension by using an “orthogonal”
physical property of the atom or atoms of interest, such as a covalently attached neighbor,
relaxation time, or coupling constant. Consequently, 2D NMR potentially allows one to
detect and identify more metabolites than is possible with 1D NMR. Indeed, different
homonuclear 2D 1H-1H-NMR experiments, including many variations—total correlation
spectroscopy (TOCSY) [149], correlation spectroscopy (COSY) [150,151], and nuclear Over-
hauser effect (NOESY) experiments [152–154], along with heteronuclear 1H,13C single
quantum coherence (1H-13C-HSQC) [155,156] and heteronuclear multiple bond correla-
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tion (HMBC) [157] experiments—have been used routinely in metabolomics studies for
many years. Diffusion-ordered spectroscopy (DOSY) [158,159] and 2D J-resolved NMR
spectroscopy (J-Res) [160–162] are examples of other 2D NMR experiments that have also
been used in several NMR-based metabolomics studies.

Homonuclear 2D NMR includes COSY and TOSCY, which provide spin-spin coupling
connectivities that report which hydrogen atoms are closely located in chemical bond
terms [163]. Although data collection in 2D TOCSY experiments takes a relatively long
time, the 1D TOCSY is very quick (often a minute or two) and produces a relatively simple
1D NMR spectrum that is more easily analyzed.

When COSY and TOSCY are unable to provide additional information to that provided
by 1D NMR, other 2D techniques are available, including HSQC [164], HMQC [165], and
HMBC [164,166], all of which are indirect methods of detection. These techniques use
1H-NMR methods to detect, with a high degree of sensitivity and reproducibility, the
presence of neighboring 13C and 15N atoms [167,168]. A greater dispersion of 13C (or 15N)
chemical shifts, in comparison with 1H, means that more metabolites can potentially be
quantified via cross-peak intensities than with conventional 1D 1H-NMR spectra [169,170].
One-dimensional spectroscopy combined with two-dimensional spectroscopy makes NMR
a robust and reliable technique for metabolomic investigations in which high reproducibility
and sensitivity are principal aims [171]. Because of its superior resolution compared with
conventional 1D NMR, the potential of 2D NMR is increasingly being explored as a tool
for metabolomics. However, 2D NMR requires a longer acquisition time, which makes it
less suitable for high-throughput studies. Nonetheless, with the novel pulse sequences
that allow for accelerated data collection, such as accelerated Double Quantum Filtered
(DQF)-COSY and HSQC [150] and new probe and magnet technologies that enhance
signal-to-noise ratio, NMR will likely have more prominence in the field of metabolomics.

4.2. Mass Spectrometry

To date, MS has become one of the most popular analytical techniques for both quanti-
tative and qualitative metabolomic applications [172]. Over the past 55 years, MS has been
transformed repeatedly, and its applications have been extended by new methods of ioniza-
tion. The advent of new methods of ion generation, novel mass analyzers, and new tools for
data processing have made it possible to analyze a range of substances from small organic
compounds to large biological molecules. The electrospray ionization (ESI) mechanism was
investigated 47 years ago by Dole and colleagues [173], but the real breakthrough occurred
in 1988 when Fenn and coworkers demonstrated that ESI is suitable for larger biomolecules.
The Nobel Prize in Chemistry was awarded for that work in 2002. ESI-MS allows large, non-
volatile molecules to be analyzed directly from a liquid phase and is normally coupled with
a separation technique, such as high-performance liquid chromatography (HPLC) [174,175].
To date, liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) is
one of the most preferred analytical techniques in metabolomics.

