
Citation: Godoi, A.B.; do Canto,

A.M.; Donatti, A.; Rosa, D.C.; Bruno,

D.C.F.; Alvim, M.K.; Yasuda, C.L.;

Martins, L.G.; Quintero, M.; Tasic, L.;

et al. Circulating Metabolites as

Biomarkers of Disease in Patients

with Mesial Temporal Lobe Epilepsy.

Metabolites 2022, 12, 446. https://

doi.org/10.3390/metabo12050446

Academic Editor: Olimpio Montero

Received: 20 March 2022

Accepted: 12 May 2022

Published: 17 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metabolites

H

OH

OH

Article

Circulating Metabolites as Biomarkers of Disease in Patients
with Mesial Temporal Lobe Epilepsy
Alexandre B. Godoi 1,2 , Amanda M. do Canto 1,2 , Amanda Donatti 1,2, Douglas C. Rosa 1,2,
Danielle C. F. Bruno 1,2 , Marina K. Alvim 2,3, Clarissa L. Yasuda 2,3, Lucas G. Martins 4 , Melissa Quintero 4 ,
Ljubica Tasic 4 , Fernando Cendes 2,3 and Iscia Lopes-Cendes 1,2,*

1 Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP),
Campinas 13083-888, Brazil; bdgalexandre@gmail.com (A.B.G.); amanda.morato.canto@gmail.com (A.M.d.C.);
donatti.amanda@gmail.com (A.D.); douglascescon@gmail.com (D.C.R.);
danielle.carmof@gmail.com (D.C.F.B.)

2 Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas 13083-888, Brazil;
marinakma@gmail.com (M.K.A.); cyasuda@unicamp.br (C.L.Y.); fcendes@unicamp.br (F.C.)

3 Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP),
Campinas 13083-888, Brazil

4 Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP),
Campinas 13083-888, Brazil; lgmartins1984@gmail.com (L.G.M.); meliquies@gmail.com (M.Q.);
ljubica@unicamp.br (L.T.)

* Correspondence: icendes@unicamp.br; Tel.: +55-19-3521-8909

Abstract: A major challenge in the clinical management of patients with mesial temporal lobe epilepsy
(MTLE) is identifying those who do not respond to antiseizure medication (ASM), allowing for the
timely pursuit of alternative treatments such as epilepsy surgery. Here, we investigated changes
in plasma metabolites as biomarkers of disease in patients with MTLE. Furthermore, we used the
metabolomics data to gain insights into the mechanisms underlying MTLE and response to ASM. We
performed an untargeted metabolomic method using magnetic resonance spectroscopy and multi-
and univariate statistical analyses to compare data obtained from plasma samples of 28 patients with
MTLE compared to 28 controls. The patients were further divided according to response to ASM for a
supplementary and preliminary comparison: 20 patients were refractory to treatment, and eight were
responsive to ASM. We only included patients using carbamazepine in combination with clobazam.
We analyzed the group of patients and controls and found that the profiles of glucose (p = 0.01),
saturated lipids (p = 0.0002), isoleucine (p = 0.0001), β-hydroxybutyrate (p = 0.0003), and proline
(p = 0.02) were different in patients compared to controls (p < 0.05). In addition, we found some
suggestive metabolites (without enough predictability) by multivariate analysis (VIP scores > 2),
such as lipoproteins, lactate, glucose, unsaturated lipids, isoleucine, and proline, that might be
relevant to the process of pharmacoresistance in the comparison between patients with refractory
and responsive MTLE. The identified metabolites for the comparison between MTLE patients and
controls were linked to different biological pathways related to cell-energy metabolism and pathways
related to inflammatory processes and the modulation of neurotransmitter release and activity in
MTLE. In conclusion, in addition to insights into the mechanisms underlying MTLE, our results
suggest that plasma metabolites may be used as disease biomarkers. These findings warrant further
studies exploring the clinical use of metabolites to assist in decision-making when treating patients
with MTLE.

