
Citation: Rashid, M.M.; Varghese,

R.S.; Ding, Y.; Ressom, H.W.

Biomarker Discovery for

Hepatocellular Carcinoma in Patients

with Liver Cirrhosis Using

Untargeted Metabolomics and

Lipidomics Studies. Metabolites 2023,

13, 1047. https://doi.org/10.3390/

metabo13101047

Academic Editor: Stewart Graham

Received: 14 August 2023

Revised: 31 August 2023

Accepted: 27 September 2023

Published: 2 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metabolites

H

OH

OH

Article

Biomarker Discovery for Hepatocellular Carcinoma in Patients
with Liver Cirrhosis Using Untargeted Metabolomics and
Lipidomics Studies
Md Mamunur Rashid, Rency S. Varghese , Yuansong Ding and Habtom W. Ressom *

Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center,
Georgetown University, Washington, DC 20057, USA; mr1785@georgetown.edu (M.M.R.);
rsv4@georgetown.edu (R.S.V.); yd239@georgetown.edu (Y.D.)
* Correspondence: hwr@georgetown.edu

Abstract: Hepatocellular carcinoma (HCC), the most prevalent form of liver cancer, is the third
leading cause of mortality globally. Patients with HCC have a poor prognosis due to the fact that
the emergence of symptoms typically occurs at a late stage of the disease. In addition, conventional
biomarkers perform suboptimally when identifying HCC in its early stages, heightening the need
for the identification of new and more effective biomarkers. Using metabolomics and lipidomics
approaches, this study aims to identify serum biomarkers for identification of HCC in patients with
liver cirrhosis (LC). Serum samples from 20 HCC cases and 20 patients with LC were analyzed using
ultra-high-performance liquid chromatography-Q Exactive mass spectrometry (UHPLC-Q-Exactive-
MS). Metabolites and lipids that are significantly altered between HCC cases and patients with LC
were identified. These include organic acids, amino acids, TCA cycle intermediates, fatty acids,
bile acids, glycerophospholipids, sphingolipids, and glycerolipids. The most significant variability
was observed in the concentrations of bile acids, fatty acids, and glycerophospholipids. In the
context of HCC cases, there was a notable increase in the levels of phosphatidylethanolamine and
triglycerides, but the levels of fatty acids and phosphatidylcholine exhibited a substantial decrease.
In addition, it was observed that all of the identified metabolites exhibited a superior area under
the receiver operating characteristic (ROC) curve in comparison to alpha-fetoprotein (AFP). The
pathway analysis of these metabolites revealed fatty acid, lipid, and energy metabolism as the most
impacted pathways. Putative biomarkers identified in this study will be validated in future studies
via targeted quantification.

Keywords: liver cancer; biomarkers; metabolomic profiling; lipidomic profiling; LC-MS/MS

1. Introduction

Hepatocellular carcinoma (HCC) is the most common form of liver cancer and ranks
third on the list of primary causes of death due to cancer globally [1,2]. By 2025, it is
expected that the annual incidence of liver cancer will climb to over a million cases, making
HCC one of the leading causes of cancer-related mortality in several developed nations,
including the United States [3]. Patients with LC have an increased risk of developing HCC
due to the fact that ~90% of all HCCs are the result of long-standing cirrhosis [4]. Therefore,
differentiating HCC from LC, particularly in the early stages, will be critical in the clinical
decision-making.

Early diagnosis and timely intervention are crucial for improving the overall survival
rates of HCC patients. Patients with HCC are often diagnosed at an advanced stage since
the early stages of the disease do not produce any evident symptoms. The most used
serologic marker for HCC diagnosis is alpha-fetoprotein (AFP). However, its diagnostic
value has been frequently criticized because AFP is increased in only 20% of early-stage
HCC patients having sensitivity, and predictive values to detect HCC range from 20 to
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50%. In addition, patients with cirrhosis or hepatitis may have AFP levels that are outside
the normal range [5,6]. Similarly, conventional imaging-based diagnostic approaches
exhibit reduced sensitivity throughout the initial phases, resulting in diagnostic delays
and poor patient outcomes [7]. Therefore, there is an urgent need for the discovery and
development of sensitive and specific biomarkers that can facilitate early detection, accurate
risk stratification, and personalized therapeutic strategies.

High-throughput omics technologies have provided new avenues for studying cancer,
allowing researchers to better understand the intricate molecular patterns that are linked to
the onset and progression of the diseases. Among these technologies, metabolomics and
lipidomics offer the ability to undertake in-depth analyses of small molecule metabolites
and lipid species, respectively, and thus provide insight into metabolic abnormalities in
a variety of diseases, such as cancer [8,9]. Metabolomics is a rapidly growing discipline
involving the systematic analyses of metabolites or small molecules in biological samples.
On the other hand, lipidomics, a subset of metabolomics, primarily facilitates the evaluation
of different lipid species in intricate biological samples. The metabolites and lipids in a
sample reflect the underlying biological processes, making them a valuable source of
information for disease diagnosis and prognosis [10].

Various omics platforms have been employed to discover potential biomarkers that can
effectively detect HCC at its early stage [11]. Among these, metabolomics and lipidomics
approaches were employed to analyze various categories of biological samples using man-
ifold liquid/gas chromatography–mass spectrometry and nuclear magnetic resonance
(NMR) systems. Multiple research groups have reported various classes of metabolites,
including amino acids, organic acids, bile acids, fatty acids, and lipids, as potential biomark-
ers for the diagnosis of HCC [12–15]. However, the efficacy of the identified biomarkers
in distinguishing early HCC from LC remains to be evaluated, which is the most difficult
aspect of HCC diagnosis.

In the present study, metabolomics and lipidomics approaches were applied to discover
HCC biomarkers by comparing with LC controls using a UHPLC-Q-Exactive-MS system.

2. Materials and Methods
2.1. Chemicals and Reagents

Internal standards (ISs) including debrisoquine sulfate, 4-nitrobenzoic acid and arachi-
donic acid-d8, and PC(16:0/18:1)-d31 were purchased from Sigma-Aldrich (Milwaukee,
WI, USA) and Avanti Polar Lipids (Alabaster, AL, USA), respectively. Ammonium acetate
was purchased from MP Biomedicals (Solon, OH, USA). Solvents for mobile phase prepa-
ration and sample extraction, including water, methanol, acetonitrile, isopropanol, and
chloroform, were obtained from either Fisher Scientific (Fair Lawn, NJ, USA) or Honeywell
Chemicals (Muskegon, MI, USA) and were HPLC grade.

2.2. Study Cohort and Sample Collection

Serum samples from 40 adult patients recruited at MedStar Georgetown University
Hospital through a protocol approved by the Georgetown IRB were analyzed in this study.
All subjects provided informed consent and HIPAA authorization forms. Table 1 provides
the characteristics of the 20 HCC cases and 20 patients with cirrhosis whose samples were
analyzed using the UHPLC-Q-Exactive-MS. Liver cirrhosis had been diagnosed in all
HCC patients included in this study. The diagnosis of HCC cases was made using well-
established criteria for diagnostic imaging and/or histology. The clinical stages of HCC
were defined using the tumor-node-metastasis (TNM) classification system. The overall
experimental design, including sample preparation, data acquisition, data processing,
statistical analysis, and data interpretation, for untargeted metabolomics and lipidomics
analysis is depicted in Figure 1.
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Figure 1. Study workflow of our LC-MS-based untargeted metabolomics and lipidomics analysis 
for HCC biomarker discovery. MeOH: Methanol, IPA: Isopropanol, ACN: Acetonitrile. 

Table 1. Clinical characteristics of study population. 