4.2.1. Mass Analyzers and the Detection Mechanism

The process of mass analysis in LC/MS is central to this technology and involves
separating analyte ions by using a mass analyzer. Three basic types of mass analyzers are
currently used in metabolomics research—ion trap, time-of-flight (TOF), and quadrupole
or mass filter (Figure 5). The major advantages of quadrupole analyzers are their low
cost, relatively small size, robustness, and ease of maintenance. The quadrupole mass
analyzer was first described in the 1950s by the Nobel Prize-winning physicist Wolfgang
Paul (not Wolfgang Pauli) [176]. A quadrupole (Q) mass analyzer has four parallel electrical
rods typically with circular cross sections; two rods carry a positive charge, and the other
two rods carry a negative charge. In general, a higher radio frequency (RF) is applied to
two rods and the other two are linked to a direct current (DC). Ions formed in the ionization
chamber are pulsed toward a quadrupole by an electrical field (~5 kV). Consequently,
positively charged ions travel toward negatively charged rods, and negatively charged ions
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travel toward positively charged rods. Once the polarity has been changed, the ions switch
their movement pathway before striking the rods and thus are transmitted through. The
ions enter through a small orifice at the center of the rods and display specific trajectories
based on their mass/charge number (m/z) values. Only ions with very short/narrow
intervals for their m/z values have stable trajectories and successfully pass through the
quadrupole rods to the detector. All other ions with lower or higher m/z values have
unstable trajectories and are filtered out [177].

A single quadrupole system contains only one mass-filtering quadrupole, whereas in a
triple quadrupole (QQQ) system, Q1 and Q3 act as mass filters while Q2 acts as a collisional
cell. A quadrupole has limited capability in terms of mass range (usually <4000 m/z),
resolving power, and the ability to perform MS/MS analysis. This disadvantage can be
overcome by attaching additional quadrupoles, such as in a triple quadrupole instrument,
or by linking to a quantitative time-of-flight analyzer (QToF). Time-of-flight ion separation
is one of the simplest and most popular analyzers for mass spectrometers. It relies on the
free flight of the ionized molecules in a drift tube before reaching the detector [173]. The
time required for an ion to travel a set distance and strike a detector enables the m/z ratio
to be calculated.

When an electric field is applied to a free ion, it will give the ion kinetic energy of zV,
where z is the ion charge and V is the applied voltage. The flight time (t) is determined
by the energy (E) to which an ion is accelerated, the distance (d) it has to travel, and its
m/z ratio. There are two well-known formulae that apply to time-of-flight analysis. An
example of one such formula for kinetic energy is:

E =
1
2

mv2,

where E = kinetic energy, m = mass, and v = velocity. This equation shows that for a given
kinetic energy, E, smaller masses will have larger velocities, and larger masses will have
smaller velocities. Instead of measuring velocity, it is much easier to measure the time
it takes an ion to reach the detector. The second equation is the familiar v = d/t, where
v = velocity, d = distance, and t = time. This equation describes the basic time-of-flight
relationship. For a given energy (E) and distance (d), the mass is proportional to the square
of the flight time of the ion.
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The ion trap analyzer and the quadrupole analyzer are based on similar principles,
as both use an electric field to separate ions via m/z ratios and then trap ions in a con-
trolled manner. In ion trap analyzers, the ions are first captured or trapped for a specific
interval [180]. A quadrupole ion trap analyzer has a ring electrode and an endcap electrode.
The ion trap is operated by a fixed radio frequency supplied to the ring electrode, while
the endcap electrode has a constant DC current (usually = 0). An ion trap operates by
storing ions in a trap and manipulating them by using DC and RF electric fields in a series
of carefully timed events [181]. The main difference between an ion trap and a quadrupole
analyzer is that an ion trap is capable of trapping ions for long periods of time (milliseconds
to days), providing plenty of time for ions to fall apart spontaneously (unimolecular decom-
position) or to experience undesirable interactions with other ions (space charge effects) or
with neutral molecules (ion-molecule reactions). This long trapping time provides some
unique capabilities, such as extended-length MS/MS experiments and high sensitivity.

In addition to ESI, other soft ionization mass spectrometric methods have been utilized
to detect metabolites present in biofluids. Both ESI and matrix-assisted laser desorption
ionization (MALDI) are sensitive analytical techniques that use analyte concentrations as
low as one picomolar [173]. MALDI differs from ESI by the state in which a sample is
introduced to the ion source; ESI uses a solvated sample that is infused into the instrument,
whereas the solid state is typically used in MALDI. Therefore, when interfaced with a rapid
analytical technique, such as gas or liquid chromatography, ESI is possibly more efficient
for quantitative measurements [173].

