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See associated file “Dataset_S1_Lipidomics_Analysis.zip” 
 
Figure S1: Retention Balance Point Methodology 
 

 
 

As a surrogate for gold standards or labeled data, we used the annotation 
agreement between CalicoLipids and MS-DIAL spectral libraries to estimate library-
specific score thresholds which could be applied broadly to all annotated features. The 
use of agreement between multiple identification approaches has been used extensively 
in the past as a metric for performance in mass spectrometry datasets, for example, when 
comparing peptide spectrum matches identified by different proteomics search engines 
and metabolite annotations produced by different metabolomics identification algorithms. 
An “agreement” indicates that both the CalicoLipids and MS-DIAL spectral libraries 
returned the same annotation for a given feature, while a “disagreement” indicates that 
the two libraries annotated the feature differently. For this analysis, an “agreement” 
requires that both features are assigned the same lipid class, adduct form, and acyl chain 
lengths. A “disagreement” must differ in all of these ways. MS-DIAL and CalicoLipids 
characterized lipid classes slightly differently, which necessitated the development of 
some alignment functions, as well as careful manual review when aligning features. 
Fortunately, the MAVEN peak detection and grouping step is deterministic, so the 
unannotated set of peak groups was identical in all searches carried out. A complete 
analysis of this work, including all necessary raw files and functions, is available in 
Dataset S1. 

Annotation agreement likely indicates that both libraries suggest the correct 
annotation, with the alternative being that both have independently suggested the same 
wrong annotation. Annotation disagreement requires that at least one annotation is 
incorrect, though it is possible that both annotations could be incorrect. We assumed that 



annotation agreement is generally a favorable attribute, and annotation disagreement is 
generally an unfavorable attribute. We found that for both the CalicoLipids and MS-DIAL 
libraries, annotation agreement is generally associated with higher score values, while 
annotation disagreement is generally associated with lower score values, though the 
score distributions are overlapping (Figure S3) Review of the spectral contents of the 
CalicoLipids and MS-DIAL libraries reveals that the CalicoLipids spectral library contains 
more fragments per library entry than the MS-DIAL spectral library (CalicoLipids averages 
11.0 fragments per compound ion, while MS-DIAL averages 6.7 fragments per compound 
ion, see Dataset S1).  This yields systematically higher hypergeometric score values for 
CalicoLipids library matches compared to MS-DIAL matches, as hypergeometric scores 
increase as the absolute number of fragment matches increases.  With more fragments 
available to match, more fragment matches should be discovered. 

For each library, we determined the proportion of annotation agreements and 
disagreements retained after removing score values below the threshold (the retention 
fraction difference, or RFD). We repeated this procedure for all reasonable score 
threshold values, recording the RFD computed at each hypergeometric score threshold 
value to create distributions of library-specific retention difference values. After smoothing 
the library-specific retention difference distributions, we observed similarity between the 
shape of the two distributions, including the presence of a prominent global maximum in 
each distribution, which we termed the Retention Balance Point (or RBP), and used as 
the corresponding library’s score cutoff value. This maximum of each distribution is the 
value that maximizes the difference between the proportion of agreements and the 
proportion of disagreements retained at any score threshold value.  

Our interpretation of the distribution maxima is as follows: our procedure is 
analogous to balancing sensitivity and specificity, where the retention of annotation 
agreements is analogous to sensitivity (retaining true positives), and the exclusion of 
annotation disagreements is analogous to specificity (excluding true negatives). Critically, 
annotation disagreements may be fully incorrect (both annotations are wrong) or half-
incorrect (only one annotation is wrong), so we may not translate agreement and 
disagreement into true positives and true negatives without further assumptions. For this 
reason, without additional assumptions, we are unable to render a false discovery rate 
(FDR) using our approach. However, suppose we make the assumption that in general, 
higher scores are more likely to be real identifications. This seems reasonable for the 
hypergeometric score test, as higher scores correspond to a higher number of fragment 
matches. Assuming that the libraries are built with informative, meaningful fragments, 
more fragment matches ought to indicate a higher likelihood of a correct annotation. 
Features that are differently annotated by each spectral library (the disagreements) 
should follow the same trend, in reverse (e.g., a failure to match fragments indicates a 
lower likelihood of correct annotation). While we cannot explicitly segment our 
disagreements into correct and incorrect annotations, as the score threshold increases, 
we suggest that the ratio of correct annotations to incorrect annotations should increase. 
The maximum value of an agreement and disagreement retention difference distribution 
can be understood as the point at which a change in character of the disagreements 
occurs, specifically, where the proportion of half-correct annotations to doubly-incorrect 
annotations is maximized. It’s worth mentioning that the retention plots for one spectral 