Variables HCC 
(n = 20) 

LC 
(n = 20) 

p-Value 

Age Mean (SD) 59 (6) 58 (6) 0.4870 
Gender Male 12 13 1.0000 

Race 
AA 10 7 

0.5231 
EA 10 13 

BMI Mean (SD) 30 (7.2) 30 (4.8) 0.9663 

Etiology 
HCV 17 16 1.0000 

Alcohol 6 7 1.0000 
HCV Serology HCV Ab+ 16 15 0.6948 

HBV Serology 
anti HBC+ 9 7 0.7475 
HBs Ag+ 1 0 1.0000 

Smoking 
Current 5 5 

1.0000 Former 11 10 
None 4 5 

Alcohol 
Current 5 4 

1.0000 Former 11 12 
None 4 4 

AFP Median (IQR) 29.1 (60.8) 7.3 (35.4) 0.3389 
AST  Median (IQR) 107.5 (83.2) 94 (70) 0.1903 

Figure 1. Study workflow of our LC-MS-based untargeted metabolomics and lipidomics analysis for
HCC biomarker discovery. MeOH: Methanol, IPA: Isopropanol, ACN: Acetonitrile.

Table 1. Clinical characteristics of study population.

Variables HCC
(n = 20)

LC
(n = 20) p-Value

Age Mean (SD) 59 (6) 58 (6) 0.4870
Gender Male 12 13 1.0000

Race
AA 10 7

0.5231EA 10 13
BMI Mean (SD) 30 (7.2) 30 (4.8) 0.9663

Etiology HCV 17 16 1.0000
Alcohol 6 7 1.0000

HCV Serology HCV Ab+ 16 15 0.6948

HBV Serology anti HBC+ 9 7 0.7475
HBs Ag+ 1 0 1.0000

Smoking
Current 5 5

1.0000Former 11 10
None 4 5

Alcohol
Current 5 4

1.0000Former 11 12
None 4 4

AFP Median (IQR) 29.1 (60.8) 7.3 (35.4) 0.3389
AST Median (IQR) 107.5 (83.2) 94 (70) 0.1903
ALT Median (IQR) 98.5 (53.2) 53.2 (47) 0.0695
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Table 1. Cont.

Variables HCC
(n = 20)

LC
(n = 20) p-Value

MELD Median (IQR) 10.5 (5.2) 13.5 (9.3) 0.0474

Child Pugh score Mean (SD) 6.8 (1.8) 9.1 (2.8)
0.0116Median (IQR) 6 (2.5) 9 (5)

Child Pugh Class
A 9 3
B 7 8
C 3 5

HCC Stage
Stage I 6

NoneStage II 13
Stage III 1

2.3. Serum Sample Preparation

To conduct metabolomics and lipidomics studies, serum samples were prepared
according to the previously published studies with a few modifications [10,16]. For the
metabolomics study, 150 µL of ice-cold methanol was added to each 50 µL serum samples
aliquot using the serum methanol ratio of 1:3. To obtain better protein precipitation, the
sample mixture was then vortex-mixed and centrifuged at 21,913× g for 10 min 4 ◦C. A
clear supernatant was then transferred to a fresh tube and diluted with water containing
internal standards for positive (debrisoquine sulfate; 2 µg/mL) and negative (4-nitrobenzoic
acid; 2 µg/mL) modes at a ratio of 2:1 (supernatant: water). After mild vortexing and
spinning, 5 L of the sample was subsequently injected into the UHPLC-Q-Exactive-MS
system. A quality control (QC) sample was prepared by obtaining identical volumes of
serum samples and diluting them with water containing the IS mixture (2 g/mL) using
the same ratio as described above. This QC sample was utilized to give a representative
“mean” sample encompassing all analytes encountered during the analysis, and to evaluate
the instrument’s stability. The QC sample was injected multiple times at the start of each
run to condition or equilibrate the system. It was then injected after every 10 samples to
assess the stability of the analysis. The QC data were used to investigate the intra-run
analytical variability.

To perform the lipidomics study, an aliquot of 50 µL serum was mixed with 25 µL of
PC (16:0/18:1)-d31 (4 µg/mL; internal standard for positive mode), 25 µL of arachidonic
acid-d8 (4 µg/mL; internal standard for negative mode), and 50 µL of 0.1 M NaCl. To
extract lipids, 250 L of ice-cold chloroform/methanol (1:2; v/v) was added to the serum
mixture, which was then vortexed for 1 min, left at room temperature for 1 h, and followed
by centrifugation at 21,913× g for 10 min at 4 ◦C. The organic layer was separated to a new
tube and evaporated to dryness using sppedvac. The residue was then reconstituted with
100 µL of ice-cold isopropanol:acetonitrile:water (2:1:1; v/v) and injected into the instrument
for analysis. A QC sample was also prepared by taking equal volumes from each sample
after reconstitution in order to assess the instrument’s consistency and reliability. All QC
samples were processed in a manner similar to the metabolomics analysis.

2.4. Instrumental Conditions

LC-MS/MS data were acquired in both positive and negative modes using a Vanquish
UHPLC system connected to a Q-Exactive mass spectrometer (Thermo Fisher Scientific,
San Jose, CA, USA) equipped with a heated electrospray ionization (HESI) source.

In the metabolomics study, an ACQUITY UPLC BEH C18 column (2.1 × 100 mm,
1.7 mm, Waters, Milford, MA, USA) was utilized for the chromatographic separation while
maintaining the autosampler and column oven temperature at 4 ◦C and 50 ◦C, respectively.
The mobile phase consisted of 0.1 formic acid in water (v/v; mobile phase A) and in
methanol (v/v; mobile phase B), and a flow rate of 0.3 mL/min was used for the elution.
The elution gradient was controlled as follows: initial elution was at 100% A for 1 min, then
it was reduced to 80% A during the next 4 min, and from 4 min to 10 min, mobile phase
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A was decreased linearly from 80% to 30%. At 14 min, the flow of mobile phase A was
brought down to 0% before being rapidly brought back up to the initial conditions for a
2 min re-equilibration phase.

Chromatographic separations for the lipidomics study were executed on an ACE Excel
2 Super C18 column (2.1 × 100 mm, 1.7 mm, Advanced Chromatography Technologies
Ltd., Aberdeen, Scotland, UK), with the autosampler and column oven temperature set to
4 ◦C and 50 ◦C, respectively. Then, 10 mM ammonium acetate was contained in either 40%
acetonitrile (v/v, mobile phase A) or acetonitrile: isopropanol (10:90, v/v, mobile phase B)
and was eluted at the same flow rate as the metabolomics analysis. The gradient elution
was managed in the following manner: the gradient was started with 60% mobile phase
A and kept for 1 min, decreased linearly to 35% A over the course of the next 2.5 min,
then decreased again from 35% to 0% A over the course of the next 9 min and held at that
level for 0.5 min before returning to the initial gradient state of 60% A to re-equilibrate
the condition.

The analysis of serum was conducted under identical mass spectrometric (MS) con-
ditions for both metabolomics and lipidomics studies. UHPLC-Q-Exactive-MS data were
acquired at a resolution of 70,000 with a centroid mode scan ranging from m/z 66.6 to 1000
for metabolomics and 80 to 1200 for lipidomics. The MS/MS scans were performed using
5 loop counts at a resolution of 17,500 by applying stepped normalized collision energy
(step-NCE) of 20, 30, and 45 with an isolation window of 2.0 m/z. The automatic gain
control (AGC) was set to 1 × 106 and 1 × 105 for full MS and dd-MS2, respectively, while
the dynamic exclusion was set to 30.0 s. The detailed heated electrospray ionization (HESI)
source parameters were as follows: capillary temperature was 320 ◦C; spray voltage was
4.0 kV for positive and 3.8 kV for negative ion modes; sheath gas flow rate was 46.0 arb in
positive and 50.0 arb in negative ion modes; auxiliary gas flow rate was 11.0 arb for positive
and 10.0 for negative ion modes; sweep gas flow rate was set to 1.0 arb for both ion modes;
and the RF level in the S-lens was 60%. Nitrogen was used for both the sheath gas and the
auxiliary gas.