4.2.2. Gas and Liquid Chromatography Coupled with Mass Spectrometry

To date, HPLC is one of the most popular analytic techniques because it can sepa-
rate, identify, and quantify compounds that are present in any sample that can be dis-
solved in a liquid [182]. HPLC uses a liquid mobile phase to transport analytes through
a packed stationary phase column. In addition, HPLC is equipped with a detector that
is used to respond to a physiochemical property of an analyte [183]. Unfortunately, no
single analytical platform can completely identify and quantify all molecules in a sam-
ple. The advantages of MS, NMR, and magnetic resonance imaging (MRI) are elucidated
in Table 2. In metabolomics, GC-MS is the gold standard for identifying and quantitat-
ing small molecules (<650 Da). However, GC-MS is limited to volatile compounds. It
has almost 50 years of established protocols for metabolite analyses (e.g., sugars [184],
amino acids [185], sterols [186], hormones [187], catecholamines [188], hydroxyl acids [189],
fatty acids [188], aromatics [190], and many other intermediates of primary metabolism).
Nonetheless, it is biased against nonvolatile, high-molecular-mass metabolites [120].

Table 2. Summary of the analytical technique that is used in relation to Huntington’s disease.

Technique Mass Spectrometry (MS) Nuclear Magnetic Resonance
(NMR)

Magnetic Resonance Imaging
(MRI)

Fields used in Diverse use (proteomics, metabolomics,
lipidomics, drug discovery, toxicology)

Diverse use (proteomics,
metabolomics, lipidomics, drug

discovery, toxicology)

Radiation oncology,
neurologic disease

Detection mechanism
Chemical compounds are converted into

gas phase molecules, and their
mass-to-charge (m/z) ratio is measured.

Electromagnetic radiation sources
can be tuned to different

frequencies; therefore, NMR
acquires spectra from different

kinds of nuclei.

MRI uses natural magnetic
properties and radio waves to

generate images of the organs of the
body. A single proton in a hydrogen

nucleus is utilize due to its
abundance in water and fat.

Compatible Solid/Gas/Liquid Solid/Liquid Solid

Sensitivity High (nanogram to picogram) Low (milligram to nanogram) 90.5% sensitive

Selectivity
Both targeted (selective and

non-targeted (non-selective) assays can
be performed.

Non-selective analysis Selective
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Table 2. Cont.

Technique Mass Spectrometry (MS) Nuclear Magnetic Resonance
(NMR)

Magnetic Resonance Imaging
(MRI)

Reproducibility
Moderate to high, depending on the

sample clean up, per analyte of interest
biochemical properties

High Reproducible

Sample preparation

Time-consuming and depends on the
sample matrix. Liquid/liquid/ Solid

phase extraction or chemical
derivatization can be used.

Compared to MS, NMR sample
preparation is minimal. N/A

Sample volume

Biological fluid: 5–500 µL (depends on
the assay)

Cells: 3–10 million
Tissue: 10–25 mg

Biological fluid: 50–500 µL
(depends on the assay)

Cells: 15–25 million
Tissue: 25 mg to check

Physical presence of the patients

Sample Matrix
Tissue, Cells, Serum, Saliva, Tears, Hair,

Ear Wax, CSF, Plasma, Urine,
Whole Blood

Tissue, Cells, Serum, Saliva, Tears,
Hair, Ear Wax, CSF, Plasma, Urine,

Whole Blood
Organ imaging

Identification 100 to more than 1000 in a
singl experiment

40–200 depending on
spectral resolution Target to certain metabolites

Quantitation

Qualitative and quantitative analysis
can be performed. Needs

isotope-labeled standards and
calibration curves for each analyte for

absolute quantitation

Absolute quantitation; however,
requires a standard of
known concentration

N/A

Advantages

GC-MS: Relatively inexpensive, modest
sample size, great sensitivity, a large

body of software available and
databases for metabolite ID. LC-MS:
Detects most organic and inorganic

molecules, minimal sample size
required, direct injection can be possible,

has the potential to detect largest
portion of the metabolome and lipidome

Quantitative (1H NMR),
non-destructive, fast, requires no
derivatization, detects all organic

classes, allows ID of novel
metabolites, robust, large body of

software and database available for
metabolite ID

MRI Scan provide detailed images
of soft tissues, organs and bones

allowing for better visualization and
diagnosis of various medical

conditions. It’s a non-invasive
procedure and do not require any

surgical procedures.

Disadvantages

GC-MS: time-consuming, novel ID is
difficult, longer run time. LC-MS:

time-consuming and longer run time, as
it depends on the type of LC used.

Less sensitive than MS and
expensive to maintain

MRI scan is time consuming and
inconvenient for patients who may

need to lie still during
the procedure.