library may be transformed into the retention plot of the other spectral library by simple 
shrinking/stretching mathematical transformations. Understood this way, we can view our 
library-specific thresholds not as arbitrary cutoffs, but as a fundamental property of each 
library’s agreement and disagreement retention fraction difference distribution. We may 
use a library-specific hypergeometric score threshold as a surrogate for a probability or 
FDR value, above which we would designate matches as “real”, and below which we 
would discard as spurious.  

In the above figure, the approach of computing the retention balance point (RBP) 
is shown pictorially: Score thresholds are drawn across the entire distribution of scored 
matches (green dotted lines).  At each score threshold, the proportion of agreements at 
or above the threshold and proportion of disagreements at or above the threshold is 
recorded.  In the figure, this is computed at 4 different values, shown as “R”, with the RBP 
for this example corresponding to data point #2.  The total number of agreements and 
disagreements, 20 and 8 respectively, is shown in the figure. 

Figure S2:  Agreement and Disagreement Score Distributions and Retention Balance Points 
(A) 

 
 
  



(B) 

 
(A) Agreements and disagreements count histograms, segregated by library. Inspection 
of counts of features annotated by both the CalicoLipids (top) and MS-DIAL (bottom) 
spectral libraries indicates that features annotated the same way by both libraries 
(agreements) and features annotated differently between libraries (disagreements) form 
distinct hypergeometric score distributions. This suggested the existence of a score 
threshold that optimally separated these distributions, which motivated the development 
of the retention balance point (RBP) approach. (B) Overlying the distributions of retention 
fraction difference values computed at different hypergeometric score thresholds is 
shown overlaid with fitted curves (CalicoLipids raw data shown as circles, fit shown as 
red line, MS-DIAL raw data shown as triangles, fit shown as blue line). The distributions 
have a similar unimodal shape with a single local maximum (the retention balance point, 
or RBP). In this dataset, the RBP was found to exist at a hypergeometric score threshold 
of 13.9 for the MS-DIAL spectral library, and 22.8 for the CalicoLipids spectral library.  

Table S1: Lipid Fragmentation Standards 
 
Class Class 

Abbreviation 
Standards Other sources 

and Citations 
precursors 
fragmented 

Bisdiacylglycerolphosphate BDP BDP(18:1/18:1/18:1/18:1)  
[M-H]-, [M+H]+, 
[M+Na]+ 

Bismonoacylglycerolphosphate BMP BMP(14:0/14:0), BMP(18:1,18:1)  
[M-H]-, [M+H]+, 
[M+Na]+ 

Cardiolipin CL CL(16:0/18:1/16:0/18:1), 
CL(18:1/18:1/18:1/18:1) 

 
[M-H]-, [M-2H]2- 



Carnitine Carn Carn(16:0), Carn(12:0)  
[M+H]+ 

CDP-diacylglycerol CDP-DG CDP-DG(16:0/16:0), CDP-DG(18:1/18:1)  
[M-H]-, [M+H]+, 
[M+Na]+ 

Ceramide Cer Cer(d18:0/12:0), Cer(d18:1/m18:0), 
Cer(d18:1/24:0), Cer(t18:0/18:0), 
Cer(t18:0/24:0) 

 
[M-H]-, [M+H]+, 
[M+Na]+ 

Ceramide Phosphate Cer-P Cer-P(d18:1/12:0), Cer-P(d18:1/24:0)  
[M-H]- 

Ceramide 
Phosphatidylethanolamine 

CPE CPE(d17:1, 12:0), CPE(d18:1,24:1), 
CPE(d18:1,24:0) 

