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Abstract: Targeting pentose phosphate pathway (PPP) enzymes has emerged as a promising strategy
to combat cancer. 6-Phosphogluconate dehydrogenase (6-PGD), the third critical enzyme of the PPP,
catalyzes oxidative decarboxylation of 6-phosphogluconate (6-PG) to produce ribulose-5-phosphate
(Ru-5-P) and CO2. Overexpression of 6-PGD has been reported in multiple cancers and is recognized
as a potential anticancer drug target. The current study is focused on the utilization of indispens-
able virtual screening tools for structure-based drug discovery. During the study, 17,000 natural
compounds were screened against the 3-phosphoglycerate (3-PG) binding site of 6-PGD through a
molecular operating environment (MOE), which revealed 115 inhibitors with higher selectivity and
binding affinity. Out of the 115 best-fit compounds within the 6-PGD binding cavity, 15 compounds
were selected and optimized through stringent in silico ADMET assessment models that justified
the desirable pharmacokinetic, pharmacodynamic and physicochemical profiles of 5 ligands. Fur-
ther protein–ligand stability assessment through molecular dynamics (MD) simulation illustrated
three potential hits, secoisolariciresinol, syringaresinol and cleomiscosin A, with stable confirmation.
Moreover, 6-PGD inhibitor validation was performed by an in vitro enzymatic assay using human
erythrocytes purified 6-PGD protein and A549 cell lysate protein. The results of the in vitro assays
supported the in silico findings. In order to gain insight into the anticancer activity of the aforemen-
tioned compounds, they were subjected to CLC-Pred, an in silico cytotoxicity browsing tool, which
proved their anticancer activity against several cancer cell lines at Pa > 0.5. Additionally, a confir-
mation for in silico cytotoxicity was made by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay for commercially available hits syringaresinol and cleomiscosin A against lung
cancer (A549) cells. The results demonstrated that syringaresinol has an IC50 value of 36.9 µg/mL,
while cleomiscosin A has an IC50 value of 133 µg/mL. After MTT, flow cytometry analysis confirmed
that compounds induced apoptosis in A549 cells in a dose-dependent manner. This study suggested
that the respective lignan compounds can serve as lead candidates for lung cancer therapy via 6-PGD
inhibition. Furthermore, in vivo experiments need to be conducted to confirm their efficacy.

Keywords: in silico; docking; 6-PGD; natural inhibitors; enzymatic assay; MD simulation

1. Introduction

Cancer represents the most challenging public health burden and the leading cause
of mortality faced by the world [1]. The emerging cancer hallmarks include deregulating
cellular energetics, avoiding immune destruction, tumor-promoting inflammation, genome
instability and mutation, and tumor metabolism [2]. In the context of cancer metabolism,
glucose metabolism has captured a great deal of attention in cancer research in the past
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few decades [3]. The Warburg effect, which is marked by immense glucose uptake and
lactate production even in the presence of sufficient oxygen supply and fully functional
mitochondria, is acknowledged as a major cancer hallmark and an essential contributor to
metabolic rewiring [4,5].

Metabolic reprogramming-induced alterations support tumor cells by accomplishing
crucial demands, such as macromolecular biosynthesis, high energy production and redox
homeostasis maintenance [6,7]. Therefore, altered glucose metabolism is not just confined
to glycolysis but also extended to other glucose-utilizing metabolic pathways, such as the
pentose phosphate pathway (PPP) [4]. The PPP, also termed the hexose monophosphate
shunt (HMP) or phosphogluconate pathway, is a glycolysis parallel metabolic pathway [8]
that shunts off glycolysis after the first step and generates pentose phosphate for nucleic
acid and NADPH for fatty acid synthesis and cell survival in stress environments [9,10].
The PPP communicates several important features to cancer cells, such as increased tumor
growth, escaped apoptosis and supporting angiogenesis and metastasis [8].

Studies have shown that PPP flux can be regulated either directly or indirectly to
ameliorate cancer cell growth and viability [11]. It has been suggested by previous research
that increased PPP flux in tumor cells serves as a line of distinction for normal cells [9,10],
which is followed by overexpression of PPP enzymes (G6PD and 6-PGD, the first and third
enzymes that link glycolysis to PPP by anabolic biosynthesis and NADPH production to
maintain redox homeostasis in mammalian cells) in several tumors; therefore, PPP enzymes
have been characterized as potential targets for cancer treatment and diagnosis recently. 6-
Phosphogluconate dehydrogenase (6-PGD), a critical enzyme of the PPP, is involved in the
oxidative decarboxylation of 6-phosphogluconate (6-PG) to produce ribulose-5-phosphate
(Ru-5-P) and CO2 [8,12]. 6-PGD overexpression has been demonstrated in several cancers,
such as thyroid, hepatic, breast, colon, ovarian and lung [12–14], and this deregulated
expression promotes tumorigenesis [12]. Activation of 6-PGD is involved in anabolic
biosynthesis, redox homeostasis and glycolysis, which supply the metabolic advantage to
enhance cancer cell survival and proliferation [15]. Inhibition of 6PGD has been accounted
to suppress tumor growth and induce cell death (by xenograft experimentation in nude
mice with H1299, and K562 cells containing inducible 6-PGD shRNA construct in the
presence of doxycycline) and sensitize cancer cells to chemotherapy (by exposing 6-PGD-
depleted breast cancer cells and an in vivo xenograft mouse model to combined treatment
with physion and paclitaxel) [16].