Keywords: metabolomics; antiseizure medication; 1H Nuclear Magnetic Resonance; focal epilepsy;
response to treatment

1. Introduction

Epilepsy is a chronic neurological disorder characterized by persistent and long-
lasting hyperactivity of groups of neurons, increasing one’s propensity to develop epileptic
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seizures [1,2]. In mesial temporal lobe epilepsy (MTLE), the epileptogenic focus is localized
in the medial structures of the temporal lobe, mainly in the hippocampus [3–5]. MTLE is
the most common type of focal epilepsy in adults. About 67–89% of patients with MTLE
with hippocampal sclerosis have drug-resistant epilepsy and do not respond to currently
available antiseizure medications (ASMs) [6,7]. In this sense, it has been determined that
patients who do not reach seizure freedom when taking two ASMs (in monotherapy or
combination therapy) may be defined as drug-resistant [8]. In addition to being exposed to
the seizures’ intrinsic deleterious effects, pharmacoresistant patients experience the severe
side effects of the ASM, often prescribed as polytherapy and in high doses [9]. Therefore,
a significant challenge in the clinical management of patients with MTLE is identifying
those who do not respond to ASM, allowing for the pursuit of other types of treatment,
such as epilepsy surgery [10,11]. Indeed, recent reports have highlighted the importance of
identifying biomarkers for response to therapy in epilepsies, including MTLE [12]. Several
hypotheses explain the mechanism of ASM resistance. The current consensus is that this
is a multifactorial condition where gene–gene and gene–environment interactions play
important roles [12].

Metabolomics based on Nuclear Magnetic Resonance (1H-NMR) is used for complex
sample analysis, principally because of the high reproducibility of NMR data, little or
no sample preparation, and sample integrity preservation, which is particularly relevant
when evaluating rare clinical samples [13,14]. In addition, NMR-based metabolomics
may identify changes in biological samples linked to morphological and biochemical alter-
ations associated with disease, thus assisting in early and precise diagnosis. Furthermore,
identifying metabolites associated with specific phenotypes can contribute to a better
understanding of disease mechanisms [15].

This study investigated the feasibility of using plasma metabolites as disease and phar-
macoresistance biomarkers in patients with MTLE. In addition, we used the metabolomics
data generated to gain insights into the mechanisms underlying MTLE and response
to ASM.

2. Results
2.1. Characteristics of Study Population

We ascertained 28 patients with a mean age of 54 years (ranging from 26 to 70);
eight patients were responsive to treatment with ASM, reaching seizure freedom when
using the combination of CBZ + CLB, and 20 were classified as refractory to treatment with
this therapy, as they did not acquire seizure freedom. The main clinical characteristics of
the patients studied are reported in Table 1. We only included patients currently using
CBZ + CLB. However, all patients considered here as pharmacoresistant have failed several
other ASM regimens. None of the patients presented generalized seizures 24 h before blood
collection. Most patients presented signs of hippocampal sclerosis on magnetic resonance
image-decreased hippocampus volume in T1 images with increased signal in T2/FLAIR [3].
Age at onset of epilepsy varied from 1 to 30 years old. We also studied samples from
28 controls with a mean age of 49 years. These were adults between the ages of 29 and
63 years.

2.2. Metabolomic Analysis

Overall, we identified 27 metabolites in the samples studied (Appendix A, Table A1).
Additionally, we found different groups of biomolecules, such as lipids, in the plasma
of patients and controls. These biomolecules corresponded to different saturations’ fatty
acids; amino acids such as alanine, isoleucine, leucine, valine, and glutamine; and aromatic
amino acids such as tyrosine, histidine, phenylalanine, lactate, and glucose (Figure 1). See
Appendix A, Table A1, and Figure A1 for the chemical shift assignments.
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Table 1. The main characteristics of the 28 patients with MTLE included in the study. All patients were
using the ASM combination, CBZ + CLB, and most of them presented signs of hippocampal sclerosis
on magnetic resonance imaging—decreased hippocampus volume in T1 images with increased signal
in T2/FLAIR images.