 
[M-H]-, [M+H]+, 
[M+Na]+ 

Ceramide Phosphatidylinositol CPI  
by analogy to 
CPE, X. Han 
2017 

 

Cholesterol Ester CE CE(17:0)  
[M+Na]+ 

diacylglycerol DG DG(14:0/14:0), DG(16:0/16:0), 
DG(18:0,18:0), DG(16:0,18:1) 

 
[M+Na]+ 

digalactosyldiacylglycerol DGDG  
X. Han 2017  

Diacylglyceryltrimethylhomo-Ser DGTS DGTS(16:0,16:0)  
[M+H]+ 

dimethyl-phosphatidylethanolamine DMPE  
by analogy to 
PE, spectra from 
complex sample 

 

Ergosterol ester ErgE  
by anaolgy to CE  

Disialoganglioside GD1a AcGD1a GD1a (d18:1/18:0)  
[M+H]+, 
[M+2H]2+, 
[M+Na]+, [M-H]-, 
[M-2H]2- 

Disialoganglioside GD1b AcGD1b GD1b (d18:1/18:0)  
[M+H]+, 
[M+2H]2+, 
[M+Na]+, [M-H]-, 
[M-2H]2- 

Disialoganglioside GD2 AcGD2 GD2 (d18:1/18:0)  
[M+H]+, [M+Na]+, 
[M-H]-, [M-2H]2- 

Disialoganglioside GD3 AcGD3 GD3 (d18:1/18:0)  
[M+H]+, [M+Na]+, 
[M-H]-, [M-2H]2- 

ether lysophosphatidylcholine LPC LPC(p18:0)  
[M-H]-, [M+H]+, 
[M+Na]+ 

ether lysophosphatidylethanolamine LPE LPE(p18:0)  
[M-H]-, [M+H]+, 
[M+Na]+ 

fatty acid FA  
X. Han 2017  

FAHFA FAHFA 5-PAHSA, 12-PAHSA  
[M-H]-, [M+Na]+ 

Globotriaosylceramide GB3  
X. Han 2017  

Neu5Gc Monosialoganglioside GM2 GcGM2  
by anaology to 
AcGM2 

 

Neu5Gc Monosialoganglioside GM3 GcGM3  
by analogy to 
AcGM3 

 

Hemi-
bismonoacylglycerolphosphate 

HemiBMP HemiBMP(18:1,18:1,18:1)  
[M-H]- 

Galactosyl-Ceramide + Glucosyl 
Ceramide 

Hex-Cer Galactosyl-Ceramide(d18:1/16:0), 
Glucosyl-Ceramide(d18:1,16:0), 
Glucosyl-Ceramide(d18:1,17:0) 

 
[M-H]-, [M+H]+, 
[M+Na]+ 

Lactosyl Ceramide LacCer LacCer(d18:1,17:0), Glucosyl-
Ceramide(d18:1,24:1) 

 
[M-H]-, [M+H]+, 
[M+Na]+ 



lyso Ceramide 
Phosphatidylethanolamine 

LysoCPE LysoCPE(d18:1)  
[M-H]-, [M+H]+, 
[M+Na]+ 

lyso Ceramide Phosphatidylinositol LysoCPI LysoCPI(d18:1)  
[M-H]-, [M+H]+, 
[M+Na]+ 

lyso sphingomyelin LysoSM LysoSM(d17:1), LysoSM(d18:1)  
[M+H]+, [M+Na]+ 

glucosyl sphingosine, galactosyl 
sphingosine (pyschosine) 

LysoHexCer  
X. Han 2017  

Lysophosphatidic acid LPA LPA(16:0), LPA(18:1)  
[M-H]- 

Lysophosphatidyl glycerol LPG LPG(16:0), LPG(18:1)  
[M-H]-, [M+H]+, 
[M+Na]+ 

Lysophosphatidyl inositol LPI LPI(16:0), LPI(18:1)  
[M-H]-, [M+H]+, 
[M+Na]+ 

Lysophosphatidylcholine LPC LPC(18:0/0:0), LPC(15:0,0:0), 
LPC(16:0,0:0), LPC(18:1,0:0) 