In the past few years, computer-aided drug design (CADD) has gained a lot of mo-
mentum as a drug discovery pipeline in the academic world and in the pharmaceutical
industry [17]. Molecular modeling is an indispensable tool in the drug discovery tool-
box to predict favorable ligand–receptor orientations [18,19]. The importance of using in
silico methods of phenotypic screening instead of the experimental in vivo screening of
anticancer agents is to reduce the time, cost and testing of animals for assessing a variety
of anticancer agents [20]. The current study investigated molecular docking to explore
the phytochemical database to obtain five potential candidates with good binding site
interactions and other drug-likeness parameters. Docking orientations of protein–ligand
complexes were further subjected to time-dependent motions through molecular dynamics
(MD) simulation, which led to the identification of three lignan compounds. Selected
compounds were then validated by enzyme activity assay against 6-PGD. Cytotoxicity
investigation of commercially available compounds syringaresinol and cleomiscosin A
by MTT assay found those compounds as potential therapeutic agents. Thus, the present
study disclosed lignan compounds as 6-PGD inhibitors that can be used as anti-lung cancer
agents with desirable safety profiles.

2. Materials and Methods
2.1. Targeted Protein Structure Retrieval and Refinement

The three-dimensional (3D) structure of 6-phosphogluconate dehydrogenase
co-crystallized with 3-phosphoglyceric acid (3-PG) was retrieved through the Protein
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Data Bank (PDB) with respective PDB ID 4GWK, having a resolution of 1.58 Å. In the
molecular operating environment (MOE) (2009.10), this 3D structure was edited as a co-
crystallized ligand with water molecule removal by the addition of partial charges via 3D
protonation and energy minimization via the MMFF94x force field, keeping the gradient
as 0.05. The minimized structure was considered as a receptor to perform the docking
studies [21].

2.2. Phytochemical Database Preparation

A phytochemical database comprising 17,000 compounds was prepared by retrieving
the structures in .mol, .mol2 and .sdf formats from MAPS [20], PubChem [22], Zinc [23],
MPD3 [24] and ChEMBL [25]. All ligand structures were optimized via partial charge
addition and energy minimization using the MMFF94x force field [26].

2.3. Active Site Prediction and Molecular Docking

The MOE pocket finder tool was used to predict potential docking sites, and a site with
significant binding residues was selected in order to find the interacting residues involved
in contact with 6-PGD [27]. Molecular docking was performed with MOE-Dock by scanning
the ready-to-dock phytochemical libraries against the active pocket residues of 6-PGD. 3-PG
(PubChem ID: 724), a natural inhibitor of 6-PGD [27], was also test-docked as a reference
ligand. Parameters adjusted for docking include: ligand placement by default parameters
using a triangle matcher algorithm with 1000 returned poses; rescoring was performed by
the London dG scoring function; retain was set to 10; refinement was performed by the
force field algorithm to calculate the final energy in GBVI. The MOE program validates
the accurate ligand conformation to obtain the energy-minimized structure. The LigX
tool of MOE was used to analyze the 2D plots and enable a clear view of receptor–ligand
interactions [21,28].

2.4. In Silico Drug Scan and ADMET Profiling

Further selection of the best-docked phytochemicals was made on the basis of Lipin-
ski’s rule of five (Ro5) [29], and compounds that violated any Ro5 were eliminated from
the study. This step was carried out using the Molinspiration server by entering smiles [30].
To compute the detailed drug-likeness profiles, candidate compounds were exposed to
SwissADME software (Daina et al. 2017), pkCSM [30] and admetSAR in silico drugabil-
ity assessment models. Calculating ADMET properties such as absorption, distribution,
metabolism, excretion and toxicity is an essential hint of a drug candidate’s fate, its toxicity
level in the human body and also its behavior [31].

2.5. Molecular Dynamics Simulation

Molecular dynamics (MD) simulation was executed by the Desmond v3.6 molecular
dynamics program according to a previously reported method [32]. In brief, a boundary
was prepared with an orthorhombic-shaped box, and a TIP3P solvent model was applied.
System neutralization was achieved by the addition of Na+ salt through the OPLS-2005
force field. Protein–ligand minimization was carried out by a hybrid method of steepest
descent and LBFGS algorithms. The MD simulation was conducted at 100 ns.