ID Sex Age (Years) Age at Onset
of Epilepsy

Hippocampal
Abnormalities Group Response to Treatment with

ASM Combination, CBZ + CLB

1 F 63 15 LHS MTLE Refractory
2 M 60 26 Bilateral MTLE Refractory
3 F 57 1 LHS MTLE Refractory
4 M 59 15 LHS MTLE Refractory
5 F 70 17 LHS MTLE Refractory
6 M 58 14 RHS MTLE Refractory
7 F 50 2 LHS MTLE Refractory
8 M 50 19 LHS MTLE Refractory
9 F 37 7 LHS MTLE Refractory

10 M 26 5 LHS MTLE Refractory
11 M 54 10 LHS MTLE Refractory
12 F 60 16 RHS MTLE Refractory
13 F 26 7 RHS MTLE Refractory
14 F 62 23 Bilateral MTLE Refractory
15 M 60 20 RHS MTLE Refractory
16 M 62 14 LHS MTLE Refractory
17 F 61 2 RHS MTLE Refractory
18 M 46 1 LHS MTLE Refractory
19 F 54 8 LHS MTLE Refractory
20 F 51 30 None MTLE Refractory
21 F 43 7 LHS MTLE Responsive
22 M 45 8 RHS MTLE Responsive
23 F 65 3 LHS MTLE Responsive
24 M 55 31 RHS MTLE Responsive
25 F 58 17 RHS MTLE Responsive
26 M 47 19 LHS MTLE Responsive
27 F 56 20 LHS MTLE Responsive
28 F 70 18 LHS MTLE Responsive

MTLE: mesial temporal lobe epilepsy; ID: patient identification; sex: male/female (M/F); age: the age
at investigation. LHS: left hippocampal sclerosis; RHA: right hippocampal sclerosis; bilateral: bilateral
hippocampal sclerosis.

The largest variation in the acquired NMR data directions was visualized using the
PLS-DA method. The PLS-DA scores plot (Figure 2A) clusters data for the patients and
controls and the first principal component (1), explaining 39.1% of the data variation. The
PLS-DA model goodness of fit (R2) value was 0.83, with a prediction (Q2) of 0.23. The
metabolites that discriminate between the groups were identified based on the variables’
importance in the projection score (VIP score) from the PLS-DA analysis. The first 15 VIPs
were combined with univariate analysis such as t-test and fold change (FC) (Table 2). We
also evaluated the AUC of the ROC curve of the most important features of the model to
calculate their predictability power (Figure 3). As a result, we identified five significantly
altered metabolites when comparing patients with controls: glucose, saturated lipids,
isoleucine, β-hydroxybutyrate, and proline (Table 2 and Figure 2C).
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Figure 1. The representative 1H-NMR spectra of plasma samples of control, responsive, and refractory
MTLE subjects. Spectral regions from 0.5 to 9.0 ppm, acquired using CPMG (cpmgpr1d) pulse
sequence, are shown. The 7.0 to 8.5 ppm regions were zoomed in (8×) for better visualization. The
regions of D2O and EDTA were removed (//). The following metabolites were identified: lipoproteins;
leucine, valine; isoleucine; lactate; alanine; acetate; N-acetyl-glycoproteins; O-acetyl-glycoproteins;
glutamine; glucose; tyrosine; histidine; phenylalanine; formate.
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Figure 2. Multivariate analysis of 1H-NMR (CPMG) plasma spectra. (A) PLS-DA results with the
accuracy of 76%, R2 0.83, and Q2 0.23. (B) O-PLS-DA results. The information about response to
treatment with ASM in patients with MTLE was not implemented into the models. (C) Box plots
representing the variations of the relative concentrations (measured as peak intensities) of metabolites
whose VIP scores > 2 according to PLS-DA results. The black dots represent the metabolite levels in
all samples, and the yellow diamond represents the average value. Patients with MTLE (red) and
controls (blue). * = overlaid signals.
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Table 2. Table showing the metabolites identified in different concentrations and their respective
chemical shifts elucidated by the highest VIP values (VIP score). The p-values, calculated from the
t-test, FC (fold change), and false discovery rate (FDR) are also shown.