4.2.3. Targeted vs. Untargeted Metabolomic Assays for Huntington’s Disease

By identifying and characterizing metabolic pathways and biomarkers linked with the
progression of HD, we can expand our understanding of the pathophysiology of the disease
and develop novel therapies [191]. Targeted and untargeted metabolomic methods are valu-
able tools for analyzing low-molecular-weight molecules called metabolites in biological
samples and can provide a better understanding of disease etiopathophysiology [192,193].

As in other omics fields, metabolomic and lipidomic analysis consists of targeted
and untargeted approaches. In general, untargeted analysis focuses on profiling (global
or fingerprints) the metabolites in a sample, whereas targeted analysis focuses on quanti-
tating selected metabolites (Figure 6). The fundamental aim of global untargeted and
targeted metabolomics is now realistic and achievable due to advances in analytical
techniques [194–196]. The workflow of global and targeted metabolomics is similar. In MS-
based metabolomics, generally, there is an extraction step, followed by sample preparation,
and analysis by liquid or gas chromatography combined with mass spectrometry. Sam-
ple preparation steps for NMR-based metabolomics vary depending on whether solution
or solid-state NMR is being utilized. Metabolomics studies using solution-based NMR
are usually performed on biofluids and cell or tissue extracts, which require either sam-
ple preparation or sample extraction followed by sample preparation [197]. NMR-based
metabolomics has a clear advantage for tissue metabolomics in that 1H high-resolution
magic-angle spinning can be used for direct sample analysis and requires no sample
preparation [198].
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When considering the general workflow of a metabolomics project, one should keep in
mind that at the analytical level, the accurate and complete measurement of the metabolome
is a challenging task [199]. Challenges include the diversity of metabolites at the physico-
chemical level, the broad range of concentrations, and the associated dynamic range for
detection. Moreover, the analysis of complex biological matrices is compromised by the
presence of macromolecules, high ionic strength, and sample heterogeneity. Therefore, it is
crucial to pretreat the samples to minimize these issues and make the biological samples
compatible with the analytical platform. However, the more complex and time-consuming
such a treatment is, the higher the risk of altering the sample (in terms of metabolite
composition), resulting in a higher risk of experimental variability. Therefore, having a
cheap and reproducible sample preparation step requiring minimal effort is an essential step
toward producing reliable results independent of the operator and analytical instrument.
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By implementing such methods, it is possible to reduce unwanted artifacts and variations
in the metabolomics dataset.

The final steps of the overall process of metabolomic analysis consist of the correct
identification of metabolites followed by data analysis. Untargeted metabolomics is first
used to acquire metabolomics data because it provides the widest overview of a given
metabolome without requiring a priori knowledge of the sample. However, the type of
metabolites measured is directly affected by the extraction method, the chromatographic
separation technique (liquid vs. gas chromatography), and the applied mass analyzers,
whether triple quadrupole (QQQ), quadrupole combined with time-of-flight, or ion trap.
The main challenges associated with untargeted metabolomics are: (i) the inherent difficul-
ties associated with accurate metabolite identification such as low signal-to-noise ratios,
unavailability of chemical standards, and a lack of database coverage [200]; (ii) computa-
tionally demanding tasks [201], (iii) a variation in data between instruments, and (iv) the
standardization of protocols and methods to allow for the integration and comparison of
data and results between research groups [202].

Targeted metabolomics measures a defined set of metabolites that are annotated with
known chemical characteristics and biochemistry. By using internal standards, analysis
can be performed quantitatively or semi-quantitatively. This targeted method utilizes a
wide range of metabolic enzymes, their kinetics, and end products, and requires a thorough
understanding of known biochemical pathways (247). The use of targeted metabolomics
can optimize sample preparation by reducing the disadvantages of having a large number
of biochemical metabolites in the assay. Additionally, because the evaluated molecules and
species have been distinctly determined, further analyses will not be needed in the next
stage. Analyzing the list of analytes mentioned above can uncover connections between
metabolites under specific physiological conditions.