2.6. In Vitro Enzymatic Assays
2.6.1. 6-PGD Purification Using Human Erythrocytes

The enzyme (6-PGD) was purified through a single chromatographic step based on
a previously reported protocol [33]. Hemolysate was subjected to a 2,5-ADP Sepharose
4B affinity chromatography column. Subsequently, column washing was performed with
30 mL of 50 mM potassium phosphate buffer (including 1 mM EDTA, 1 mM DTT and
80 mM KCl at pH 7.35) until the final absorbance difference of 0.05 was achieved. Then,
6-PGD elution was performed with 20 mL of 80 mM potassium phosphate + 80 mM KCl
+ 5 mM NADP+ + 1 mM EDTA at pH 7.85. Eluted protein was monitored by enzyme
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activity measurement. Further, active enzyme tubes were combined and dialyzed in
potassium acetate and potassium phosphate buffer (50 mM potassium acetate + 50 mM
potassium phosphate).

2.6.2. Protein Determination and Purity Check

Protein concentration estimation was performed according to Bradford’s method
considering bovine serum albumin as the standard [34]. Enzyme purity was monitored
after 6-PGD purification under denaturing conditions [33].

2.6.3. In Vitro Effect of Lignan Compounds Using Erythrocytes Purified 6-PGD

To investigate the effect of lignans (syringaresinol and cleomiscosin A) on 6-PGD,
different concentrations (20, 40, 80, 100 and 200 µg/mL) of both compounds were added
to the reaction mixture, and then enzymatic activity was determined. All measurements
were performed in triplicates. The reaction mixture without the addition of compounds
was considered as the control, which showed 100% activity.

2.6.4. Enzyme Activity Assay Using A549 Cell Lysate Protein

Freshly cell-cultured plates were washed with phosphate-buffered saline and lysed
with lysis buffer (20 mM Tris-HCl at pH 7.5, 1 mM EDTA, 1 mM dithiothreitol 0.02%)
triton X-100, 0.02%) and sodium deoxycholate) and with cocktail inhibitors (protease
and phosphatase). After scrapping, cell lysates were sonicated and then centrifuged (at
12,000× g) for 20 min at 4 ◦C. Next, the supernatant was separated from the sample and
was immediately used to measure the enzyme activity of 6-PGD with the help of an ELISA
plate reader. Specific enzyme activity was measured by monitoring an increase or decrease
in absorbance at 340 nm due to NAD(P)H. Sample enzyme activity was normalized to the
total protein content of the sample that was determined by BCA assay at 550 nm [35].

2.6.5. 6-Phosphogluconate Dehydrogenase (6-PGD)

To determine the specific activity of 6PGD, the sample was added to a cuvette that
contained 0.5 mM NADP+ 50 mM Tris-HCl (including 0.2 mM MgCl2) at 37 ◦C with pH 7.6.
The reaction was triggered by adding the substrate (6PG), by keeping the final concentration
of 2 mM [35].

2.7. Cell Line Cytotoxicity Prediction

Cell line cytotoxicity predictor (CLC-Pred) is a validated in silico cytotoxicity evalua-
tion tool. This server browses the cytotoxic potential of desired compounds on the basis
of the structural formula [36]. The data of the compound to predict cytotoxicity were
uploaded in smiles format. The calculated output was presented in the form of activation
probability (Pa) and inactivation probability (Pi) values.

2.8. Cell Culture

Human lung adenocarcinoma epithelial cells (A549) were cultured in Dulbecco’s
Modified Eagle’s Medium (DMEM) with 10% fetal bovine serum (FBS) and 100 µg/mL of
antibiotic, streptomycin, and these cells were maintained at 37 ◦C temperature with 5%
CO2 in a humidified environment [37].

2.9. MTT Cytotoxicity Assay

Cell cytotoxicity of final hits was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay. In this method, A549 cancer cells were cultured
in 96-well plates. Afterwards, different concentrations of compounds were added to cul-
tured cells and incubated for 48 h. After 48 h, 10 µL of MTT reagent (5 mg/mL) was added
to the cells, and cells were again kept for 4 h at 37 ◦C. In the next step, 150 µL of DMSO was
added to the preincubated cells in order to dissolve the formazan product. Subsequently,
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optical density was measured at 570 nm, utilizing a microplate reader [37]. Absorbance of
controlled and treated cells was calculated by the following equation.

I% = [A570 (control) − A570 (treated)]/A570 (control) × 100.

2.10. Flow Cytometric Analysis for Apoptosis

To detect apoptosis in A549 cells, annexin V-FITC/PI was used. In brief, A549 cells
were harvested in 6-well plates and kept overnight for attachment. Cells were treated
with 25, 50, 100 and 200 µM of syringaresinol and cleomiscosin A for 24 h. After cell
collection, they were further washed and resuspended in PBS. To determine the apoptosis,
double-staining annexin V-FITC and PI was performed using the annexin V-FITC apoptosis
kit (Beyotime Biotechnology Shanghai, China). Flow cytometric analysis was carried out
immediately after the staining. Cell Quest software was utilized for sample data acquisition
and subsequent analysis [38].

2.11. Statistical Analysis

Study data were expressed as the mean standard deviation of experiments that were
performed in triplicates. Data analysis was performed by using GraphPad Prism and other
statistical tests, including analysis of variance or ANOVA, using SPSS software, and the
significance value was set at p ≤ 0.05 [39].