 
[M-H]-, [M+H]+, 
[M+Na]+ 

Lysophosphatidylethanolamine LPE LPE(18:0)  
[M-H]-, [M+H]+, 
[M+Na]+ 

lysophosphatidylserine LPS LPS(16:0)  
[M-H]-, [M+H]+, 
[M+Na]+ 

Monoacylglycerol MG MG(12:0), MG(18:0)  
[M-H]-, [M+H]+, 
[M+Na]+ 

Monogalactosyldiacylglycerol MGDG MGDG(18:0,18:0) X. Han 2017 [M-H]-, [M+H]+, 
[M+Na]+ 

mannose-(inositol phosphate)2-
ceramide 

MIP2C  
spectra from 
complex sample 

[M-H]- 

mannose-inositol phosphate-
ceramide 

MIPC  
spectra from 
complex sample 

[M-H]- 

mono-methyl 
phosphatidylethanolamine 

MMPE  
by analogy to 
PE, spectra from 
complex sample 

 

N-Acylphosphatidylethanolamine N-acyl-PE  
X. Han 2017  

N-Acylphosphatidylserine N-acyl-PS  
X. Han 2017  

monoether phosphatidylcholine Alkyl_PC PC(p18:0/22:6), PC(p18:0/18:1), 
PC(p18:0/20:4) 

 
[M+FA-H]-, 
[M+H]+, [M+Na]+ 

monoether 
phosphatidylethanolamine 

Alkyl_PE PE(p18:0,18:1), PE(p18:0,24:0)  
[M-H]-, [M+H]+, 
[M+Na]+ 

Monosialoganglioside GM1 AcGM1 GM1 (d18:1/18:0)  
[M-H]-, [M+H]+ 

Monosialoganglioside GM2 AcGM2 GM2 (d18:1/18:0)  
[M-H]-, [M+H]+ 

Monosialoganglioside GM3 AcGM3 GM3 (d18:1/18:0)  
[M-H]-, [M+H]+ 

N-acyl-ethanolamine Ethanolamine  
X. Han 2017  

N-acyl Taurine Taurine Taurine(18:0)  
[M-H]-, [M+H]+ 

Phosphatidic acid PA PA(18:1/18:1), PA(16:0/18:1), 
PA(18:0/18:1) 

 
[M-H]- 

Phosphatidylcholine PC PC(16:0/18:1), PC(16:0/18:0), 
PC(18:0/20:4) 

 
[M+FA-H]-, 
[M+H]+, [M+Na]+ 

Phosphatidylethanolamine PE PE(16:0/18:1), PE(16:0/20:4)  
[M-H]-, [M+H]+, 
[M+Na]+ 

phosphatidylglycerol PG PG(16:0/18:1), PG(18:0,18:0)  
[M-H]-, [M+H]+, 
[M+Na]+ 

Phosphatidylinositol PI PI(16:0/18:1), PI(18:0,20:4)  
[M-H]-, [M+H]+, 
[M+Na]+ 



Phosphatidylserine PS PS(16:0/16:0), PS(16:0/18:1)  
[M-H]-, [M+H]+, 
[M+Na]+ 

Sphingomyelin SM SM(d18:1/18:0), SM(d18:1,24:0), 
SM(d18:1/18:1) 

 
[M-H]-, [M+H]+, 
[M+Na]+ 

sphingosine phosphate LCB-P LCB-P(d20:1)  
[M-H]-, [M+H]+ 

Sphingosine/Sphiganine LCB LCB(d18:1), LCB(d18:0), LCB(d20:0)  
[M+H]+ 

Sulfatide Sulfatide Sulfatide(d18:1/17:0), 
Sulfatide(d18:1/m18:0), 
Sulfatide(d18:1/12:0), 
Sulfatide(d18:1/24:1) 

 
[M-H]- 

Tetrasialoganglioside GQ1b 
(NH4+salt) 

