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Abstract: Atherosclerosis (AS) is a metabolic disorder and the pre-stage of several cardiovascu-
lar diseases, including myocardial infarction, stroke, and angina pectoris. Early detection of AS
can provide the opportunity for effective management and better clinical results, along with the
prevention of further progression of the disease. In the current study, an untargeted and targeted
metabolomic approach was used to identify possible metabolic signatures that have altered levels in
AS patients. A total of 200 serum samples from individuals with AS and normal were analyzed via
liquid chromatography–high-resolution mass spectrometry. Univariate and multivariate analysis
approaches were used to identify differential metabolites. A group of metabolites associated with
bile acids, amino acids, steroid hormones, and purine metabolism were identified that are capable of
distinguishing AS-risk sera from normal. Further, the targeted metabolomics approach confirmed
that six metabolites, namely taurocholic acid, cholic acid, cortisol, hypoxanthine, trimethylamine
N-oxide (TMAO), and isoleucine, were found to be significantly upregulated, while the concentra-
tions of glycoursodeoxycholic acid, glycocholic acid, testosterone, leucine, methionine, phenylalanine,
tyrosine, and valine were found to be significantly downregulated in the AS-risk sera. The receiver
operating characteristic curves of three metabolites, including cortisol, hypoxanthine, and isoleucine,
showed high sensitivity and specificity. Taken together, these findings suggest cortisol, hypoxanthine,
and isoleucine as novel biomarkers for the early and non-invasive detection of AS. Thus, this study
provides new insights for further investigations into the prevention and management of AS.

Keywords: atherosclerosis; mass spectrometry; untargeted metabolomics; targeted metabolomics;
biomarker

1. Introduction

Atherosclerosis (AS) is a multifactorial process with global economic and medical
importance, with an increased prevalence to cause mortality and morbidity worldwide,
and is the main contributor to cardiovascular diseases including stable angina pectoris,
myocardial infarction, and stroke [1]. The initiation of AS results from the accumulation
of plaque in the sub-endothelial space of arteries, leading to insufficient blood flow and
oxygen delivery to vital organs [2,3] It is also characterized as a chronic, multifactorial, and
progressive disease showing notable variations in metabolites during different pathological
stages [4]. At the initial stage of AS, metabolic imbalances such as a decrease in glucose and
glycine and an increase in low-density lipoprotein (LDL) cholesterol may be observed, but
without any clear clinical symptoms [5]. As the disease progresses, the narrowing of the
arteries limits the blood flow, resulting in symptoms such as hypertension, headaches, and
other clinical symptoms. In the meantime, the body may also experience changes in the
metabolism of amino acids, phenylalanine, and methionine [4]. In the advanced stage of
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AS, the plaque becomes unstable and ruptures, leading to thrombosis formation, along with
imbalances in the metabolism of sugars, fatty acids, amino acids, choline, and cholesterol [5].
Despite scientific discoveries and significant progress in the treatment of AS, the disease
remains a major killer globally [4]. This is due to the lack of effective methods for the
detection of AS in its initial stages and a poor understanding of the disease pathophysiology.
According to recent epidemiologic statistics released by the World Health Organization and
the American Heart Association, cardiovascular diseases stand as the primary reason for
death worldwide, and from heart attacks, approximately 24 individuals die every minute
in the world [6]. Presently, coronary artery angiography is a method of choice for the
diagnosis of AS [7], but its high cost and invasive nature restrict its widespread application
in clinical diagnosis or for monitoring the progression of the disease. Generally, coronary
artery angiography is only used when clinical and biochemical features strongly suggest
the presence of the disease, and its preventive benefits are also limited [8]. Therefore,
the discovery of biomarkers for early detection, thus preventing progression to angina
pectoris and myocardial infarction accompanied by a high morbidity and mortality rate, is
a therapeutic and prognostic intervention.