3. Results
3.1. Database Screening and Docking Study

In the current in silico experiment, a library of 17,000 phytochemicals along with 3-PG
was screened against 6-PGD to predict the best binding modes (Figure 1). The docked
compounds were ranked on the basis of a stringent filter that accounts for maximum
habitation of binding pocket residues with the lowest Gibbs free energy, hydrogen bonding
and noncovalent interactions strength, which are collectively represented as the S-score.
The docking score is used to predict the binding affinity of a particular program, while
a smaller root mean square deviation (RMSD) value indicates high similarity or best ori-
entation between two structures. Therefore, 115 potential compounds were selected on
the basis of the minimum S-score (greater than −10) and RMSD < 2. Further selection
was made on the basis of higher binding site residues (2 or more) occupied by the ligand
(Table 1) revealing 15 compounds, out of which 5 phytochemicals, secoisolariciresinol,
syringaresinol, cleomiscosin A, tubulosine and terrestriamide, were selected as poten-
tial candidates. Secoisolariciresinol showed the highest binding score (−12.9507), with
an RMSD value of 1.4987. The rest of the compounds showed smaller docking scores
(−10.3479, −10.3156, −10.0725 and −10.0456) than secoisolariciresinol, with RMSD values
of 1.6195, 1.0467, 1.7187 and 1.7236 for syringaresinol, cleomiscosin A, tubulosine and
terrestriamide, respectively. All hits interacted with Lys194, Tyr192/Arg288 or both Tyr192
and Arg288. These interactions were followed by additional residues such as Gly130 in
the case of secoisolariciresinol and syringaresinol, Glu191 in cleomiscosin A and Ala258 in
syringaresinol. These finalized phytochemicals established different bonding interactions
with 6-PGD, as follows: secoisolariciresinol formed arene-cation and side-chain hydrogen
acceptor interactions, syringaresinol formed side-chain acceptor and backbone hydrogen
donor interactions, cleomiscosin A formed side-chain hydrogen acceptor and donor interac-
tions, and tubulosine and terrestriamid formed side-chain hydrogen acceptor interactions
with 6-PGD. Two-dimensional (2D) ligand–receptor residue interactions and 3D interaction
maps of potential compounds in the active site are shown in Figures 2 and 3, respectively.
It was observed in the docking results that docking poses in the scoring field (S) were
ranked on the basis of binding energy calculation. Binding energy estimation of hits based
on the generalized Born volume integral (GBVI) model exhibited a range of −26.086 to
−18.455 kcal/mol. Docking simulations of 3-PG (direct inhibitor of 6-PGD) showed inter-
actions with Tyr192, Arg288 and Glu191 residues of the active pocket, with a docking score
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and RMSD value of −8.4342 and 1.3230, respectively. The binding energy was recorded at
−18.989 kcal/mol.
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Table 1. Potential hits summary: their binding score, RMSDs, residual interaction and H-bonds.

Name CID Score RMSD Binding Site Residual
Interaction Hydrogen Bonds

Secoisolariciresinol 65,373 −12.9507 1.4987 Arg288, Lys184, Gly130,
Ser129 3

Syringaresinol 100,067 −10.3479 1.6195 Tyr192, Arg288, Lys184,
Ala258, Gly130 5

Cleomiscosin A 442,510 −10.3156 1.0467 Arg288, Glu191, Lys184 4

Tubulosine 72,341 −10.0725 1.7187 Tyr192, Lys184 2

Terrestriamide 5,321,824 −10.0456 1.7236 Arg288, Lys184 2

3-Phosphoglyceric acid Natural inhibitor −8.4342 1.3230 Tyr192, Arg288, Glu191 3

CID: compound ID; RMSD: root mean square deviation.
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Metabolites 2023, 13, 34 8 of 20