2.5. Data Processing and Statistical Analysis

The raw Q-Exactive-MS data were processed by Compound Discoverer 3.1 (Thermo
Fisher Scientific, San Diego, CA, USA) to align, detect, and identify the peaks. The pro-
cessed data were then normalized using the peak area of internal standards. Specifically,
debrisoquine sulfate and 4-nitrobenzoic acid were used to normalize the positive and nega-
tive metabolomics data, whereas PC(16:/18:1)-d31 and arachidonic acid-d8 were used to
normalize the positive and negative lipidomics data. Principal component analysis (PCA)
and partial least square discriminant analysis (PLS-DA) were performed to visualize the
differences and to evaluate the differential metabolites between HCC and LC groups using
Metaboanalyst 5.0 following log transformation and Pareto scaling. To identify significantly
altered ions, a two-sample t-test was used. The p-values were then adjusted using the
Benjamini–Hochberg false discovery rate. Metabolites were considered significant based
on the p-value (<0.05) and FDR adjustment (0.05).

2.6. Metabolite Annotation

Significantly altered putative metabolites were annotated based on the m/z of the mass
adducts ([M + H]+, [M + Na]+, [M + NH4]+, [M − H]−, etc.) and the MS/MS of fragments
of each m/z using various tools, compound databases, and spectral libraries including
MetaboQuest, Compound Discoverer, LipidSearch, Human Metabolome Database (HMDB),
and METLIN.

2.7. Network and Pathway Analyses

Network and pathway analyses were conducted using the Ingenuity Pathway Analysis
(IPA) software, utilizing all annotated metabolites identified through metabolomics and
lipidomics studies.
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2.8. Receiver Operating Characteristic (ROC) Curve Analysis

The ROC curve analysis was performed to evaluate the diagnostic power of each
individual metabolite candidate identified through our metabolomics and lipidomics
studies to diagnose the HCC. We compared the area under the curve (AUC) of each
metabolite with the AUC of AFP, the most commonly used marker for HCC diagnosis.

3. Results
3.1. Untargeted Metabolomics and Lipidomics Analysis of HCC vs. LC

Serum metabolomics and lipidomics profiling studies were carried out to identify
potential biomarkers associated with HCC development through comparisons with LC.
Metabolic and lipidomic features obtained from UHPLC-Q-Exactive-MS analysis were sub-
jected to PCA and PLS-DA analyses to visualize the differences in HCC from LC. The PCA
score plots for both the metabolomics and lipidomics analysis in both positive and negative
modes showed a partial overlap between HCC and LC groups (Figure 2), which could be
because of the similar disease states between these two cohorts. The PLS-DA analysis of the
same metabolomics and lipidomics datasets demonstrated a distinct separation between
the HCC and LC groups (Supplementary Figure S1) with good modeling and predicting
capabilities (R2 = 0.99, Q2 = −0.04 for metabolomics positive mode, R2 = 0.98, Q2 = 0.08
for metabolomics negative mode, R2 = 0.98, Q2 = 0.31 for lipidomics positive mode, and
R2 = 0.98, Q2 = 0.24 for lipidomics negative mode). R2 represents the model’s explanation
capacity, while Q2 denotes its predictive ability; R2 and Q2 values near 1 indicate that the
model is excellent. The overall R2 and Q2 values demonstrated that the model was reliable
and had good predictability. The low Q2 value observed in positive metabolomics may
be attributed to the partial overlap between the HCC and LC groups. On the contrary,
the lipidomics analysis exhibited greater R2 and Q2 values, indicating a more substantial
differentiation between the HCC and LC populations.

In the serum metabolomics study, a total of 20,277 and 9584 analytes were detected
by Compound Discoverer 3.1 in positive and negative modes, respectively. Compound
Discoverer chose spectra from the original data using a signal-to-noise (S/N) threshold
of 3.0. Subsequently, retention time (RT) alignment was performed with an RT tolerance
of 0.3 min and a mass precision of 10 ppm. Among detected analytes, the levels of 1017
(in positive) and 559 (in negative) ions were significantly different based on the t-test
result (p < 0.05). Based on p-value < 0.05 and fold change ratio > 1.18, 31 putative metabo-
lites of various classes, including carboxylic acid and derivatives, fatty acyls, steroid and
steroid derivatives, glycerophospholipids, and a few organic compounds, were identified.
Tables 2 and 3 provides information on the identified serum metabolites in detail. Among
these metabolites, bile acids from the steroid and steroid derivatives class displayed the
highest differences in the HCC group from the LC group where most of the bile acids
were significantly decreased in HCC. All the glycerophospholipids, especially lysophos-
phatidylethanolamine (LysoPE) and phosphatidylethanolamine (PE), were another class of
metabolites that showed significant upregulation in HCC cases. In addition, most of the
fatty acids were downregulated in HCC from LC cases and all the metabolites under the
class of carboxylic acids and derivatives showed upregulation in the HCC group compared
to the LC group. Figure 3 depicts a heatmap of identified metabolites that are differen-
tially expressed based on p-values and fold change in HCC vs. LC groups. In addition,
Supplementary Figure S2 displays a heatmap with hierarchical clustering performed on
both the patient samples and the metabolites. Supplementary Figure S3 displays individual
dot plots representing the significantly changed metabolites discovered by the lipidomics
analysis between HCC and LC cases. However, despite small p-values and high fold
change, none of the metabolites passed the FDR cutoff. Thus, targeted quantitation of the
selected candidates is highly desired to confirm the observed difference between HCC
and LC.
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Table 2. List of significantly altered serum metabolites in HCC patients compared to LC patients
identified by metabolomics analysis.

Metabolite Name Class ID Exact
Mass m/z RT Adduct

HCC vs. LC Fold
Change

(HCC/LC)
Trend

p-Value FDR

Pyruvic acid Keto acids and
derivatives HMDB0000243 88.0148 87.0070 0.91 [M − H]− 0.04081 0.70955 −1.29 ↓

L-Alanine Carboxylic acids
and derivatives HMDB0000161 89.0475 90.0547 0.82 [M + H]+ 0.00740 0.88660 1.27 ↑

Proline Carboxylic acids
and derivatives HMDB0251528 115.0631 116.0703 1.42 [M + H]+ 0.04101 0.97773 1.41 ↑

N-Undecanoy-
lglycine

Carboxylic acids
and derivatives HMDB0013286 243.1828 266.1720 7.56 [M + Na]+ 0.00022 0.37484 1.30 ↑

N-Nonanoylglycine Carboxylic acids
and derivatives HMDB0013279 215.1522 214.1444 5.90 [M − H]− 0.00062 0.50963 1.22 ↑

Histidylalanine Carboxylic acids
and derivatives HMDB0028878 226.1166 225.1088 7.22 [M − H]− 0.00064 0.50963 1.60 ↑

α-Aspartylphe-
nylalanine

Carboxylic acids
and derivatives HMDB0000706 280.1052 281.1125 4.81 [M + H]+ 0.00073 0.49771 1.85 ↑

L-Carnitine Organonitrogen
compounds HMDB0000062 161.1048 162.1120 0.82 [M + H]+ 0.00813 0.88660 1.24 ↑