Currently, high-resolution metabolomics, a comprehensive characterization of metabo-
lites such as organic acids, nucleic acids, amino acids, and lipids in cells, tissues, blood,
and biofluids, is getting attention as a novel approach for diagnosing and tracking nu-
merous diseases [9,10]. The identification of small-molecule metabolites and their roles
in several biological processes has not only enhanced our perception of the pathophys-
iology of multiple conditions but has also opened new avenues for the development of
novel treatments [11,12]. Techniques involved in metabolomics consist of nuclear magnetic
resonance (NMR), gas or liquid chromatography coupled with tandem mass spectrometry
(GC/LC-MS/MS) [13]. Advanced metabolomics techniques based on mass spectrometry
play a vital role in clinical research, diagnosis and treatment of disease, drug characteriza-
tion, and environmental and agricultural research [14–16]. These novel techniques enable
the extraction of information on global metabolic pathways from thousands of metabolites
present in biological samples. However, identifying novel biomarkers with diagnostic roles
is a clinical challenge for AS.

Therefore, in this study, untargeted and targeted high-resolution metabolomics (HRM)
with a stepwise identification workflow was applied to serum samples from normal and AS
groups to identify the metabolic signatures for the early detection of AS and provide new
insight into the understanding of the pathophysiologic basis of AS in the developmental
stage.

2. Materials and Methods
2.1. Chemicals and Reagents

All analytical standards for target compounds used in the study were of high purity
grade (>99%) and were purchased from Sigma-Aldrich (St. Louis, MO, USA). HPLC-grade
water was purchased from J.T. Baker (Phillipsburg, NJ, USA) and acetonitrile from Tedia
(Fair Lawn, NJ, USA). Individual stock solutions of all target compounds were prepared in
water or methanol as per the manufacturer’s instructions and stored at −20 ◦C before use.

2.2. Sample Collection

This project protocol was approved by the Korea University Institutional Review
Board (approval no. IRB-2021-0063). Blood samples used in this study were provided
by Chungbuk National University Hospital members of the Korea Biobank Network.
According to a Korea Biobank Network representative, all participants went through
routine health assessments. Additionally, measurements of pulse wave velocity (PWV) and
ankle-brachial index (ABI) were performed for the diagnosis of atherosclerosis. Individuals
whose PWV was ≥13 m/s and ABI fell within the range of 0.91 to 1.29 were identified as
patients with atherosclerosis. To obtain serum, whole blood was centrifuged at 2000× g
for 10 min to remove the cell pellet, and then the serum was stored at −80 ◦C until further
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use. The serum samples were divided into two groups: the normal group (n = 100) and AS
(n = 100).

2.3. Sample Preparation

Briefly, 50 µL of each serum sample was combined with a 100 µL mixture of acetonitrile
and isotope-labeled standards, including [3-methyl-13C]-caffeine, [13C5,15N]-l-methionine,
and [dimethyl-D6]-N, N-diethyl-M-toluamide (95:5). The mixture was vortexed for 5 min
and centrifuged at 15,000× g for 10 min at 4 ◦C to remove precipitated proteins and extract
metabolites. Subsequently, the supernatant was transferred into a 1 mL vial for instrumental
analysis.

2.4. LC-MS/MS Analysis

Metabolite determination was performed using an Ultra Performance Liquid Chro-
matography system (Agilent 1290 Infinity Quaternary, Santa Clara, CA, USA) coupled
with an Agilent Q-TOF 6550 mass spectrometer. Chromatographic separation was per-
formed using a stationary-phase Hypersil GOLD aQ-C18 column (100 × 2.1 mm, 1.9 µm;
Thermo Fisher Scientific, Waltham, MA, USA). Solvent A, consisting of water, and sol-
vent B, Acetonitrile, both acidified with 0.1% formic acid, were used as a mobile phase.
The gradient flow was programmed as follows: 0.0–1.0 min, 5% B; 1.0–9.0 min, 45% B;
9.0–12.0 min, 90% B; 12.0–13.5 min, 90% B; and 13.5–13.6 min, 5% B. The flow rate, sample
injection volume, and capillary voltage were 0.4 mL/min, 3 µL, and 3.5 kV, respectively.
The drying and sheath gas temperatures were both 250 ◦C. The data were acquired using
a mass-to-charge ratio (m/z) ranging from 50 to 1000, and electrospray ionization (ESI)
was performed in positive mode. To eliminate the leftover metabolites between samples, a
blank sample consisting of 100% acetonitrile was analyzed among the real samples. For
reliability and reproducibility, sample batches were randomized, and each sample was
analyzed in triplicate.