3.2. ADME Predictions and Toxicity Scan

Drug-like properties of the proposed 6-PGD inhibitors were calculated by the Molinspi-
ration server available online. The selected candidates exhibited no violations of Lipinski’s
rule of five, i.e., molecular weight (>500), nHB donor (>5), nHB acceptor (>10), logP (>5.8),
nrotatable bonds (nRB) (>8) and polar surface area (PSA) (>140) (Table 2). The detailed phar-
macokinetic and pharmacodynamic profiles of potential ligands were inspected through
SwissADME, pkCSM and AdmetSAR. Solubility, an important factor of a drug, is linked
with its absorption. A lesser value indicates higher solubility and good absorption, and
the selected compounds showed high gastrointestinal absorption. In addition, hit com-
pounds indicated suitable oral bioavailability, which was illustrated in terms of radar plots
(Figure 4). Four compounds, secoisolariciresinol, syringaresinol, cleomiscosin A and tubu-
losine, showed bioavailability within the suitable zone, while terrestriamide deviated from
the trend by crossing the suitable boundary. Gastrointestinal absorption analysis suggested
that all five compounds possess high absorption by the gastrointestinal tract after their oral
intake. After circulation, consistent distribution of the drug to every tissue assures its good
efficacy. The distribution parameter describes that all compounds possess localization to
mitochondria, which is one of the subcellular drug binding targets, but distribution to the
blood–brain barrier is confined to tubulosine only in terms of brain tumors. Most of the hits
(except tubulosine) are noninhibitors and nonsubstrate of P-glycoprotein, facilitating drug
efflux from the cell. Cytochrome p450 is involved in xenobiotic compounds’ metabolism,
which is used to determine the drug concentration inside the cell. Metabolism prediction of
hits for cytochrome P450 inhibition indicated that secoisolariciresinol acted as CYP1A2 and
CYP2C19, syringaresinol as CYP2C19, CYP3A4 and CYP2C9, tubulosine as CYP2D6, and
terrestriamide as a CYP3A4 inhibitor of cytochrome isoforms, while no inhibitory effects
were presented by cleomiscosin A. Physiological activation of a drug is described in terms
of the bioavailability score, and all compounds showed moderate activity with a 0.5 score.
The best hits did not show toxicity (AMES and hepatic) and did not pose skin irritancy
and the risk of carcinogenicity. Total clearance represents the elimination of a compound
from the body as a result of liver metabolism or kidney excretion. Synthetic accessibility
assessed the ease of compound synthesis, and shortlisted compounds showed it is easy
(more for terresriamide) to synthesize all these compounds. Detailed ADMET properties of
shortlisted phytochemicals are presented in Table 3.
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Table 2. Results of compounds examined for Lipinski’s rule.

Compounds

Lipinski’s RO5

Molecular
Weight (g/mol)

Number of
HBA

Number of
HBD

MlogP
Veber’s Rule

Violations
TPSA (Å) RB

Syringaresinol 418 8 2 2.62 95.86 6 0

Cleomiscosin A 386.3 8 2 1.96 107.60 4 0

Secoisolariciresinol 362.4 6 4 2.8 99.3 9 0

Terrestriamide 327.3 6 3 1.78 95.6 6 0

Tubulosine 475.6 6 3 4.86 69.8 5 0

HBA: hydrogen bond acceptor; HBD: hydrogen bond donor; MlogP: moriguchi octanol water partition coefficient.

Table 3. ADMET profiles of shortlisted phytochemicals.

Compounds

Parameters Syringaresinol Tubulosine Secoisolariciresinol Terrestriamide Cleomiscosin A

Absorption

GI absorption High High High High High

Water solubility (log
mol/L) −3.92 −3.41 −3.76 −3.13 −3.64

Skin permeability
(cm/s) −7.27 −5.93 −6.72 −6.65 −7.15

P-gp substrate No Yes No No No

P-gp inhibitor Yes Yes No No Yes

Bioavailability score 0.55 0.55 0.55 0.55 0.55

Distribution

BBB No Yes No No No

Subcellular
localization Mitochondria Mitochondria Mitochondria Mitochondria Mitochondria

Metabolism

CYP1A2 inhibitor No No Yes No No

CYP2C19 inhibitor Yes No Yes No No

CYP2C9 inhibitor Yes No No No No

CYP2D6 inhibitor No Yes No No No

CYP3A4 inhibitor Yes No No Yes No

Excretion

Total clearance (log
mL/min/kg) 0.255 1.082 0.248 0.211 0.394

Toxicity

Carcinogenicity No No No No No

Toxicity [36] No No No No No

Hepatotoxicity No No No No No

Oral rat acute toxicity
(LD50 mol/kg) 2.59 2.76 2.03 2.11 2.7031

Synthetic accessibility 4.36 4.95 3.21 2.55 4.47

GI: gastrointestinal; BBB: blood–brain barrier; P-gp: P-glycoprotein; LD50: lethal dose; CYP: cytochrome p450.
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3.3. Molecular Dynamics (MD) Simulations

Molecular dynamics (MD) is an in silico approach that is utilized to model the time-
dependent motions of protein–ligand complexes [40]. Validation of the best ligand poses
was performed by dynamics simulation. MD simulation was analyzed for root mean square
fluctuation (RMSF), solvent accessible surface area (SASA), hydrogen bond interaction and
root mean square deviation (RMSD).

3.3.1. RMSD and RMSF

RMSD analysis of the selected ligands suggested that the simulations were in equilib-
rium and deviations were within the acceptable range. This indicated that the protein did
not endure large conformational changes. The Cα atoms for secoisolariciresinol showed
minimal deviation within the first 5 ns, while cleomiscosin A and syringaresinol presented
more deviations during the initial 20 ns before attaining equilibrium, which was achieved
after 20 ns (Figure 5). The flexibility of complexes was investigated through RMSF in
the function of time. The protein residual flexibility investigation revealed the highest
peaks in the loop region at the 260 and 300 residues of the protein, sited away from the
binding pocket residues (Figure 6). These RMSF and RMSD results are indications of the
compound’s stability during simulation.
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3.3.2. Ligand Contacts and Interactions