MTLE versus Control—VIP Score

Metabolites Chemical Shift (Multip; Assign.) Vip Score p-Value FC FDR

Glucose 3.68–3.78 (m, CH) 5.12 6.0000 × 10−3 1.30 0.196

Saturated Lipids 0.83–0.87 (m, CH3) 5.02 0.0918 × 10−3 0.76 0.023

Saturated Lipids, Isoleucine * 1.21–1.25 (m, -CH2-) 3.80 0.0817 × 10−5 0.82 0.023

β-Hydroxybutyrate, Saturated Lipids * 1.20–1.24 (m, -CH2- 3.15 0.129 × 10−3 0.82 0.027

Unsaturated lipids, Isoleucine, Proline,
and N-Acetyl-glycoproteins * 1.96–2.09 (m, -CH2-CH=) 2.16 0.0905 × 10−3 0.85 0.198

Multip = multiplicity, where s (singlet), d (doublet), t (triplet), dd (doublet of doublets), m (multiplet), l (broad);
Assign. = assignment of these signals; * = overlaid signals.
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Figure 3. Receiver operator characteristics (ROC) curves and their respective areas under the curve
(AUC) were calculated for the most important features determined by VIP values to compare MTLE
patients and controls. * = overlaid signals.

Furthermore, we also built a model to compare the patients based on their phar-
macological responses. In this sense, a PLS-DA model was developed for comparing
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refractory with responsive MTLE patients (Figure A3), displaying scores plot with cluster-
ing for the two groups and the first principal component (1), which explains 44.6% of the
data variation.

In addition, a constructed model alone was not enough to consider the model predic-
tion. However, despite not observing considerable predictability for our method in PLS-DA
parameters, we proposed some candidate variables according to their PLS regression co-
efficients. Those were classified based on the variables’ relative VIP. These metabolites
were lipoproteins, lactate, glucose, proline, isoleucine, and unsaturated lipids (Table 3 and
Figure A3C). Nonetheless, these metabolites did not present significant differences by t-test
when comparing patients with responsive and refractory MTLE.

Table 3. List of metabolites identified in different concentrations of refractory and responsive MTLE
and their respective chemical shifts elucidated by the highest VIP values (VIP score). The p-values,
calculated from the t-test, FC (fold change) are also shown.

Refractory MTLE versus Responsive MTLE—VIP Scores

Metabolites Chemical Shift
(Multip.; Assign.) VIP Score p-Value FC

Lipoproteins 1.28 (m, CH) 6.66 0.05 1.209
Lactate 1.33 (d, CH3) 5.41 0.05 1.159
Glucose 3.41 (m, CH2) 4.81 0.05 0.752

Exclusively unsaturated lipid 2.06 (l, CH2CH=) 1.71 0.05 0.857
Isoleucine 0.94 (t, CH3) 1.57 0.05 0.886

Proline 3.36 (m, CH) 1.13 0.05 0.658

Multip = multiplicity, s (singlet), d (doublet), t (triplet), dd (doublet of doublet), m (multiplet), l
(broad); Assign. = assignment of these signals.

A comparative evaluation of the metabolome between these two groups of patients,
as presented here, could potentially reveal metabolic features related to the process of
pharmacoresistance. However, as we did not obtain sufficient significance and predictive
power in the statistical model, the information found for such a comparison, having
lactate, glucose, proline, isoleucine, and unsaturated lipids only suggestively support their
importance in such a condition. Thus, for a more assertive elucidation of the discriminating
metabolites between patients with refractory and responsive MTLE, such an assessment
should be pursued in a larger sample size.

Additionally, we performed pathway enrichment analysis with the differentially abun-
dant metabolites to compare patients and controls. For such an analysis, we identified as
main altered pathways: lactose degradation, glucose-alanine cycle, lactose synthesis, trans-
fer of acetyl groups into mitochondria, glycolysis, gluconeogenesis, fatty-acid biosynthesis,
galactose metabolism, sphingolipid metabolism, arginine, and proline metabolism, War-
burg effect, valine, leucine, and isoleucine degradation pathway as main altered pathways
in patients (Figure 4A).