AcGQ1b GQ1b (d18:1/18:0)  
[M+H]+, 
[M+2H+]2+, [M-
2H]2-, [M-3H]3- 

triacylglycerol TG TG(12:0/12:0/12:0), TG(14:0/14:0/14:0), 
TG(16:0/16:0/16:0), TG(18:0/18:0/18:0) 

 
[M+Na]+ 

Trisialoganglioside GT1b (NH4+salt) AcGT1b GT1b (d18:1/18:0)  
[M+H]+, 
[M+2H+]2+, 
[M+Na]+, [M-2H]2- 

 
Dataset S2: 
 
See associated file “Dataset_S2_Metabolomics_Library_Files.zip” 
 
Dataset S3: 
 
See associated file “Dataset_S3_Metabolomics_Example_Analysis.zip” 
 
  



Figure S3: Gold Standards Metabolomics Analysis 

 
 

Samples were generated as described in Methods. A series of purified chemical 
standards were purchased and spiked into a subset of samples. Each chemical standard 
spiked into samples was spiked into exactly 2 of the 10 samples associated with each 
search. We retrieved a list indicating which two samples contained a particular chemical 
standard. In general, samples contained many chemical standards, though the number 
of chemical standards per sample was constrained to 37 metabolites. 

MAVEN2 was launched, and a series of searches were undertaken using different 
samples and spectral libraries. In total, four searches were performed, using the following 
combinations of samples and libraries: (1) negative library, standards spiked into a water 
background; (2) positive library, standards spiked into a water background; (3) negative 
library, standards spiked into a yeast background; and (4) positive library, standards 
spiked into a yeast background. There were 10 samples and 4 blanks included in each 
case. The spectral libraries used are those described in Methods, and available in 
Dataset S2. For each search, a Peaks search was carried out using all default Peak 
Detection parameters, and default Peak Scoring parameters except for the minimum 
number of fragments was set to 0, the minimum score was set to 0, and we required that 
a compound’s associated adduct matched the searched adduct match for compound 
matches. All searches were saved as .mzrollDB files. 



The data from MAVEN searches and standard - sample mapping data were 
imported into an R script (available in Dataset S4). For searches associated with water 
samples, annotation correctness was determined based on the quantitative profile of 
identified compounds. Specifically, a peak group - compound match was only considered 
correct if peak intensity was observed in both spike-in samples, and the median peak 
intensity of this intensity was greater or equal to twice the median intensity of the peak 
intensity of all of the other samples in the search (if data was not present in a sample, the 
intensity was set to the limit of detection of 4096 arbitrary intensity units). Once this 
process was carried out over the search set, we obtained a list of compounds that were 
correctly identified. Any compounds that could not be correctly identified were excluded 
from further analysis. The retention times associated with correctly identified peak groups 
were noted. We used the set of all accurately identified compounds from the water 
samples to generate a table of compound retention times, which we used to assess 
correctness among the yeast background samples. Only compounds where a correct 
identification could be found in the water samples evaluated in the yeast background 
samples. 

Using the list of compounds that were accurately identified in the search set, we 
explored accuracy, precision, and recall as a function of MS2 score threshold, using a 
variety of scoring types (dot product score, fraction of library fragments matched, 
hypergeometric score, MVH score, number of matched library fragments, proportion of 
the library spectrum TIC matched). Peak groups were considered identifications only if 
their matched MS2 score was above the threshold.  The true identity of each peak group 
was revealed by the standard spike-ins, and data from both positive and negative modes 
were combined. 

Peak groups with a hypergeometric score below the hypergeometric score 
threshold were excluded from further consideration. Different scoring methods have 
different ranges - for instance, the cosine score ranges from 0 to 1, while the 
hypergeometric score is unbounded. To compare different scoring approaches to each 
other, we normalized all scores by the maximum observed score of any identification. 
This allowed us to consider scoring thresholds of every scoring type as a fraction of the 
maximum observed score. 

For both water and yeast background samples, positive and negative modes were 
combined to produce the response curves shown in (Figure 3). Response curves were 
generated by iterating through results and excluding entries that had a hypergeometric 
score below the hypergeometric score threshold. True positive rate (TPR) was always 
calculated as precision = TP / (TP + FP) (true positive rate equals number of true positives 
divided by the sum of true positives and false positives). An R markdown analysis script, 
mzrolldb files, standards list, and screenshots are available in Dataset S4. 