4-Dodecylben-
zenesulfonic acid

Benzene and
substituted
derivatives

HMDB0251568 326.1919 325.1841 16.45 [M – H]− 0.00071 0.50963 1.23 ↑

Xanthine Imidazopyrimidines HMDB0000292 152.0324 151.0246 1.19 [M − H]− 0.02981 0.70955 1.25 ↑
Uric acid Imidazopyrimidines HMDB0000289 168.0280 169.0353 0.89 [M + H]+ 0.04447 0.98349 1.32 ↑

Indoleacrylic acid Indoles and
derivatives HMDB0000734 187.0630 188.0703 6.36 [M + H]+ 0.01981 0.90379 −2.22 ↓

Sebacic acid Fatty acyls HMDB0000792 202.1200 201.1122 7.06 [M − H]− 0.03118 0.70955 1.34 ↑
2-Hydroxymyristic

acid Fatty acyls HMDB0002261 244.2039 243.1961 11.32 [M − H]− 0.01980 0.70955 −1.18 ↓

Prostaglandin A2 Fatty acyls HMDB0002752 334.2128 333.2050 10.17 [M − H]− 0.03417 0.70955 −1.44 ↓

Nervonic acid Fatty acyls HMDB0002368 366.3502 365.3424 15.99 [M − H]− 0.02158 0.70955 −1.35 ↓

Thromboxane B2 Fatty acyls HMDB0003252 370.2361 369.2283 7.67 [M − H]− 0.03649 0.70955 −2.51 ↓
2-Linoleoyl Glycerol Fatty Acyls HMDB0245187 354.2760 355.2833 12.52 [M + H]+ 0.04812 0.99111 2.59 ↑

Glycodeoxycholic
acid (GDCA)

Steroids and steroid
derivatives HMDB0000631 449.3141 432.3098 8.01 [M + H −

H2O]+ 0.01730 0.90379 −3.97 ↓

Glycoursodeoxycholic
acid (GUDCA)

Steroids and steroid
derivatives HMDB0000708 449.3149 448.3071 8.02 [M − H]− 0.02246 0.70955 −3.79 ↓

Taurochenodeoxycholic
acid (TCDCA)

Steroids and steroid
derivatives HMDB0000951 499.2978 498.2900 8.11 [M − H]− 0.02940 0.70955 −2.40 ↓

Testosterone sulfate Steroids and steroid
derivatives HMDB0002833 368.1661 367.1583 7.72 [M − H]− 0.02959 0.70955 1.85 ↑

LysoPE(18:3/0:0);
LPE(18:3) Glycerophospholipids HMDB0011509 475.2707 474.2629 10.94 [M − H]− 0.02921 0.70955 1.62 ↑

LysoPE(18:2/0:0);
LPE(18:2) Glycerophospholipids HMDB0011507 477.2843 478.2916 11.88 [M + H]+ 0.00765 0.88660 1.62 ↑

PE(16:0/18:2);
PE(34:2) Glycerophospholipids HMDB0008928 715.5165 714.5087 16.67 [M − H]− 0.01653 0.70955 1.66 ↑

PE(18:1/18:2);
PE(36:3) Glycerophospholipids HMDB0009027 741.5324 740.5246 16.89 [M − H]− 0.04691 0.70955 1.38 ↑

PE(18:1/20:4);
PE(38:5) Glycerophospholipids HMDB0009036 765.5323 764.5245 16.65 [M − H]− 0.01554 0.70955 1.60 ↑

PE(O−16:1/20:4);
PE(O-36:5) Glycerophospholipids 723.5220 722.5142 16.55 [M − H]− 0.00356 0.62660 1.80 ↑

PE(O-16:1/22:6);
PE(O-38:7) Glycerophospholipids 747.5222 746.5144 16.45 [M − H]− 0.01257 0.70955 1.68 ↑

PE(O-16:1/18:2);
PE(O-34:3) Glycerophospholipids 699.5218 698.5140 17.04 [M − H]− 0.01861 0.70955 1.49 ↑

Cer(d18:1/16:0);
Cer(d34:1) Sphingolipids 583.5179 582.5101 16.44 [M +

HCOO] 0.03797 0.70955 1.50 ↑

↑: upregulated in HCC, ↓: downregulated in HCC.
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Table 3. List of significantly altered serum metabolites in HCC patients compared to LC patients
identified by lipidomics analysis.

Metabolite Name Class ID Exact
Mass m/z RT Adduct

HCC vs. LC Fold
Change

(HCC/LC)
Trend

p-Value FDR

Undecanoic acid Fatty acyls HMDB0000947 186.1609 185.1531 2.17 [M − H]− 0.00009 0.00700 −1.46 ↓
Lauric acid/Dod-

ecanoic acid Fatty acyls HMDB0000638 200.1767 199.1689 2.88 [M − H]− 0.00034 0.01528 −1.79 ↓

Tridecanoic acid Fatty acyls HMDB0000910 214.1925 213.1847 3.70 [M − H]− 0.00010 0.00724 −1.44 ↓

Pentadecanoic acid Fatty acyls HMDB0000826 242.2241 241.2163 5.10 [M − H]− 0.00239 0.04856 −1.35 ↓

Palmitic acid Fatty acyls HMDB0000220 256.2398 255.2320 5.65 [M − H]− 0.00058 0.02039 −1.18 ↓
2-Hydroxypalmitic

acid Fatty acyls HMDB0031057 272.2351 271.2273 3.27 [M − H]− 0.00076 0.02357 −1.37 ↓

alpha-Linolenic acid Fatty acyls HMDB0001388 278.2224 277.2146 5.09 [M − H]− 0.00096 0.02738 −1.61 ↓

Stearic acid Fatty acyls HMDB0000827 284.2713 283.2635 6.70 [M − H]− 0.00008 0.00643 −1.25 ↓
12,13-EpOME Fatty acyls HMDB0004702 296.2349 295.2271 1.53 [M − H]− 0.00003 0.00311 −1.43 ↓

Nonadecanoic acid Fatty acyls HMDB0000772 298.2870 297.2792 7.45 [M − H]− 0.00000 0.00025 −1.38 ↓

Arachidic acid Fatty acyls HMDB0002212 312.3028 311.2950 7.71 [M − H]− 0.00018 0.01032 −1.26 ↓

Heneicosylic acid Fatty acyls HMDB0002345 326.3182 325.3104 8.42 [M − H]− 0.00000 0.00056 −1.34 ↓

Tricosanoic acid Fatty acyls HMDB0001160 354.3496 353.3418 9.12 [M − H]− 0.00045 0.01783 −1.28 ↓

Pentacosanoic acid Fatty acyls HMDB0002361 382.3809 381.3731 9.98 [M − H]− 0.00010 0.00749 −1.33 ↓

Hexacosanoic acid Fatty acyls HMDB0002356 396.3964 395.3886 10.38 [M − H]− 0.00004 0.00352 −1.32 ↓

Heptacosanoic acid Fatty acyls HMDB0002063 410.4122 409.4044 10.76 [M − H]− 0.00056 0.02001 −1.32 ↓
4-Hydroxyben-

zaldehyde
Organooxygen

compounds HMDB0011718 122.0354 121.0276 0.83 [M − H]− 0.00138 0.03373 −1.87 ↓

2-Methylbenzoic
acid

Benzene and
substituted
derivatives

HMDB0002340 136.0511 135.0433 0.83 [M − H]− 0.00000 0.00085 −1.36 ↓

6-Hydroxynicotinic
acid

Pyridines and
derivatives HMDB0002658 139.0256 138.0178 0.93 [M − H]− 0.00072 0.02321 −1.46 ↓

PC(22:5/3:0);
PC(25:5) Glycerophospholipids NIST598 625.3754 626.3833 5.34 [M + H]+ 0.00010 0.00525 −1.53 ↓