Ligand fraction and contact timeline representation of candidate ligands represented
a total of 34 to 47 contacts with protein residues secoisolariciresinol, cleomiscosin A and
syringaresinol, respectively. The majority of hydrophobic interactions were made in the
simulation trajectory of 2–55%, and hydrogen bonds were formed with Gly101, Lys184,
Asn188, Arg188, Tyr192, Gly130, Arg255, Glu191 and Ser129 during 2–65% of simulation
time (Figure 7).
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Metabolites 2023, 13, 34 12 of 20

3.3.3. Protein Secondary Structure Elements (SSE)

In order to understand conformational changes during the simulation trajectory, pro-
tein SSE elements were monitored. All complexes showed a secondary structure in terms of
α-helices and β-strands. Residual index plot distribution presented 43.5%, 45.7% and 47.3%
α-helices for secoisolariciresinol, cleomiscosin A and syringaresinol, which reveal the good
stability of bound systems. The juncture shared by the β-strands for candidate complexes
was 7.90%, 7.82% and 7.62% for secoisolariciresinol, cleomiscosin A and syringaresinol,
respectively (Figure 8).
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3.4. Enzymatic Assay Using Human Erythrocyte Purified 6-PGD

6-PGD purification was performed by using a single-step affinity chromatography
method with the 2,5-ADP Sepharose 4B affinity chromatography column. In vitro enzyme
activity assay was performed to determine the inhibitory effects of syringaresinol and
cleomiscosin A on purified 6-PGD. This showed a dose-dependent decrease in enzyme ac-
tivity with an increase in compound concentrations. 6-PGD enzymatic activity was reduced
up to 76.34% by syringaresinol and 70% by cleomiscosin A at 200 µg/mL concentration
(Figure 9).
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Figure 9. 6-PGD enzyme inhibition activity isolated by erythrocytes in the presence of (a) sy-
ringaresinol and (b) cleomiscosin A at various concentrations (20, 40, 80, 100 and 200 µg/mL).

3.5. Syringaresinol and Cleomiscosin A Are 6-PGD Inhibitors

To further validate the 6-PGD inhibition by syringaresinol and cleomiscosin A (in-
hibitors), A549 cell (freshly cultured) lysate protein based enzymatic assay was performed.
Earlier, A549 cells were treated with different concentrations of syringaresinol and cleomis-
cosin A. Then, enzymatic activity was measured immediately after cell scrapping, which
showed dose-dependent inhibitory effects of both compounds against 6-PGD. We also
observed that at a concentration of 200 µg/mL treatment, both compounds significantly
inhibited 6-PGD in A549 cells as compared to control (Figure 10).
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and (b) cleomiscosin A at various concentrations (50, 100 and 200 µg/mL), whereas * p < 0.005 and
** p < 0.001.

3.6. Cytotoxicity Prediction

The cytotoxic potential of targeted hits was presented in terms of their Pa and Pi values
against cancer cell lines. According to these data, shortlisted phytocompounds were found
active against several cancer cell lines at Pa > 0.5. Compounds such as cleomiscosin A and
syringaresinol presented the most significant results at a higher cut-off value of Pa > 0.5,
while secoisolariciresinol showed activation probability at a cut-off value of Pa > Pi for
the A549 cell line. A higher activation probability (Pa) score shows more probability of
a compound being cytotoxic, whereas a Pi score indicates inactivation probability. The
Pa values of all compounds against the mentioned cell lines are considerably higher than
the Pi values; therefore, this output can be considered as probable cytotoxicity activities
for these compounds, and the (Pa, Pi) values of shortlisted compounds are mentioned in
Table 4.
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Table 4. In silico cytotoxicity prediction of selected hits.

Compounds Cancer Cell Line Pa Pi Tumor Type

Syringaresinol HOP-18 0.559 0.006 Non-small-cell lung carcinoma

PC-6 0.549 0.020 —

A549 0.561 0.047 Small epithelial cell lung carcinoma

NCI-H187 0.434 0.043 Non-small-cell lung carcinoma

MDA-MB-453 0.426 0.053 Breast adenocarcinoma

NCI-H838 0.452 0.083 Small cell lung carcinoma

HCC-2998 0.404 0.035 Colon adenocarcinoma

OVCAR-4 0.407 0.046 Ovarian adenocarcinoma

H9 0.358 0.030 Leukemia

NALM-6 0.383 0.061 Leukemia

DMS-114 0.421 0.104 —

CFPAC-1 0.357 0.071 Pancreatic carcinoma

NCI-H322M 0.349 0.067 Non-small-cell lung carcinoma

OVCAR-5 0.347 0.067 Ovarian adenocarcinoma

MKN-7 0.301 0.047 Gastric carcinoma

HCT-15 0.311 0.068 Colon adenocarcinoma

HL-60 0.303 0.085 Leukemia

Cleomiscosin A HL-60 0.642 0.013 Leukemia

MCF-7 0.567 0.038 Breast carcinoma

PC-6 0.407 0.039 Non-small-cell lung carcinoma

NALM-6 0.388 0.051 Leukemia

A549 0.358 0.103 Small epithelial cell lung carcinoma

Secoisolariciresinol MDA-MB-453 0.443 0.033 Breast adenocarcinoma

PC-6 0.389 0.044 Small cell lung carcinoma

HOP-18 0.339 0.053 Non-small-cell lung carcinoma

HCT-15 0.341 0.056 Adenocarcinoma

SK-MEL-2 0.306 0.078 Melanoma

A549 0.250 0.166 Small epithelial cell lung carcinoma

Pa > 0.3, Pa: probability to be active; Pi: probability to be inactive.