2.5. Untargeted Metabolite Profiling

To identify the metabolic features that separate the AS patients from normal, multi-
variate and univariate analyses were carried out. The MSConvert 3.0 (Proteowizard, Palo
Alto, CA, USA) was first used to convert the data files from ‘raw data’ to ‘mzXML’ file
format. The converted mzXML files were analyzed using apLCMS 6.3.8 software to gather
information such as the m/z value, retention time, and ion intensity of each compound [17].
The files obtained from apLCMS were analyzed further using xMSanalyzer [18] to ensure
reproducibility and maximum reduction in the batch effect caused by daily changes in
LC-MS conditions. During the xMSanalyzer processing, log2 transformation and quantile
normalization were used to filter and transform the data. The finally processed data were
used in a statistical analysis using xmsPANDA [19]. Investigation of overall metabolic
alterations between two groups with xmsPANDA provides the insight to distinguish the
group and makes it possible to specify the groups. The significantly differential metabo-
lites with xmsPANDA were further processed with a statistical analysis of the student’s
t-test (p ≤ 0.05) to compare the means between two groups and further multiple testing
corrections, Benjamini and Hochberg false discovery rate, and adjusted p-values (FDR
q ≤ 0.05) to correct for the occurrence of false positives [20]. The selected metabolites
were further processed with hierarchical cluster analysis (HCA) and principal component
analysis (PCA) using the xmsPANDA package based on limma developed by Emory Uni-
versity. PCA was used to decrease the number of features and dimensions representing
the samples into a principal component, while HCA used a bi-dimensional clustering
method to visualize the sample features in a heat map based on dissimilarity. The scheme
of the experiment was illustrated according to the metabolic signatures of the two groups
(Figure 1). Manhattan plots with false discovery rates (FDRs) identified the significantly
differential metabolites, whose levels were significantly different between AS and healthy
normal samples, according to FDR (q ≤ 0.05). The color-coded dots were depicted in the
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Manhattan plot by constructing an axis with m/z as the horizontal axis and –log10(p) as
the vertical axis. Significant features (FDR, q ≤ 0.05) from the Manhattan plot were further
subjected to PCA and HCA. Differently colored dots in the Manhattan plot were used
to represent the separation between groups in PCA and HCA. The significant features
identified by the comparisons of both groups using xmsPANDA at the criteria of Limma
FDR q ≤ 0.05 were annotated using xMSannotator [21], the Human Metabolome Database
(HMDB) (https://hmdb.ca (accessed on 12 October 2023)), and the Kyoto Encyclopedia
of Genes and Genomes (KEGG) (https://www.genome.jp/kegg (accessed on 20 October
2023)) databases [22,23]. Limma is an R/Bioconductor software package that provides an
integrated solution for analyzing data from gene expression experiments. A mass tolerance
of 10 ppm and six adducts [M + H]+, [M + Na]+, [M + K]+, [M + NH4]+, [M + H-H2O]+,
and [M + H-2H2O]+ were used to annotate the significant features. In addition, HMDB IDs
were obtained to further analyze the pathway analysis in MetaboAnalyst.
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Figure 1. Schematic overview applied in the present study for biomarker identification.

2.6. Untargeted Pathway Analysis

Pathway analysis aims to analyze the high-throughput data, exploring relevant groups
of related metabolites that are altered in AS samples in comparison to a healthy normal. The
pathway analysis helps the researcher discover that biological themes and biomolecules
are crucial to understanding the disease condition under study. For the identification of
potentially altered metabolic pathways in healthy normal versus atherosclerosis patients,
the recorded HMDB ID served as input for MetaboAnalyst 5.0 (www.metaboanalyst.ca
(accessed on 20 October 2023)).