When LC/MS is used for targeted metabolomics, several key factors affect the accuracy
of the test and resulting data. For example, it is important to choose the correct ionization
parameters. Electrospray ionization mass spectrometry (ESI) is one of the most widely
used instruments for ionizing small molecules in metabolic research utilizing LC/MS. ESI
facilitates the use of MS for identifying nonvolatile, high-quality molecules. The main
advantage of ESI is that chemical derivatization is not needed to increase volatility and
minimize the fragmentation of analytes, which simplifies the analysis and interpretation
of complex mixtures. However, ESI also has some drawbacks—most importantly, ion
suppression in the analysis of complex molecular mixtures [203]. During ionization, in
analytes with suffering chargeability, ion quenching occurs; hence, the ionization efficiency
of a single analyte depends on its chemical properties [204].This problem can be especially
complicated because the suppression of ions occurs when impeding compounds are not
visible in the MS spectrum. Therefore, the quantification should presume that the mixture
among the analyzed sample classes is approximately the same. Thus, when conducting
experiments, it is important to compare only specimens from the identical matrix; for
example, it would be inappropriate to compare tissue extract samples with plasma samples.
The effect of the suppression of ions can be decreased by separating the analyte by one or
more chromatographic methods before MS [205].

To assess the contribution of biological variation compared with technical variation, a
set of serum/plasma samples is obtained before and after the experiment, and metabolome
products are extracted, reconstituted, and then added to an internal standard, which is
labeled with an isotope for LC/MS study. At the same time, the variance of LC/MS interpre-
tation and sample arrangements can be evaluated by taking an aliquot of the serum/plasma
sample from each sample set and combining them to form a single solution. From this
combined solution, a subset can be extracted, recovered, and then run through LC/MS.
A second subset of this mixed solution can be extracted, recovered, and reassembled to
provide a single sample, which can then be analyzed in duplicate by LC/MS to evaluate
the role of LC/MS analysis in the variance overall. At the end of the experiments, the
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coefficient of variation (CV; 100 × SD/average of the data) of biological variance, sample
preparation variance, and variance in LC/MS/MS are calculated [206].

Targeted metabolomics contributes precision and depth to the analysis by focusing on
known metabolites associated with the disease. Simultaneously, untargeted metabolomics
broadens the investigative scope, enabling the detection of novel biomarkers and providing
a holistic understanding of the global metabolic perturbations occurring in Huntington’s
disease. By synergistically integrating these approaches, researchers can navigate the com-
plexity of Huntington’s disease progression with a more comprehensive toolkit. This not
only enhances the accuracy of quantitative measurements for known metabolites but also
opens avenues for the discovery of novel indicators and a more profound comprehension
of the intricate metabolic dynamics underlying the disease. This integrative strategy, there-
fore, proves invaluable in advancing our understanding of Huntington’s disease at both a
detailed and holistic level.

Untargeted analysis is a complete testing of all biochemical analytes measured in the
sample, including unknown chemicals (Figure 7). Untargeted metabolomics must be used
in conjunction with complex chemometric techniques (multivariate analysis) because of its
comprehensive features, to reduce the resulting large data set to a smaller set of managed
signals. The signals obtained need to be labeled using silica gel libraries or by comparing
them with experimental studies, and then the analytes corresponding to those signals
must be identified by analytical chemistry. Targeted analysis provides an opportunity
to rediscover targets because the coverage of metabolites is limited only by the natural
sensitivity and specificity of the sample preparation method and the analytical method
used. Nevertheless, the main disadvantages of untargeted analysis are (i) the protocol and
processing time to operate large data, (ii) the difficulty of characterizing and identifying
small molecules that are unknown, (iii) the reliance on the specificity and sensitivity of
the analytical technique utilized, and (iv) a bias against the detection of high-abundance
molecules [206]. Different analytical platforms generate diverse types of data that need
specific data processing and analysis workflows. The effectiveness of data interpreta-
tion can be influenced by the chosen platform, making it necessary to develop tailored
data processing strategies. Targeted metabolomics contributes precision and depth to the
analysis by focusing on known metabolites associated with the disease. Simultaneously,
untargeted metabolomics broadens the investigative scope, enabling the detection of novel
biomarkers and providing a holistic understanding of the global metabolic perturbations
occurring in Huntington’s disease. By synergistically integrating these approaches, re-
searchers can navigate the complexity of Huntington’s disease progression with a more
comprehensive toolkit. This not only enhances the accuracy of quantitative measurements
for known metabolites but also opens avenues for the discovery of novel indicators and a
more profound comprehension of the intricate metabolic dynamics underlying the disease.
This integrative strategy, therefore, proves invaluable in advancing our understanding of
Huntington’s disease at both a detailed and holistic level (Table 3).