3.7. Cytotoxicity Assessment of Final Hits

Next to in silico cytotoxicity prediction of three hits, two market-available and easy-to-
access compounds, syringaresinol and cleomiscosin A, were purchased to determine their
anticancer ability against 6-PGD for the lung cancer (A549) cell line. The results obtained
by MTT assay revealed that both compounds hold cytotoxic activity against lung cancer
(Figure 11).
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Figure 11. Cytotoxicity evaluation of syringaresinol and cleomiscosin A by MTT assay. Results are
given as percentage activities as compared to control (untreated cells), and data are represented as
mean ± SD values of experiments carried out in triplicates, where * p < 0.005 and ** p < 0.001.

3.8. Flow Cytometry for Apoptosis

In this study, we further investigated that syringaresinol and cleomiscosin A inhibited
cell growth in A549 cells via apoptosis induction. Apoptosis induced by syringaresinol
and cleomiscosin A was studied by flow cytometric analysis. For this purpose, cells were
grown in 12-well plates, incubated without compounds (control) and with compounds and
then collected in centrifuged tubes for staining with annexin V-FITC and PI double staining
according to the process mentioned in the Materials and Methods section (Section 2). The
results revealed the rates of apoptosis were 28.34 ± 3.25% and 17.34 ± 2.28% at 25 µM,
37.34 ± 4.25% and 28.35 ± 3.27% at 50 µM, 42.16 ± 2.26% and 34.86 ± 3.56% at 100 µM,
and 56.28 ± 2.76% and 42.65 ± 2.37% at 200 µM, and 10.23 ± 0.72% for the control group in
comparison to treated cells for syringaresinol and cleomiscosin A, respectively (Figure 12).
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Figure 12. Apoptosis rates in A549 cells with or without treatment (control) by flow cytometry
analysis. Cells were treated with syringaresinol and cleomiscosin A for 24 h. Data are represented as
mean ± SD values of three independent experiments, where * p < 0.005 and ** p < 0.001.

4. Discussion

Medicinal chemists have to face hefty issues regarding traditional drug design meth-
ods, but in silico approaches, especially molecular docking, offer efficient and time-saving
strategies to design novel therapeutic agents to combat human diseases [41]. Molecular
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docking falls in the structure-based drug design (SBDD) category of virtual screening,
which allows predicting the behavior of small molecular scaffolds in the active pocket of
the receptor [42].

Phytochemicals and their derivatives present potential treatment efficacy and fewer
side effects in cancer patients [43]. Therefore, in the current study, a large library of plant-
derived natural compounds was subjected to the SBDD approach for the selection of potent
inhibitors against 6-PGD, which identified five potential candidates, including secoiso-
lariciresinol, syringaresinol, cleomiscosin A, tubulosine and terrestriamide, with a free
binding energy range of −26.086 to −18.455 kcal/mol. According to the literature, these
compounds have been reported to hold several bioactivities, such as tubulosine, which
has been attributed as an anticancer and antiplasmodic agent [44,45], terresriamide as an
hepatoprotective and antinitric oxide production activity compound [46,47], secoisolar-
iciresinol and syringaresinol as good antioxidant and antimicrobial agents [48–51], and
cleomiscosin A as an antioxidant as well as vasorelaxant for rat aortic ring [52,53].

Few studies have been performed previously to identify 6-PGD potent inhibitors.
A study by Bayindir et al. [54] identified N-benzoylindole and its derivatives as 6-PGD
inhibitors. A recent study based on rhodanines scrutinized their inhibition potential
on G6PD and 6-PGD. This experiment performed a docking study using Schrodinger
Maestro 12.0 on the 4GWK receptor with 3-PG and demonstrated an RMSD score of
1.532 Å. In comparison to this study, 3-PG scored a lower RMSD (1.3230 Å), and the
RMSD hits were in the range of 1.0467–1.7236 Å. Rhodanine experimentation illustrated
3-amino-2-thioxothiazolidin-4-one (3-NH2-Rh) and (E)-3-((4-nitrobenzylidene)amino)-2-
thioxothiazolidin-4-one as potential compounds, with docking scores of −5.234 and −5.071,
respectively. In our study, the docking score is in the range of −12.9507 to −10.0456 for
potential candidates. Residual interaction exhibited V128 and K184 for 3-NH2-Rh and
Q130, Q131 and N188 for the second compound as significant [37], while the current study
recognized Y192, R288, G130 and Q191 as potential interacting residues along with K184.