PC(22:5/16:0);
PC(38:5) Glycerophospholipids HMDB0008692 807.5531 830.5635 7.77 [M + Na]+ 0.00141 0.03407 −2.56 ↓

PC(16:0/22:6);
PC(38:6) Glycerophospholipids HMDB0007991 805.54666 806.5545 7.16 [M + H]+ 0.00268 0.04897 −2.45 ↓

PC(15:1/24:4);
PC(39:5) Glycerophospholipids NIST3518 821.6588 822.6667 10.85 [M + H]+ 0.00024 0.00988 −1.59 ↓

PC(15:1/22:6);
PC(37:7) Glycerophospholipids NIST2714 789.5303 790.5382 8.94 [M + H]+ 0.00054 0.01819 −1.27 ↓

PC(20:3/22:6);
PC(42:9) Glycerophospholipids HMDB0008387 855.5665 856.5743 7.77 [M + H]+ 0.00187 0.03991 −1.37 ↓

PC(18:0/22:0);
PC(40:0) Glycerophospholipids HMDB0008051 845.6607 846.6685 10.01 [M + H]+ 0.00190 0.03991 −1.25 ↓

PC(20:4/22:6);
PC(42:10) Glycerophospholipids HMDB0008485 853.5579 854.5657 8.70 [M + H]+ 0.00189 0.03991 −1.61 ↓

LPC(P-27:6) Glycerophospholipids 621.4174 622.4252 6.65 [M + H]+ 0.00022 0.00886 −1.29 ↓
PC(O-46:8) Glycerophospholipids 899.6740 900.6818 10.85 [M + H]+ 0.00115 0.03006 −1.52 ↓

DG(20:1/14:1/0:0);
DG(34:2) Glycerolipids HMDB0007386 592.5066 599.5241 8.35 [M + Li]+ 0.00012 0.00552 −1.34 ↓

PE(18:3/18:0);
PE(36:3) Glycerophospholipids HMDB0009156 741.5303 740.5225 8.65 [M − H]− 0.00127 0.03220 2.93 ↑

TG(16:0/16:1/22:6);
TG(54:7) Glycerolipids HMDB0044079 876.7207 894.7535 13.15 [M +

NH4]+ 0.00005 0.00321 4.17 ↑

TG(18:3/18:2/20:5);
TG(56:10) Glycerolipids HMDB0053065 898.7010 899.7089 13.15 [M + H]+ 0.00020 0.00833 3.70 ↑

↑: upregulated in HCC, ↓: downregulated in HCC.
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Figure 2. Principal component analysis (PCA) score plot of HCC (green) and cirrhosis (red) cohorts. 
Metabolomics (A) positive and (B) negative modes; Lipidomics (C) positive and (D) negative modes. 

For the lipidomics study, a total of 5014 (in positive mode) and 8,614 (in negative mode) 
analytes were detected by Compound Discoverer 3.1 software. After the p-value evaluation 
and adjustment of p-value, we found that 276 and 421 metabolites were significantly altered 
in positive mode and negative mode, respectively. A total number of 33 metabolites were 
finally annotated by matching their corresponding MS/MS fragments. Figure 4 depicts a 

Figure 2. Principal component analysis (PCA) score plot of HCC (green) and cirrhosis (red) cohorts.
Metabolomics (A) positive and (B) negative modes; Lipidomics (C) positive and (D) negative modes.

For the lipidomics study, a total of 5014 (in positive mode) and 8614 (in negative mode)
analytes were detected by Compound Discoverer 3.1 software. After the p-value evaluation
and adjustment of p-value, we found that 276 and 421 metabolites were significantly altered
in positive mode and negative mode, respectively. A total number of 33 metabolites were
finally annotated by matching their corresponding MS/MS fragments. Figure 4 depicts a
volcano plot illustrating the significantly altered metabolites from the univariate analysis.
All the annotated metabolites were significantly altered based on both the p-value and
FDR value in the HCC vs. LC groups. The metabolites belong to the class of fatty acyls,
glycerophospholipids, and a few organic compounds. In the lipidomics study, all the fatty
acids and phosphatidylcholine (PC) from the glycerophospholipids class were significantly
downregulated, whereas the PE and triglyceride were significantly upregulated. Figure 5
depicts a heatmap of the identified metabolites, while Supplementary Figure S4 depicts
a heatmap with hierarchical clustering on both the patient samples and the metabolites.
Individual dot plots for all of the significantly altered metabolites between HCC and LC
cases detected by the lipidomics study are shown in Supplementary Figure S5.
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with non-significant change.



Metabolites 2023, 13, 1047 11 of 19

Metabolites 2023, 13, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 4. Important features selected by volcano plots with false discovery rate (FDR) < 0.05 and 
|FC| > 2 from univariate analysis (A) positive and (B) negative modes. Red-colored dots denote 
upregulated, blue-colored dots denote downregulated, and gray-colored dots denote metabolites 
with non-significant change. 

 
Figure 5. Hierarchical clustering analysis (heatmap) of identified serum metabolites altered in HCC 
cohort compared to LC cohort in lipidomics study. 

3.2. Network and Pathway Analyses 
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cohort compared to LC cohort in lipidomics study.

3.2. Network and Pathway Analyses

The pathway analysis reveals that the identified biomarker candidates contribute to
the enrichment of several canonical pathways, including glycine, alanine, stearate and
palmitate biosynthesis, alanine, guanine nucleotides and adenosine nucleotides degrada-
tion, urate biosynthesis/inosine 5′-phosphate degradation, and neutrophil extracellular
trap signaling pathway. Figure 6A depicts the top 10 canonical pathways identified by IPA
based on all metabolites significantly altered in the metabolomics and lipidomics studies.
Among the identified biomarker candidates from both the omics studies, IPA utilized a total
of 14 metabolites from omics studies that were associated with developmental disorder,
hereditary disorder, and metabolic disorder networks. Additionally, IPA found 13 metabo-
lites engaged in cell signaling, molecular transport, and vitamin and mineral metabolism
networks. The networks generated through IPA are depicted in Figure 6B,C.
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Figure 6. Pathway and network analyses of 51 metabolites mapped by IPA from the metabolite
candidates identified by metabolomics and lipidomics studies; (A) Top 10 canonical pathways based
on 51 mapped metabolites, (B) network involving 14 out of the 51 metabolites. (C) network involving
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13 out of 51 metabolites (upregulated in HCC vs. LC marked in red, downregulated in HCC vs. LC
marked in green). Orange line indicates activation, blue line indicates inhibition, yellow line indicates
findings inconsistent with state of downstream molecule, gray line indicates effect not predicted,
dashed lines indicate indirect relationship, and solid lines indicate direct relationship.

3.3. Receiver Operating Characteristic (ROC) Curve Analysis

Based on our data, all the identified biomarker candidates displayed considerably
superior performance in comparison to AFP, as evidenced by the area under the receiver
operating curve (AUC). According to Xia et al., an area under the curve (AUC) value within
the range of 0.9–1.0, 0.8–0.9, 0.7–0.8, 0.6–0.7, and 0.5–0.6 corresponds to the categories
of excellent, good, fair, bad, and fail, respectively. These categories are used to assess
the predictive capacity of a biomarker in diagnostic applications [17]. The AUC of all
our biomarker candidates identified by lipidomics study was >0.71, where the AUC of
AFP was 0.62, indicating a clear superiority in performance. Furthermore, the majority of
the metabolites identified through the metabolomics study exhibited an AUC of over 0.7,
surpassing the performance of AFP as a diagnostic marker. Figure 7A,B and Figure 8A,B
present the receiver operating characteristic (ROC) curve and scatter plots, respectively,
displaying the top five metabolites with the highest AUC values which were identified
using metabolomics and lipidomics investigations. The evaluated area under the receiver
operating characteristic curve (AUC) value of each individual biomarker candidate for
HCC identified through metabolomics and lipidomics studies is shown in Supplementary
Tables S1 and S2.
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Figure 7. Combined ROC curves and dot plots of top five metabolites having highest AUC value
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the AFP, (B) individual dot plot of corresponding metabolites including the AFP (horizontal lines
represent median). RT, retention time.
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4. Discussion

This study aimed to discover biomarker candidates that can distinguish HCC from
LC. To accomplish this, serum samples from 20 HCC cases and 20 patients with LC were
analyzed using the untargeted metabolomics and lipidomics approaches. Data acquired
utilizing UHPLC-Q-Exactive-MS led to a total of 64 metabolites that were significantly
altered in HCC patients than in LC patients. Specifically, we noticed significant differences
between the serum samples of HCC patients vs. LC patients at the level of carboxylic
acid and derivatives, fatty acyls, steroid and steroid derivatives, glycerophospholipids,
glycerolipids, and a few organic acids.