  



Figure S4: Metabolite Scoring Performance 
(A) Precision of various scoring algorithms in identification of gold standard spike-ins applied 
to water and yeast backgrounds. 
Precision is higher in the water background due to less interference from background 
metabolites. Percent of TIC matched had the worst performance, and 
MVH/Hypergeometric had the best performance.    

 
 
 
  



(B) Recall of various scoring algorithms in identification of gold standard spike-ins applied to 
water and yeast backgrounds. Percent TIC matched had overall best recall however at the 
cost of lower precision. Of these six scoring types, only TIC matched and DotProduct 
considered spectral intensity values.  These scoring types had similar recall response 
curves.  
 

 
 
  



Table S2: Metabolite IDs in Water Background 
 
 

Score Threshold (%Max 
Value) 

    

MS2 SCORE >0% 25% 50% 75% 100% 
WATER BACKGROUND TRUE 
POSITIVES 

     

DotProduct 577 475 434 352 25 
FracMatched 577 384 207 81 18 
HyperGeometic 577 307 127 59 38 
MVH 577 305 134 60 42 
NumMatches 577 298 124 54 37 
TicMatched 577 533 503 433 26 
      

WATER BACKGROUND FALSE 
POSITIVES 

     

DotProduct 157 70 48 35 6 
FracMatched 157 77 28 8 2 
HyperGeometic 157 39 7 0 0 
MVH 157 46 11 0 0 
NumMatches 157 41 9 0 0 
TicMatched 157 112 93 69 3 
      

TOTAL NUMBER OF IDS IN WATER      

DotProduct 734 545 482 387 31 
FracMatched 734 461 235 89 20 
HyperGeometic 734 346 134 59 38 
MVH 734 351 145 60 42 
NumMatches 734 339 133 54 37 
TicMatched 734 645 596 502 29 

 
 
  



Table S3: Metabolite IDs in Yeast Background 
 
 

Score Threshold (%Max 
Value) 

    

MS2 SCORE >0% 25% 50% 75% 100% 
YEAST BACKGROUND TRUE 
POSITIVES 

     

DotProduct 328 277 247 208 22 
FracMatched 336 278 180 92 38 
HyperGeometic 334 231 100 47 23 
MVH 327 213 93 42 20 
NumMatches 336 237 102 49 28 
TicMatched 338 331 319 293 33 
      

YEAST BACKGROUND FALSE 
POSITIVES 

     

DotProduct 366 179 139 95 14 
FracMatched 358 222 113 40 12 
HyperGeometic 360 144 40 12 6 
MVH 367 142 43 15 5 
NumMatches 358 161 54 19 7 
TicMatched 356 287 232 178 11 
      

TOTAL NUMBER OF IDS IN YEAST      

DotProduct 694 456 386 303 36 
FracMatched 694 500 293 132 50 
HyperGeometic 694 375 140 59 29 
MVH 694 355 136 57 25 
NumMatches 694 398 156 68 35 
TicMatched 694 618 551 471 44 

 
 
  



Figure S5: Metabolomics Isoforms Examples 
(A) Ribonolactone [M-H]- RT =13.5 min identification 

 
 
(B) MS/MS spectrum for RT=13.5 min peak group 

 
 
  



(C) Ribonolactone [M-H]- RT=9 min identification 

 
 
(D) MS/MS spectrum for Rt=9 min peak group 

 
 
Based on only the matched MS/MS information, it is difficult to tell that one is a correct 
identification (confirmed with an injected chemical standard), and another is probably a 
structural isomer with some structural features in common with the true compound of 
interest. However, the vastly different retention times (9 and 13.5 minutes) indicate that 
these peak groups must correspond to different compounds. 

  



Dataset S4: 
 
See associated file “Dataset_S4_Metabolomics_Analysis_Script.zip” 
 
Dataset S5: 
 
See associated file “Dataset_S5_Library_Comparisons.zip” 