We also analyzed the diseases to which the differently abundant metabolites found in
the comparison between patients and controls have been previously linked. They are dia-
betes mellitus (non-insulin-dependent), persistent hyperinsulinemic hypoglycemia, pyru-
vate carboxylase deficiency, respiratory chain deficiencies, and long-chain 3-hydroxyacyl-
CoA dehydrogenase (LCHAD) deficiency—for a complete overview of the diseases found
to be linked to the differentially abundant metabolites, refer to Appendix A, Figure A2.

Finally, we built networks correlating metabolites with their putative-related genes
using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We found
18 genes associated with the metabolites capable of discriminating patients from controls
(Figure 4B). Then, this set of genes was used to search the human phenotype ontology
gene setlist and the Gene Set Enrichment Analysis (GSEA) database. We found genes
related to elevated hepatic transaminase, energetic metabolism, amino-acid metabolism,
and inflammatory processes.
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Figure 4. Metabolic pathways were identified by the Metabolite Set Enrichment Analysis (MSEA)
of the discriminant metabolites that were identified when comparing (A) patients and controls.
(B) Network compound genes built with the discriminant metabolites comparing patients and con-
trols. Blue circles—annotated genes; pink hexagon—metabolite’s ligands; red hexagon—discriminant
metabolites present in the KEGG database.

3. Discussion

We used 1HNMR-based metabolomics to investigate plasma samples of patients
with MTLE and controls. In addition, we compared patients with different responses to
ASM, i.e., those refractory and responsive to ASM. We searched for metabolic traits that
could discriminate between the groups using a hypothesis-free design. Furthermore, we
aimed to gain insights into the mechanisms underlying MTLE and response to treatment
with ASM with the metabolomics data obtained. Because different epilepsy syndromes
present different mechanisms, which may influence the biological processes leading to
pharmacoresistance [12], we performed our study exclusively on patients with a single,
well-defined epilepsy syndrome, MTLE. Furthermore, the use of ASM may lead to differ-
ent metabolomics signatures [16]; thus, we selected patients using the same therapeutic
regimen, CBZ + CLB, minimizing the source of bias. Moreover, the occurrence of seizures
in proximity to the time of sample collection may temporarily affect the metabolic profile in
plasma; hence, we only collected samples from patients who were seizure-free 24 h before
sample collection.

We found five altered metabolites comparing patients and controls: glucose, saturated
lipids, 3-hydroxybutyrate, isoleucine, and proline. These biomolecules are related to
metabolic processes involved mainly in energetic and amino-acid metabolisms, especially
those related to the cell’s anaplerotic reactions. Noteworthy is the presence of lipids as one
of the discriminating elements between patients and controls.

In this study, we identified lower glucose levels in patients compared to controls.
In this sense, changes in the energetic metabolism of neurons and glial cells have been
frequently reported in neurological disorders. They are related to the preferential and
intense usage of glucose by the nervous tissue. In addition, neurotransmitters, such
as glutamate, acetylcholine, and gamma-aminobutyric acid, are dependent on energy
metabolism [17]. The main molecule responsible for transferring and storing energy,
the adenosine 5’-triphosphate (ATP), is produced through the glucose catabolism in the
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glycolysis, tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and several other
pathways related to the energetic metabolism, which were also present in the enriched
pathways analysis performed in this study (Figure 4). Moreover, it is well-known that
energy metabolism is indispensable for neurotransmitter production and release and
the activity of ion channels. These are the essential players in the known mechanisms
leading to epilepsy [18,19]. Therefore, an energetic failure due to abnormalities in glucose
concentration may lead to increased seizure susceptibility [20]. Indeed, previous 1H-
NMR studies revealed abnormal glucose concentrations in adult patients under different
combinations of ASM [16] and in drug-free pediatric patients [21], presenting focal and
generalized seizure types. Unfortunately, these studies presented important limitations
since the diagnosis of epilepsy syndrome was not informed for both studies [16,21], and one
of the studies included patients using different types of ASM [16]. Furthermore, none of
the studies discussed above [16,21] informed if the patients presented seizures 24 h before
sample collection, which may have introduced significant heterogeneity and bias toward
identifying altered metabolites due to the ASM used and/or/or after a major seizure.