2.7. Targeted Metabolite Profiling of the Significantly Altered in Untargeted Metabolomics

The serum samples from the normal and AS groups were treated using various meth-
ods to determine the significantly altered metabolites. Cortisol concentration was deter-
mined using the method reported by [24], bile acids were measured using the methodology
described by [25], and amino acids and hypoxanthine were analyzed using the methods
of [26,27], respectively. Tandem mass spectrometry (MS/MS) analysis was conducted
using a Triple Quad Mass Spectrometer (Agilent 6490A) with an ESI interface operating in
positive mode. The samples were first scanned in the mass range (m/z) of 50–1000, and then
collision energies of 0, 5, 10, 15, and 20 V were applied to get highly abundant fragment ions

https://hmdb.ca
https://www.genome.jp/kegg
www.metaboanalyst.ca
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of the putative metabolites. Chromatographic separation was performed using an Eclipse
Plus C18 column (100 × 2.1 mm, 1.8 µm; Agilent USA). The concentrations of identified
metabolites in serum samples from healthy normal and AS groups were quantified using
eight-point calibration curves. The limit of detection and limit of quantification under
the present chromatographic conditions were calculated based on a signal-to-noise ratio
of 3 and 10, respectively. Each sample was analyzed in triplicate, and the results were
presented as the mean ± standard error of the mean (SEM). The concentrations of targeted
metabolites were calculated relative to the peak height of the external standards within
the limit of detection (LOD) and quantification (LOQ) ranges. Putative metabolites were
analyzed using Prism 7.0 (GraphPad Software, San Diego, CA, USA) to estimate the relative
intensities among the two groups.

Furthermore, to validate the clinical effect of these metabolites in the diagnosis of AS,
the prediction ability of significant metabolites was assessed with a single-metabolite-based
receiver operating characteristic curves (ROC) analysis and a multiple-metabolite-based
random forest analysis using MetaboAnalyst. The ROC curve shows the optimal number
of variables, sensitivity, specificity, and area under the curve (AUC) of each metabolite
that could differentiate between the two groups. AUC is typically the preferred approach
for assessing the performance of potential biomarkers; the greater the AUC, the better the
prediction of the model [28].

3. Results
3.1. Characteristics of the Study Population

In total, 200 serum samples from 100 normal and 100 AS individuals were used for
metabolomic analysis (Figure 1). Based on the student’s t-test, no statistical differences
were observed in terms of body mass index, diastolic blood pressure, or total triglyceride
among the two groups. Meanwhile, systolic blood pressure, level of fasting blood glucose,
and high-density lipoprotein cholesterol were higher in AS patients, while low-density
lipoprotein cholesterol and total cholesterol were higher in normal people, but those
parameters were in the normal ranges (Table 1). The low levels of low-density lipoprotein
cholesterol and total cholesterol, along with the elevated level of high-density lipoprotein
cholesterol in AS patients, can be attributed to the administration of medications such as
aspirin and clopidogrel, atorvastatin, amlodipine besylate, and bisoprolol.

Table 1. Demographic and clinical characteristics of the participants.

Normal AS p-Value

Number of patients 100 100
Gender Male (100%) Male (79%), Female (21%)

Age (year) 19–44 41–101
Body mass index (kg/m2) 25.61 ± 1.799 22.67 ± 0.4179 0.1141

Systolic blood pressure (mmHg) 120.3 ± 0.8022 133.6 ± 2.395 <0.0001
Diastolic blood pressure (mmHg) 76.62 ± 0.6925 73.68 ± 1.185 0.0337
Fasting blood glucose (mg/dL) 92.51 ± 0.6717 128.8 ± 4.71 <0.0001

Total triglyceride (mg/dL) 101.9 ± 2.72 116.7 ± 6.8 0.0449
Total cholesterol (mg/dL) 182.4 ± 2.561 137 ± 4.271 <0.0001

Low-density lipoprotein cholesterol (mg/dL) 107.6 ± 2 79.27 ± 3.292 <0.0001
High-density lipoprotein cholesterol (mg/dL) 52.73 ± 0.973 73.43 ± 4.911 <0.0001