Uric acid (UA) is the final metabolite of purine metabolism in humans, formed from
xanthine and hypoxanthine via the action of xanthine oxidase (XOD) and serving dual roles
as an antioxidant and prooxidant. The prooxidant role of UA contributes to the production
of reactive oxygen species (ROS) that eventually promote tumorigenesis [18]. Previous
reports have revealed the paradoxical role of UA due to its upregulation and downregu-
lation of various cancer instances [19]. UA was found to have a positive correlation with
colorectal, kidney, nonmelanoma skin, HCC, and other cancers [19]. Recent research found
that XOD activity is increased in HCC patients compared to healthy controls [20]. Likewise,
another study demonstrated a relationship between increased serum UA and decreased
survival in individuals with advanced HCC [21]. In contrary, a negative association of
UA was also observed in pulmonary, central nervous system, breast, lymphatic, and other
cancers [19]. The results of our metabolomics study of higher levels of xanthine and uric
acid in the HCC cohort could be the indicator of higher ROS production which is ultimately
influencing the HCC progression.
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According to our metabolomics data, in terms of fold change, the highest alteration
was found in steroid and steroid derivative metabolites, especially bile acids (BAs). Bile
acids are the main constituents of bile and play a pivotal role in multiple biological pro-
cesses, including the absorption of cholesterol, lipids, and fat-soluble vitamins; regulation
of cellular signal; energy metabolism; etc. It has been reported that abnormal levels
of BA are associated with liver diseases, particularly HCC [7,22]. In this study, all the
bile acids, particularly conjugated bile acids, including glycodeoxycholic acid (GDCA),
glycoursodeooxycholic acid (GUDCA), and taurochenodeoxycholic acid (TCDCA), were
significantly downregulated in HCC vs. LC. The downregulation of bile acids in HCC com-
pared to LC has been reported previously and also supported by our previous work [23–25].
This downregulation of conjugated BA could be the effect of altered bile acid transport
pathway in the development of HCC [25].

Since fatty acids (FAs) are the fundamental building blocks of complex lipid species
that contribute as an energy source for cells to grow and proliferate, aberrant FA metabolism
is a crucial factor for cancer progression, including HCC [26]. With a few notable excep-
tions, the saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) in our
metabolomics data have been greatly reduced. Consistent with our findings, the attenuation
of FA levels has been observed previously in numerous cancer studies [27,28]. Patterson
et al. reported reduced levels of FAs, particularly nervonic acid, in the plasma of HCC
patients compared to the LC patients [29].

Phosphatidylethanolamine (PE) and lysophosphatidylethanolamine (LPE) are the
classes of glycerophospholipids (PLs) that showed significant elevation in HCC vs. LC.
In mammalian cells, PE is the second most abundant phospholipid. It is abundant in the
inner membrane of mitochondria and makes up about 25% of mammalian PLs, both of
which are located in the inner leaflet of the plasma membrane [30]. PE plays a role in nu-
merous critical pathologic cellular processes in addition to its role as a membrane structural
element [31]. During cell division and cell death, PE is translocated and redistributed to
facilitate membrane fusion and remodeling [32]. LPE, on the other hand, is a deacylated
product of PE hydrolysis generated by phospholipase A1/A2 and is involved in multiple
pathological cellular processes [33]. The dysregulation of PE and LPE levels is frequently
observed in a variety of diseases, including cancer [34]. In our metabolomics study, all the
PEs and LPEs were significantly upregulated in HCC cases compared to LC, indicating a
clear dysregulation of PE and LPE metabolism.

In the lipidomics study, the fatty acids from the fatty acyl class; phosphatidylcholine
(PC), lysophosphatidylcholine (LPC), and PE from the glycerophospholipid class; and
diglyceride (DG) and TG from the glycerolipids class displayed the most significant al-
teration in the HCC cases vs. LC patients. Our lipidomics data revealed an even more
distinct picture of FA metabolism in HCC compared to LC. We observed a clear, statistically
significant difference in the levels of all FAs, and, interestingly, the majority of them were
SFAs that exhibited a similar pattern of downregulation observed in metabolomics. The
decrease in FA level was also seen in our earlier GC-MS-based metabolomics study [35].
The FA attenuation observed in our data clearly indicates the alteration in FA metabolism
in HCC.

PC is the most abundant and fundamental component of the cell membranes. It plays
a crucial role in the structure and function of cell membranes and is regarded as one of
the hallmarks of cancer growth and progression in a variety of cancer types [10,36]. In
our study, the level of all annotated PCs was significantly decreased in HCC cases com-
pared to LC patients. Additionally, only one annotated plasmenyl LPC exhibited the same
pattern of downregulation as PC. Phospholipase A2 (PLA2) catalyzes the conversion of
PC into lysoPC, a lipid mediator that controls a variety of biological processes, including
inflammatory responses, tumor cell invasiveness, and cell proliferation [37]. The downreg-
ulation of PCs and LPCs in HCC patients vs. LC is corroborated by multiple prior studies,
including ours, and could be the result of decreased hepatocyte functions or the disruption
of lipid homeostasis [12,25,38]. In our lipidomics study, we found only one PE (PE(36:3))
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which was significantly altered in HCC cases following the same trend of alteration as our
metabolomics study. The elevation of PE and LPE and reduction of PC and LPC levels in
our metabolomics and lipidomics studies could be due to the reduced expression of PE
N-methyltransferase 2 (PEMT2) enzyme which catalyzes the conversion of PE to PC in the
liver when dietary choline supply is low and found to be reduced or missing in HCC [25,38].
However, additional study is required to establish a direct correlation between PEMT2
and the observed rise in PE and LPE, as well as the decrease in PC and LPC levels in
hepatocellular carcinoma (HCC).

The increased levels of circulatory TGs are a well-known biomarker of liver dysfunc-
tion and are reported to have a positive correlation with multiple liver diseases, including
cholestasis, ALD, NAFLD, HBV, and HCC [39]. Higher levels of TG are also found in
numerous other cancers like gallbladder, cervical, colon, and respiratory cancers [40], while
a few studies have reported a negative correlation of TG with prostate and breast can-
cers [41,42]. According to Liu et al., TG upregulation was observed in HCC patients who
had no cirrhosis [43]. In our study, we found a significant elevation in two TG (TG54:7
and TG56:10) levels with a fold change of 4.17 and 3.70 in HCC patients with cirrhosis
compared to cirrhotic controls. It is speculated that oxidative stress and reactive oxygen
species (ROS) could be the possible factors that contribute to the elevation of TG since these
factors are often increased in cancer cells [44]. However, additional molecular-level studies
are required to demonstrate the precise mechanism of triglycerides in HCC development.