Table 3. The advantages and disadvantages of targeted and untargeted metabolomics in relation to
biological disease.

Advantage/Disadvantage Targeted Untargeted

Advantage High Sensitivity and Specificity Comprehensive Analysis
Quantitative Accuracy Discovery of Novel Biomarkers

Data Interpretation is Easier Systems Biology Approach

Disadvantage Limited Coverage Data Complexity and Quantitative Challenges
Less Comprehensive Lower Sensitivity
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In untargeted metabolomics studies, there are two broad methods for data collection.
The primary procedure uses MS1 full-scan (injection, ionization, acceleration, and analyses
of a sample by mass spectrometry) to create correct mass measurements and/or identify
characteristics of individual molecules for statistical calculations, followed by data col-
lection through data-dependent sample subsets (i.e., data-dependent acquisition [DDA])
to guide identification. Similar to traditional proteomics methods, the metabolic DDA
method produces a pattern of metabolite fragments with the greatest intensity of signals.
The second method for untargeted metabolomics is based on data-independent acquisition
(DIA), where the workflow simultaneously exacts mass at high and low collision ener-
gies (MS(E)) [208] or in a limited mass range using the sequential window acquisition of
theoretical fragment ion spectra mass spectrometry (SWATH) [209], which integrates the
complete MS1 and MS/MS cleavage of all precursors. The DIA method generates a complex
fragment spectrum, and the relationship between the product and precursor can be difficult
to interpret. In subsequent phases of data analysis, the ion fragment must be matched with
the pre-ions based on mass, drift time, and retention time. The fragment data provided by
DIA have nothing to do with the signal strength of metabolites. Both DIA and DDA methods
eventually determine properties through descriptors such as m/z ratio, retention time, and
drift time. Finally, in the identification phase of analysis, databases are searched for starting
ions and corresponding fragment ions to determine the identity of the metabolites.

One of the main advantages of untargeted metabolomics is that data can be collected
without prior knowledge of what the metabolites might be. This comes with a caveat
that the sample preparation and analytic methods qualitatively affect the results obtained.
Due to the nature of metabolites [210,211], parameters, instrument platforms, separation
methods, and sample preparation steps affect the subset of identified metabolites.

The workflow for untargeted metabolomics involves many elucidated phases, includ-
ing peak detection, retention time alignment, noise filtering, peak deconvolution, and
description of function. Principally, the characteristics of substances identified by untar-
geted analysis do not always correspond to metabolites. Molecules that are similar to
metabolites (e.g., adducts, neutral losses, isotopes) can have different m/z values. In order
to reach a biochemical conclusion from untargeted metabolomics, metabolites must be
identified. To identify analytes, experimental MS/MS or MS1 data can be searched by us-
ing public databases (e.g., METLIN [212], mzCloud (https://www.mzcloud.org, accessed
on 1 August 2020), GNPS (http://gnps.ucsd.edu, accessed on 1 August 2020), ChemSpi-
der (http://www.chemspider.com, accessed on 1 August 2020), MassBank [41], Human
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Metabolome DataBase (HMDB) [213], and LipidBlast [214]) or a fee-based database (e.g.,
NIST Mass Spectral Library (http://chemdata.nist.gov, accessed on 1 August 2020). With-
out commercial software, it is often impossible to batch-search the MS/MS fragment mass
spectra contained in these databases. Given the large number of libraries it is necessary to
search to maximize the coverage of metabolites, bioinformatics is needed to eliminate or
reduce redundancy. Because the names of metabolites have not been fully standardized
and because of large differences between databases, this process can be complicated. The
biochemical understanding and analysis of the data collected for metabolomics and the
final systems biology research rely on the ability to correctly define all the metabolites so
that they can be located through networks and pathways.