3.2. Determination of Metabolomic Signature in Two Groups

To investigate the metabolomic signature that could discriminate between normal
and AS groups, untargeted metabolomics were performed. The raw data extracted from
apLCMS containing m/z values and intensities of 17,336 features were subjected to the
xMSanalyzer. With the growth of metabolomics research, more and more studies are
conducted on large numbers of samples. Samples often need to be processed in multiple
batches or days on the same LC-MS. Across batches or days, we often observe different
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data characteristics. With batch or day correction of the xMSanalyzer, 4819 features were
extracted and input into the xmsPANDA. Multivariate analysis using FDR led to the
selection of 1244 significant features (q ≤ 0.05), as shown in Figure 2A. The significant
features were further subjected to unsupervised HCA (Figure 2B) and PCA (Figure 2C)
analysis. PCA reduces the number of features and dimensions representing samples into a
principal component, while HCA provides samples and features through a bi-dimensional
clustering method in the form of a heat map based on dissimilarity. The results of HCA
and PCA showed a tendency to separate normal from AS. Supervised partial least-squares
discriminant analysis (PLS-DA) was performed then since the classification of two groups
was not clear using unsupervised methods. PLSDA showed a clear separation between the
normal and AS groups (Figure 2D).
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depicting 1244 significant features (≤0.05 with t-test, colored dots) of the two study groups and their
distribution along the respective m/z value. The dotted line showed FDR (q ≤ 0.05), suggesting that
features above the line were significantly different between the two groups. (B) Hierarchical cluster
analysis (HCA) of the samples in the two study groups using 1244 significant features. (C) Principal
component analysis (PCA) of samples from the two study groups using 1244 significant features.
(D) PLS-DA of the sera in the two study groups determined 750 features that had the score of variable
importance in projection (VIP) ≥ 1.5.

3.3. Identification of Potential Metabolites between Normal and AS Groups

The significant metabolites between two groups from xmsPANDA with a Manhat-
tan plot (FDR q ≤ 0.05) were determined for novel biomarker discovery. The HMDB
(https://hmdb.ca) and xMSannotator [18] were used for the annotation of the significant
features obtained from the Manhattan plot with FDR q ≤ 0.05. The HMDB IDs of these
metabolites were used to identify the top affected pathways in MetaboAnalyst 5.0. The
peak intensities of all the metabolites related to pathways were measured and visualized
using bar graphs. Steroid hormone biosynthesis, bile acid biosynthesis, TMO biosynthesis,
and amino acid biosynthesis were considered to be responsible for the separation between
normal and AS sera (Figure 3). The metabolites involved in selected pathways, L-Valine
(m/z: 156.0421 [M + K]+), L-Arginine (m/z: 175.1186 [M + H]+), glycocholic acid (m/z:
466.3196 [M + H]+), hypoxanthine (m/z: 159.0275 [M + Na]+), cortisol (m/z: 385.1985 [M +
Na]+), testosterone (m/z: 271.2062 [M + H-H2O]), taurocholic acid (m/z: 516.2995 [M + H+],
glycourodeoxycholic acid, taurodeoxycholic acid (m/z: 541.3287 [M + ACN + H]), cholic
acid (m/z: 839.5574 [2M + Na]+), taurolithocholic acid (m/z: 522.2649 [M + K]+), trimethy-
lamine N-oxide (TMAO), glutamic acid (m/z: 277.1030 [M + H]+), isoleucine (m/z: 132.1011
[M + H]+), leucine (m/z: 132.1018 [M + H]+), methionine (m/z: 150.0582 [M + H]+), pheny-
lalanine (m/z: 166.0863 [M + H]+), proline (m/z: 116.0698 [M + H+], and tyrosine (m/z:
226.0435 [M + 2Na-H]) were dramatically altered in normal and AS groups (Figure 4).

https://hmdb.ca
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3.4. Validation of the Levels of Metabolites with Targeted Metabolomics

To validate the results and identify simplified serum metabolites that would be more
practical for identifying AS risk, the concentrations of taurocholic acid, glycoursodeoxy-
cholic acid, glycocholic acid, taurodeoxycholate, cholic acid, taurolithocholate, cortisol,
hypoxanthine, testosterone, TMAO, L-arginine, glutamic acid, isoleucine, leucine, methion-
ine, phenylalanine, proline, tyrosine, and valine were determined in normal and AS serum
samples using LC-MS/MS (Figure 5). The concentrations of these compounds in both
sera samples were calculated using an external standard calibration curve. Based on the
results, taurocholic acid, cholic acid, cortisol, hypoxanthine, TMAO, and isoleucine were
found to be significantly upregulated in AS samples. Meanwhile, the concentrations of gly-
coursodeoxycholic acid, glycocholic acid, testosterone, leucine, methionine, phenylalanine,
tyrosine, and valine were found to be significantly downregulated.
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samples from normal and AS groups. * p < 0.05; ** p < 0.01; *** p < 0.005; and **** p < 0.001 with
Student’s t-test.