Based on the findings of the network analysis, it was observed that two prominent
networks, depicted in Figure 7A,B, were implicated in developmental disorder, hereditary
disorder, and metabolic disease, as well as cell signaling, molecular transport, and vita-
min and mineral metabolisms. These networks were constructed using a total of 14 and
13 metabolites, respectively. The networks presented in this study demonstrate the direct
and indirect participation of many proteins, transcription factors, receptors, and enzymes,
such as AKT, AMPK, P70 S6K, ERK, and CD36, in association with the detected metabolites.
Numerous studies have already established the direct and indirect connections between
these proteins, transcription factors, receptors, and enzymes and the development, sup-
pression, and progression of various malignancies, particularly HCC [45–48]. This network
analysis provides more evidence of the association between the detected metabolites and
hepatocellular carcinoma (HCC), and it suggests that they could be evaluated as potential
candidates for biomarkers of HCC.

5. Conclusions

In this study, serum metabolomics and lipidomics approaches were used to identify
biomarker candidates that can distinguish early-stage HCC from LC. Using the UHPLC-Q-
Exactive-MS system, we identified a broad class of metabolites, including organic acids,
purine metabolites, fatty acids, bile acids, and lipids, that displayed significant variation in
HCC vs. LC. Among these classes, bile acids, fatty acids, and lipids exhibited the greatest
variation in HCC. Since 95% (19 out of 20) of our recruited HCC patients were from stages I
and II (considered early stages) and were cirrhotic, candidate biomarkers identified in this
study will be of interest for the early detection of HCC in patients with LC. To accomplish
this, large-cohort studies with independent validation are needed. Thus, future work will
focus on confirming the identities of candidate metabolite biomarkers discovered in this
study, followed by targeted quantitation in serum samples from an independent cohort
with a greater number of participants.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13101047/s1, Figure S1: Partial least squares discriminant
analysis (PLS-DA) score plot of HCC (green) and cirrhosis (red) cohorts. Metabolomics (A) positive
(R2 = 0.99, Q2 = −0.04) and (B) negative (R2 = 0.98, Q2 = 0.08) modes; Lipidomics (C) positive
(R2 = 0.98, Q2 = 0.31) and (D) negative (R2 = 0.98, Q2 = 0.24) modes; Figure S2: Hierarchical clustering
(both left and top) analysis (heatmap) of identified serum metabolites altered in HCC cohort compared
to LC cohort in metabolomics study; Figure S3: Individual dot plots of significantly altered metabolites
in HCC vs. LC identified by metabolomics study. Horizontal lines represent the median; Figure
S4: Hierarchical clustering (both left and top) analysis (heatmap) of identified serum metabolites
altered in HCC cohort compared to LC cohort in lipidomics study. Horizontal lines represent the
median; Figure S5: Individual dot plots of significantly altered metabolites in HCC vs. LC identified
by lipidomics study. Horizontal lines represent the median. Table S1: Evaluated area under the
receiver operating characteristic curve (AUC) of individual biomarker candidates for HCC identified
by metabolomics study; Table S2. Evaluated area under the receiver operating characteristic curve
(AUC) of individual biomarker candidates for HCC identified by lipidomics study.

Author Contributions: Conceptualization: M.M.R. and H.W.R.; Methodology: M.M.R.; Software:
M.M.R., R.S.V. and Y.D.; Formal Analysis: M.M.R.; Investigation and Data Curation: M.M.R., R.S.V.
and Y.D.; Original Draft Preparation: M.M.R. and H.W.R.; Review and Editing: All authors. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Institute of Health (Grant Number: R35GM141944).

Institutional Review Board Statement: The study was conducted in accordance with the Decla-
ration of Helsinki and approved by Georgetown University Institutional Review Board (protocol
code 2005-0206).

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Khalil, A.; Elfert, A.; Ghanem, S.; Helal, M.; Abdelsattar, S.; Elgedawy, G.; Obada, M.; Abdel-Samiee, M.; El-Said, H. The role of

metabolomics in hepatocellular carcinoma. Egypt. Liver J. 2021, 11, 41. [CrossRef]
2. Morine, Y.; Utsunomiya, T.; Yamanaka-Okumura, H.; Saito, Y.; Yamada, S.; Ikemoto, T.; Imura, S.; Kinoshita, S.; Hirayama, A.;

Tanaka, Y.; et al. Essential amino acids as diagnostic biomarkers of hepatocellular carcinoma based on metabolic analysis.
Oncotarget 2022, 13, 1286–1298. [CrossRef] [PubMed]

3. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of
incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [CrossRef] [PubMed]

4. El-Serag, H.B.; Davila, J.A. Surveillance for hepatocellular carcinoma: In whom and how? Ther. Adv. Gastroenterol. 2011, 4, 5–10.
[CrossRef] [PubMed]

5. Lin, Z.; Li, H.; He, C.; Yang, M.; Chen, H.; Yang, X.; Zhuo, J.; Shen, W.; Hu, Z.; Pan, L.; et al. Metabolomic biomarkers for the
diagnosis and post-transplant outcomes of AFP negative hepatocellular carcinoma. Front. Oncol. 2023, 13, 1072775. [CrossRef]

6. Wong, R.J.; Ahmed, A.; Gish, R.G. Elevated alpha-fetoprotein: Differential diagnosis—Hepatocellular carcinoma and other
disorders. Clin. Liver Dis. 2015, 19, 309–323. [CrossRef]

7. Luo, P.; Yin, P.; Hua, R.; Tan, Y.; Li, Z.; Qiu, G.; Yin, Z.; Xie, X.; Wang, X.; Chen, W.; et al. A Large-scale, multicenter serum
metabolite biomarker identification study for the early detection of hepatocellular carcinoma. Hepatology 2018, 67, 662–675.
[CrossRef]

8. Schmidt, D.R.; Patel, R.; Kirsch, D.G.; Lewis, C.A.; Vander Heiden, M.G.; Locasale, J.W. Metabolomics in cancer research and
emerging applications in clinical oncology. CA Cancer J. Clin. 2021, 71, 333–358. [CrossRef]

9. Wu, X.; Wang, Z.; Luo, L.; Shu, D.; Wang, K. Metabolomics in hepatocellular carcinoma: From biomarker discovery to precision
medicine. Front. Med. Technol. 2022, 4, 1065506. [CrossRef]

10. Rashid, M.; Lee, H.; Jung, B.H. Evaluation of the antitumor effects of PP242 in a colon cancer xenograft mouse model using
comprehensive metabolomics and lipidomics. Sci. Rep. 2020, 10, 17523. [CrossRef]

11. Liu, X.N.; Cui, D.-N.; Li, Y.-F.; Liu, Y.-H.; Liu, G.; Liu, L. Multiple “Omics” data-based biomarker screening for hepatocellular
carcinoma diagnosis. World J. Gastroenterol. 2019, 25, 4199–4212. [CrossRef] [PubMed]

12. Cotte, A.K.; Cottet, V.; Aires, V.; Mouillot, T.; Rizk, M.; Vinault, S.; Binquet, C.; de Barros, J.-P.P.; Hillon, P.; Delmas, D. Phospholipid
profiles and hepatocellular carcinoma risk and prognosis in cirrhotic patients. Oncotarget 2019, 10, 2161–2172. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/metabo13101047/s1
https://www.mdpi.com/article/10.3390/metabo13101047/s1
https://doi.org/10.1186/s43066-021-00085-9
https://doi.org/10.18632/oncotarget.28306
https://www.ncbi.nlm.nih.gov/pubmed/36441784
https://doi.org/10.3322/caac.21492
https://www.ncbi.nlm.nih.gov/pubmed/30207593
https://doi.org/10.1177/1756283X10385964
https://www.ncbi.nlm.nih.gov/pubmed/21317990
https://doi.org/10.3389/fonc.2023.1072775
https://doi.org/10.1016/j.cld.2015.01.005
https://doi.org/10.1002/hep.29561
https://doi.org/10.3322/caac.21670
https://doi.org/10.3389/fmedt.2022.1065506
https://doi.org/10.1038/s41598-020-73721-w
https://doi.org/10.3748/wjg.v25.i30.4199
https://www.ncbi.nlm.nih.gov/pubmed/31435173
https://doi.org/10.18632/oncotarget.26738
https://www.ncbi.nlm.nih.gov/pubmed/31040908