In addition, other energy sources become necessary in an energy-failure scenario since
the decrease in ATP availability requires the recruitment of other biomolecules for energy
production. In this context, lipidic support is crucial to cell maintenance [22]. In our study,
some lipids corresponding to saturated fatty acids have been found elevated in patients and
can be related to altered energetic metabolism since this group of molecules, abundantly
found in lipoproteins, such as VLDL, HDL, and LDL, can be constantly displaced to many
different tissues to supply the energy input [23].

Other important energy sources for neural cells are gluconeogenesis, glycogenolysis,
and beta-oxidation. The ketone bodies can also perform this role, being synthesized
depending on the metabolic disposition of the cell in prolonged periods of energetical
deficit [24]. These molecules—acetoacetate, acetone, and β-hydroxybutyrate—contribute
mainly to the brain-tissue energy input, as they can cross the blood–brain barrier, supplying
about 60% of the central nervous system (CNS) [25]. Our study found increased levels of
β-hydroxybutyrate in patients, even though signals of saturated lipids overlay the chemical
shift identified for this molecule. This finding also indicates a state of energetic failure in
the cells of patients with MTLE.

In addition to the well-known therapeutic strategy of the ketogenic diet in epilepsy,
diets rich in BCAA have been shown to have positive effects on seizure control in an animal
model [26] and combined with the ketogenic diet in children with epilepsy [27]. However,
a recent study failed to demonstrate that chronic ingestion of BCAA is effective in the
long-term reduction of seizures in an animal model of MTLE [28]. It has been proposed that
an imbalance in the concentrations of amino acids such as valine, leucine, and isoleucine
may lead to increased glutamate levels in the nervous tissue, and consequently, to increased
hyperexcitability and excitotoxicity, resulting in neuroinflammation, which is known to
occur in epilepsy [27,29,30]. Interestingly, we found increased levels of isoleucine in patients
compared to controls, indicating a complex relationship between isoleucine concentration
in MTLE and response to ASM treatment.

Furthermore, we found increased proline levels in patients compared to controls. This
nonpolar amino acid has been linked to seizures and cognitive dysfunction [31], as well as
to PYCR2 gene expression linked to microcephaly and hypomethylation [32], along with
the PARS2 gene related to infantile-onset encephalopathy [33]. Furthermore, isoleucine
is a metabolite linked to genes involved in neurological disorders, such as dementia and
seizures: BCAT1, BCAT2, and IARS2 (26980008 and 30098844).

Interestingly, we found that the metabolic profile of patients with MTLE was also
linked to non-insulin-dependent diabetes mellitus (Mody). This association has been re-
ported previously, and it may be disease-induced or linked to the chronic use of ASM [34–36].
Indeed, a disruption of glucose metabolism in epilepsy leading to the unusual use of
glucose as a source of energy [20,37,38] and pro-inflammatory processes occurring in
epilepsy [38–40] may be risk factors for the development of diabetes in patients with MTLE.
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However, the influence of pharmacological therapy on the group of patients cannot be
discarded. This set of alterations, mainly linked to the amino acids and lipidic metabolism
pathways found in the comparison between patients and controls, could be related to the
ASM use, not exclusively the disease hallmarks. Despite the low evidence of metabolic
alterations in humans under the use of the ASMs addressed in this study, assessments
on the influence of CBZ in animal models have already been reported. In this context,
alterations in amino acids and carnitine metabolisms (related to the lipid metabolism) in
models of exposure to different doses of CBZ using Zebrafish [41] and in a bivalve mollusc
Mytilus galloprovincialis [42] were already described.

Overall, our study found that the levels of metabolites such as glucose, saturated
lipids, β-hydroxybutyrate, isoleucine, and proline, can distinguish patients with MTLE
from controls. In addition, the computational integration of the data obtained in the
metabolomic analysis suggests that pathways related to energetic metabolism, excitatory
neurotransmission, and inflammatory processes are abnormally regulated in patients with
MTLE. Notably, recent studies using tissue from animal models of MTLE reported similar
altered biological pathways and processes [38–40]. Finally, we found that isoleucine and
proline, amino acids present in abnormal levels in patients, may be involved in the increased
susceptibility to seizures.