In addition, the diagnostic potential of significant metabolites was evaluated via the
ROC curve and random forest analysis. The ROC curve showed the optimal number of
variables, sensitivity, specificity, and AUC of each metabolite that could differentiate be-
tween the two groups. Three metabolites, including cortisol, hypoxanthine, and isoleucine,
were found to have AUC values of 0.834, 0.935, and 0.792, respectively, with a 95% confi-
dence interval (CI) to distinguish AS patients from normal (Figure 6). Based on the three
metabolites (cortisol, hypoxanthine, and isoleucine), a random forest diagnostic model
was developed. Remarkably, the model achieved a better AUC of 0.96, surpassing the
individual AUC values for each metabolite, as illustrated in Figure 7.
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Figure 6. Receiver operating characteristic curves (ROC) and box plots of three potential AS biomark-
ers. (A) ROC curve of cortisol to distinguish between normal and AS groups, (B) ROC curve of
hypoxanthine to distinguish between normal and AS groups, and ROC curve of isoleucine to distin-
guish between normal and AS groups. The black dots in the box plots represent the concentration
of the selected features from all samples, while the red line in the box plots indicates the optimal
cut-point between normal and AS groups.
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4. Discussion

In the present study, untargeted and targeted metabolomic approaches using liq-
uid chromatography–high-resolution mass spectrometry were applied to determine the
metabolomic signature that could differentiate between the normal and AS groups and
to identify early biomarkers of the AS disease. Using untargeted metabolomics, a group
of metabolites, including TMAO, bile acids, amino acids, and steroid hormones, were
identified that are capable of distinguishing AS-risk sera from normal. Further, the tar-
geted metabolomics approach confirmed that six metabolites, namely taurocholic acid
(AUC-ROC, 0.569), cholic acid (AUC-ROC, 0.625), cortisol (AUC-ROC, 0.834), hypoxan-
thine (AUC-ROC, 0.935), TMAO (AUC-ROC, 0.663), and isoleucine (AUC-ROC, 0.792), were
found to be significantly upregulated, while the concentration of glycoursodeoxycholic acid
(AUC-ROC, 0.658), glycocholic acid (AUC-ROC, 0.669), testosterone (AUC-ROC, 0.641),
leucine (AUC-ROC, 0.848), methionine (AUC-ROC, 0.870), phenylalanine (AUC-ROC,
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0.829), tyrosine (AUC-ROC, 0.818), and valine (AUC-ROC, 0.861) were found to be signifi-
cantly downregulated in the AS-risk sera. The discovery of these differentially expressed
metabolites provides valuable insights into the metabolic alterations associated with AS.
Additionally, ROC curves were used in this study to increase the specificity and sensitivity
of biomarkers by examining the AUCs in the normal and AS groups. If the AUC-ROC value
is greater than 0.7, the metabolite is relatively exclusive and can be considered an early
diagnostic biomarker [29]. Three upregulated metabolites, including cortisol, hypoxanthine,
and isoleucine, were found to have AUC values of 0.834, 0.935, and 0.792, respectively, with
a 95% CI, indicating the potential of these metabolites to serve as early biomarkers of AS.
The elevated levels of biomarkers in the blood are preferable for diagnosing, monitoring,
or treating a particular disease. Therefore, only the upregulated metabolites were selected
in this study.