Metabolites 2023, 13, 1047 18 of 19

13. Kim, D.J.; Cho, E.J.; Yu, K.-S.; Jang, I.-J.; Yoon, J.-H.; Park, T.; Cho, J.-Y. Comprehensive Metabolomic Search for Biomarkers to
Differentiate Early Stage Hepatocellular Carcinoma from Cirrhosis. Cancers 2019, 11, 1497. [CrossRef] [PubMed]

14. Safaei, A.; Oskouie, A.A.; Mohebbi, S.R.; Rezaei-Tavirani, M.; Mahboubi, M.; Peyvandi, M.; Okhovatian, F.; Zamanian-Azodi, M.
Metabolomic analysis of human cirrhosis, hepatocellular carcinoma, non-alcoholic fatty liver disease and non-alcoholic steatohep-
atitis diseases. Gastroenterol. Hepatol. Bed Bench 2016, 9, 158–173.

15. Feng, N.; Yu, F.; Yu, F.; Feng, Y.; Zhu, X.; Xie, Z.; Zhai, Y. Metabolomic biomarkers for hepatocellular carcinoma: A systematic
review. Medicine 2022, 101, e28510. [CrossRef]

16. Rashid, M.; Lee, H.; Park, J.; Jung, B.H. Comparative metabolomics and lipidomics study to evaluate the metabolic differences
between first- and second-generation mammalian or mechanistic target of rapamycin inhibitors. Biomed. Chromatogr. 2021,
35, e5190. [CrossRef] [PubMed]

17. Xia, J.; Broadhurst, D.I.; Wilson, M.; Wishart, D.S. Translational biomarker discovery in clinical metabolomics: An introductory
tutorial. Metabolomics 2013, 9, 280–299. [CrossRef]

18. Yilmaz, H. Uric Acid & Cancer. Eurasian J. Med. Investig. 2022, 6, 141–146.
19. Yiu, A.; Van Hemelrijck, M.; Garmo, H.; Holmberg, L.; Malmström, H.; Lambe, M.; Hammar, N.; Walldius, G.; Jungner, I.;

Wulaningsih, W. Circulating uric acid levels and subsequent development of cancer in 493,281 individuals: Findings from the
AMORIS Study. Oncotarget 2017, 8, 42332–42342. [CrossRef]

20. Zhang, Y.; Yang, J.; Wang, J.; Chen, L.; Huang, H.; Xiong, Y.; Xie, B. Quantification of serum purine metabolites for distinguishing
patients with hepatitis B from hepatocellular carcinoma. Bioanalysis 2019, 11, 1003–1013. [CrossRef]

21. Wu, L.; Yang, W.; Zhang, Y.; Du, X.; Jin, N.; Chen, W.; Li, H.; Zhang, S.; Xie, B. Elevated Serum Uric Acid is Associated with
Poor Survival in Advanced HCC Patients and Febuxostat Improves Prognosis in HCC Rats. Front. Pharmacol. 2021, 12, 778890.
[CrossRef]

22. Thomas, C.E.; Luu, H.N.; Wang, R.; Xie, G.; Adams-Haduch, J.; Jin, A.; Koh, W.-P.; Jia, W.; Behari, J.; Yuan, J.-M. Association
between Pre-Diagnostic Serum Bile Acids and Hepatocellular Carcinoma: The Singapore Chinese Health Study. Cancers 2021,
13, 2648. [CrossRef]

23. Han, J.; Qin, W.-X.; Li, Z.-L.; Xu, A.-J.; Xing, H.; Wu, H.; Zhang, H.; Wang, M.-D.; Li, C.; Liang, L.; et al. Tissue and serum
metabolite profiling reveals potential biomarkers of human hepatocellular carcinoma. Clin. Chim. Acta 2019, 488, 68–75. [CrossRef]
[PubMed]

24. Yin, P.; Wan, D.; Zhao, C.; Chen, J.; Zhao, X.; Wang, W.; Lu, X.; Yang, S.; Gu, J.; Xu, G. A metabonomic study of hepatitis B-induced
liver cirrhosis and hepatocellular carcinoma by using RP-LC and HILIC coupled with mass spectrometry. Mol. Biosyst. 2009,
5, 868–876. [CrossRef] [PubMed]

25. Ressom, H.W.; Xiao, J.F.; Tuli, L.; Varghese, R.S.; Zhou, B.; Tsai, T.-H.; Ranjbar, M.R.N.; Zhao, Y.; Wang, J.; Di Poto, C.; et al.
Utilization of metabolomics to identify serum biomarkers for hepatocellular carcinoma in patients with liver cirrhosis. Anal. Chim.
Acta 2012, 743, 90–100. [CrossRef] [PubMed]

26. Foglia, B.; Beltrà, M.; Sutti, S.; Cannito, S. Metabolic Reprogramming of HCC: A New Microenvironment for Immune Responses.
Int. J. Mol. Sci. 2023, 24, 7463. [CrossRef] [PubMed]

27. Qi, S.-A.; Wu, Q.; Chen, Z.; Zhang, W.; Zhou, Y.; Mao, K.; Li, J.; Li, Y.; Chen, J.; Huang, Y.; et al. High-resolution metabolomic
biomarkers for lung cancer diagnosis and prognosis. Sci. Rep. 2021, 11, 11805. [CrossRef] [PubMed]

28. Huang, S.; Guo, Y.; Li, Z.-W.; Shui, G.; Tian, H.; Li, B.-W.; Kadeerhan, G.; Li, Z.-X.; Li, X.; Zhang, Y.; et al. Identification and
Validation of Plasma Metabolomic Signatures in Precancerous Gastric Lesions That Progress to Cancer. JAMA Netw. Open 2021,
4, e2114186. [CrossRef]

29. Patterson, A.D.; Maurhofer, O.; Beyoglu, D.; Lanz, C.; Krausz, K.W.; Pabst, T.; Gonzalez, F.J.; Dufour, J.-F.; Idle, J.R. Aberrant lipid
metabolism in hepatocellular carcinoma revealed by plasma metabolomics and lipid profiling. Cancer Res. 2011, 71, 6590–6600.
[CrossRef]

30. Vance, J.E.; Tasseva, G. Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells.
Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2013, 1831, 543–554. [CrossRef]

31. Calzada, E.; Onguka, O.; Claypool, S.M. Phosphatidylethanolamine Metabolism in Health and Disease. Int. Rev. Cell Mol. Biol.
2016, 321, 29–88. [PubMed]

32. Pandey, S.K.; Paul, A.; Shteinfer-Kuzmine, A.; Zalk, R.; Bunz, U.; Shoshan-Barmatz, V. SMAC/Diablo controls proliferation of
cancer cells by regulating phosphatidylethanolamine synthesis. Mol. Oncol. 2021, 15, 3037–3061. [CrossRef] [PubMed]

33. Yamamoto, Y.; Sakurai, T.; Chen, Z.; Inoue, N.; Chiba, H.; Hui, S.-P. Lysophosphatidylethanolamine Affects Lipid Accumulation
and Metabolism in a Human Liver-Derived Cell Line. Nutrients 2022, 14, 579. [CrossRef]
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