Drug efficacy and safety are primary goals to find a new drug that is helpful not
only for combating diseases but also to avoid adverse effects [55]. In silico screening
has played a highly significant role in the field of drug discovery by offering effective
means to investigate diverse pharmacokinetic properties [55]. Docking studies selected
seven potential ligands with minimum docking scores, low RMSDs and more binding
site residual interactions. These compounds were then subjected to ADMET and toxicity
evaluations, to exclude compounds with toxic and adverse ADMET properties that could
lead to termination of experimental investigations and casue model animals to suffer during
further confirmatory trials. Compounds that violated any of Lipinski’s rule of five (RO5),
ideal criteria to assess an orally active drug and showed AMES toxicity and carcinogenicity,
were excluded from the study. Thus, five compounds without any RO5 and other toxicities
were selected for further evaluation.

MD simulation analysis through RMSD, RMSF, SSE and ligand property plots revealed
three compounds out of five (secoisolariciresinol, syringaresinol and cleomiscosin A) with
stable structure conformations that were subjected to further in silico and in vitro enzymatic
assay, MTT cytotoxicity and apoptosis analysis.

In the current study, we also investigated the inhibition of 6-PGD by syringaresinol
and cleomiscosin A using an in vitro enzymatic assay by using purified 6-PGD from
human erythrocytes and A546 lung cancer cells lysate protein. The results of our study
demonstrated that both lignan compounds acted as inhibitors against 6-PGD.

Fortunately, all three final hits belong to class lignans that have been reported previ-
ously as a diversified source of drugs with anticancer potentiality [56]. Syringaresinol, a
lignan compound, has been found to be naturally constituted in different plants, for in-
stance, Magnolia thailandica, Panax ginseng berries and Prunus mume [57], while the presence
of the second lignan, cleomiscosin A, has been reported in several plant resources such
as Rhododendron collettianum Cleome viscosa, Acer nikoense, Hyoscyamus niger, etc. [58]. In
silico cytotoxicity evaluation showed the inhibitory potential of compounds in terms of
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their activation and inactivation probability. Compound syringaresinol showed higher
activation potential, while cleomiscosin A trailed the earlier compound against A549 cells,
and secoisolariciresinol showed less activation probability in comparison to the former,
with a cut-off value of Pa > Pi.

The anticancer potential of syringaresinol against different cell lines, such as A549
and MCF-7 with IC50 ≥ 100 µM [59] and Hela, Hep-2 and C6 with IC50 31.7, 28.0 and
10.7 µg/mL, respectively, has already been reported [60]. Several other scientific studies
have also reported the cytotoxicity of cleomiscosin A for lung (A549), breast (MCF-7) and
colon (PC-3) cancers [61], showing IC50 values of 130.8, 132.1 and 130.1 µg/mL, respectively.
The IC50 values of our studies for both compounds syringaresinol (IC50 = 36.9 µg/mL) and
cleomiscosin A (IC50 = 133 µg/mL) against lung cancer (A549) cells are parallel with earlier
reported data.

Apoptosis is a systematic way of suicidal cell death that is efficiently controlled
at the gene level, resulting in efficient and organized removal of defective cells during
developmental and DNA damage processes [62]. Cancer prevention is attributed as a key
function of apoptosis [63]. Syringaresinol has been reported earlier for inhibiting HL-60
cell proliferation via cell cycle arrest in the G1 phase and apoptosis induction [64]. In the
present study, flow cytometric analysis investigated that both compounds syringaresinol
and cleomiscosin A inhibited cell growth in A549 cells by inducing apoptosis. The results
found that syringaresinol and cleomiscosin A induced significant apoptosis. The rate of
apoptosis increased to 28.3, 37.3, 42.1 and 46.2% for syringaresinol and 17.3, 28.3, 34.8 and
42.6% for cleomiscosin A at selected concentrations in comparison to control cells.

5. Conclusions

Virtual screenings are highly coveted due to fewer time and resource requirements to
search small molecule databases in the field of drug discovery. Following this idea, in the
current study, molecular docking was performed using a library of 17,000 phytochemicals
against 6-PGD, which exhibited 7 potential ligands with satisfying binding ability to
essential residues in the substrate binding cavity. Furthermore, ADMET and toxicity drug
scan exploration indicated five compounds with good drug-likeness and toxicity profiles.
In addition, MD simulation study revealed three top-ranking hits (secoisolariciresinol,
syringaresinol and cleomiscosin A) with stable conformations. Interestingly, all three
obtained hits were found to be members of the same class of phytochemicals, the lignans.
The in vitro enzymatic assay validated the inhibitors’ (syringaresinol and cleomiscosin A)
inhibition against 6-PGD. Moreover, cytotoxicity and apoptosis studies were carried out
to evaluate the lignans’ potential to inhibit the growth of A549 cells and their mode of
cell death, which observed syringaresinol and cleomiscosin A as potent anti-lung cancer
agents by inducing apoptosis. On the basis of the results obtained during the present
study, the lignans syringaresinol and cleomiscosin A can be remarked as natural anti-
lung cancer metabolic modulators with acceptable drugability properties against 6-PGD.
However, further in vitro (NADPH and protein binding assays), in vivo and clinical trials
are recommended to elucidate the underlying mechanism for future studies.
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