The results of our study are consistent with the results of previous studies; for instance,
previously conducted clinical studies have shown a correlation between elevated levels
of TMAO in plasma and AS [30,31]. TMAO has been suggested to potentially exacerbate
inflammatory responses in the vascular wall, induce the production of reactive oxygen, and
impair cholesterol reverse transport, which plays a role in the development of atheroscle-
rosis [32]. In addition to the increased production of reactive oxygen species, the level
of methionine, which is the precursor of cysteine and glutathione, decreased and caused
oxidative stress. Similarly, alterations in bile acids and amino acids have been linked to
dyslipidemia and oxidative stress, leading to AS progression. Bile acid synthesis is the
predominant pathway for regulating cholesterol in the body [33]. Earlier investigations
have highlighted the effect of bile acids on insulin sensitivity, lipid metabolism, and in-
flammation [34]. Bile acids act as signaling molecules and interact with various receptors,
such as the Takeda G protein-coupled receptor 5 (TGR5) and the farnesoid X receptor
(FXR) [35]. Activation of these receptors has been shown to influence lipid metabolism, glu-
cose homeostasis, and inflammation, thereby affecting the initiation of AS plaques [36–38].
Furthermore, alterations in bile acid composition have been noticed in patients with AS and
metabolic syndrome, suggesting a potential connection between bile acid dysregulation
and AS [33,39]. Previous studies have reported the association between bile acid levels
and age [40]. However, the findings of the present study reveal no significant correlation
between elevated bile acid concentrations and age. This is substantiated by the regression
coefficient (R2) values, indicating that age does not appear to be a determinant factor
influencing the bile acid concentrations. Other important metabolites identified in this
study were associated with amino acid biosynthesis. Amino acids are not only vital for
cellular functions but also contribute to metabolism, lipid regulation, oxidative stress, and
inflammation, all of which are key factors in AS [36,41]. Recent studies have indicated that
the presence of certain amino acids may contribute to the development of AS [42,43]. In
cross-sectional studies, branched-chain amino acids such as leucine, isoleucine, and valine
have been associated with a number of cardiometabolic risk factors, including anthropo-
metric measures of excessive body weight and adiposity, insulin resistance, disruption in
fasting glucose level, high blood pressure, dyslipidemia, and coronary artery disease [44].
Furthermore, isoleucine impacts the mTOR (mammalian target of rapamycin) signaling
pathway, which is involved in metabolism, cell growth, and immune responses [45]. Dys-
regulated mTOR signaling has been implicated in AS [46]. Another identified metabolite
was hypoxanthine, a purine derivative that can be produced due to oxidative stress and
impaired purine metabolism [47]. Elevated hypoxanthine levels significantly increased
cholesterol levels in serum and the AS plaque area [48]. The presence of plaque in blood
vessels can limit blood flow and the amount of oxygen supplied to tissues [3]. This, in turn,
affects cellular metabolism and energy production, leading to low ATP (adenosine triphos-
phate) and high hypoxanthine production [6,49]. It has also been proposed that elevated
plasma levels of hypoxanthine in both animal laboratories and clinical settings can be used
as rapid and sensitive biomarkers for acute cardiac ischemia at an early stage [6]. Another
interesting metabolite found to be significantly upregulated was cortisol, a stress hormone.
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Cortisol plays a role in the regulation of the immune system, managing lipid and glucose
metabolism, and supporting cardiac output through its ability to enhance vascular tone and
reduce vascular permeability. Elevated levels of cortisol have several negative health effects
throughout the human body. Dysregulation of the hypothalamic-pituitary-adrenal (HPA)
axis is linked to hypertension, increased heart rate, high levels of total and low-density
lipoprotein cholesterol, as well as fasting insulin and glucose levels [50]. Moreover, several
studies have identified an association between cortisol and subclinical atherosclerosis [51].
Lazzarino et al., 2013, found a connection between an increased cortisol response to mental
stress and detectable levels of cardiac troponin in plasma using a high-sensitivity test in
healthy participants [52].

5. Conclusions

In the present study, mass spectrometry-based untargeted and targeted metabolomics
combined with univariate and multivariate data analysis was used to identify metabolomics
signatures that could discriminate between normal and AS-risk patients. Based on the
results, normal and AS-risk sera have significant metabolic differences characterized by
changes in several metabolites, including taurocholic acid, cholic acid, cortisol, hypoxan-
thine, TMAO, isoleucine, glycoursodeoxycholic acid, glycocholic acid, testosterone, leucine,
methionine, phenylalanine, tyrosine, and valine. Moreover, ROC analysis and random
forest analysis demonstrated that hypoxanthine, isoleucine, and cortisol serum levels are
highly correlated with AS, indicating the potential of these metabolites to serve as early
biomarkers of AS. These findings provide a new therapeutic direction for developing
anti-AS strategies. However, it is recommended to conduct additional longitudinal studies
on larger cohorts to confirm the clinical utility and broader applicability of hypoxanthine,
isoleucine, and cortisol as early biomarkers for atherosclerosis.
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