Due to the large amount of data generated, it is difficult to visualize and interpret
the data of untargeted metabolomics experiments. Most available analytical tools require
that different kinds of recognized metabolites be combined with biochemical/biological
knowledge [215–217]. Novel technologies based on combining systems biology instru-
ments have been introduced to place small molecules in the biological environment. For
instance, metabolic and genomic data are integrated into a mining workflow to recognize
promising drug candidates [218]. In contrast, targeted metabolomics is more selective than
untargeted metabolomics, and metabolites are analyzed a priori based on information that
will develop and optimize methods for analyzing specific metabolites and target metabolic
pathways using internal or external reference compounds. By providing analytical confir-
mation, such an approach can be utilized to determine accurate amounts of biochemical
derivatives detected by untargeted metabolomics. Targeted analysis is needed to identify a
whole-picture metabolomics system and to verify and extend the outcomes of untargeted
analysis [219]. Data obtained by targeted analysis can then be used as input variables for
statistical analysis. The core panel of metabolomics contains many metabolic mediators,
neuromodulators, organic acids, drug metabolites, carboxylic acids, and lipids. These types
of panels are designed to meet the needs of case researchers.

Many substantive studies have been conducted to improve the identification of
metabolites [220] and to improve computing solutions [221] and harmonize the proto-
cols and methods [222,223]. From a clinical perspective, each single-board or multi-board
test must be based on an absolute quantitative method for appropriate quality control,
documentation, and method validation. A standardized commercial kit with a complete
calibration curve that returns quantitative measurements can be an attractive complement
to more exploratory, untargeted methods. However, serum and plasma are the main
samples used by these kits, which are usually developed and validated using traditional
QQQ mass spectrometry and have been used for cerebrospinal fluid (CSF) only in a few
cases [223,224].

The combination of HRMS LC-MS, NMR and neuroimaging, along with other ad-
vanced techniques, allows for multimodal data integration. This holistic approach provides
a comprehensive understanding of the molecular, metabolic, and structural changes occur-
ring in Huntington’s disease, offering a more complete picture of the disease mechanisms.
These advanced techniques offer a deeper understanding of the molecular and metabolic
changes associated with Huntington’s disease. This includes changes in levels of neuro-
transmitters, molecular and structural information, energy metabolites, and other small
molecules crucial for cellular function, enabling researchers to identify biomarkers and
dynamics and develop targeted interventions for this complex neurodegenerative disor-
der. This temporal information is critical for understanding how metabolic pathways are
dysregulated over time and may provide insights into disease stages and potential inter-
vention points [55,76,172]. NMR and imaging offer non-invasive structural and functional
insights into the brain, allowing researchers to observe changes in neuronal structures
and functions associated with Huntington’s disease. This includes the assessment of brain
atrophy, connectivity alterations, and changes in neurotransmitter levels. Neuroimaging
enables the in vivo monitoring of specific biomarkers associated with Huntington’s disease.

http://chemdata.nist.gov
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This allows for the real-time observation of disease progression and the effects of potential
therapeutic interventions, providing a dynamic view of the disease at the molecular level.

5. Conclusions

The study of Huntington’s disease (HD) through the lens of metabolomics has emerged
as a critical avenue for unraveling the intricacies of this neurodegenerative disorder. De-
spite the discovery of the HD mutation in 1993, the absence of disease-modifying treatments
underscores the urgency in comprehending the molecular and cellular underpinnings of
HD. Metabolomics, with its distinctive advantages, has played a pivotal role in advanc-
ing our understanding of the disease. The precision and sensitivity offered by targeted
metabolomics have allowed for in-depth analyses of specific metabolites associated with
HD. This focused approach not only aids in the identification of biomarkers but also
contributes to our understanding of well-established metabolic pathways affected by the
disease. On the other hand, untargeted metabolomics, with its capacity for comprehensive
and unbiased exploration, has facilitated the discovery of novel biomarkers and provided
a holistic view of the global metabolic alterations in HD. In the period from 2001 to 2023,
many studies have signified a crucial timeline where metabolomic investigations have
thrived, contributing valuable insights into HD. These insights, ranging from changes in the
metabolome associated with HD to the identification of potential non-invasive biomarkers,
hold significant promise for the development of diagnostic tools and prognosis assessments,
as well as the monitoring of therapeutic efficacy. As we navigate the complex landscape of
Huntington’s disease, metabolomics stands as a beacon, offering a nuanced understanding
of the molecular signatures and metabolic shifts that define this condition. It is through the
integration of targeted and untargeted metabolomics approaches that we can harness the
full spectrum of analytical capabilities, ultimately paving the way for the development of
novel treatments and personalized therapeutic strategies for individuals affected by HD.
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