Strengths and Limitations

Strengths of this study include a well-characterized and homogeneous cohort since
only patients with confirmed MTLE using the same type of ASM were included in the study.
In addition, all patients were followed prospectively by the same group of neurologists in
an epilepsy clinic at a university hospital. In addition, we only included patients without
generalized seizures in the last 24 h of blood collection. The diagnostic criteria used to
identify patients with MTLE and characterize the response to treatment with ASM followed
the recommendations by the International League Against Epilepsy [8,43]. Furthermore,
we used an agnostic approach to identify metabolites in the patients’ plasma and controls
through a robust, highly reproducible analytical technique. To our knowledge, this is the
first study to comply with all the elements listed above.

Our study also presents some limitations. First, because we recruited such a homoge-
nous group of patients and controls, our study counted on a limited number of investigated
individuals. Besides that, the access to these patients’ biofluids depends on their active
follow-up in the epilepsy clinic, which increases the difficulty of obtaining them. This
occurs mainly with the responsive patients, since they do not often return to the hospital
due to their positive response to prescribed ASMs. Therefore, this reduced number of
recruited individuals may have impacted the weak significance and predictability observed
in our findings in comparing patients with responsive and refractory MTLE.

Another important limitation in our study is the inherent influence of the ASMs on
the metabolic profile when comparing patients to controls. Thus, the correlation between
some of the metabolites identified may not be due to the disease but to the recurrent use of
the ASMs well.

4. Conclusions

Overall, plasma levels of glucose, saturated lipids, β-hydroxybutyrate, isoleucine,
and proline can distinguish patients with MTLE from controls. Most interestingly, glucose
levels, isoleucine, proline, lipoproteins, unsaturated lipids, and lactate are different in
patients with pharmacoresistant MTLE compared to responsive MTLE. In addition, the
computational integration of the data obtained in the metabolomic analysis suggests that
pathways related to energetic metabolism, excitatory neurotransmission, and inflammatory
processes are abnormally regulated in patients with MTLE. The identified metabolites were
linked to biological pathways related to cell-energy metabolism, inflammatory processes,
and modulation of neurotransmitter release and activity, which can potentially contribute
to the mechanisms underlying MTLE. Thus, in addition to insights into the mechanisms
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underlying MTLE, we provided a supplementary analysis comparing patients with refrac-
tory and responsive MTLE, showing suggestive evidence that plasma metabolites may be
used as biomarkers of response to ASM in patients with MTLE. These findings warrant
further studies exploring the clinical use of metabolites to assist in medical decisions in
treating patients with MTLE.

5. Materials and Methods
5.1. Study Population

We studied 28 patients with MTLE at the University of Campinas (UNICAMP) hospi-
tal’s outpatient epilepsy clinic. All patients had confirmed MTLE diagnoses according to
International League Against Epilepsy (ILAE) criteria [43] and were investigated using a
standard protocol, including serial interictal electroencephalogram high-resolution 3 Tesla
magnetic resonance imaging [44,45]. We only included adults between the ages of 18 and
65. Patients were classified into two groups according to the patients’ responses to the
treatment with ASM refractory or responsive following ILAE recommendations [8]. In
addition, we only included patients using carbamazepine (CBZ) with clobazam (CLB), the
therapy most frequently used by our epilepsy clinic patients. None presented generalized
seizures 24 h before blood collection. Furthermore, we excluded patients using drugs for
secondary clinical conditions that could have interacted with the ASM. We also studied
samples from 28 control individuals. These were adults between 18 and 65 who were not in
treatment for any neurological or chronic clinical conditions. We also excluded individuals
under therapy with medications that could alter the function of key metabolism enzymes,
such as cytochrome P450 isoforms.

5.2. Blood Collection and Plasma Preparation

Peripheral blood (4 mL) was collected in standard EDTA tubes (Vacutainer;
Becton Dickinson, Franklin Lakes, NJ, USA). Blood samples were kept on ice for up to
two hours until the plasma was separated and centrifuged at 2500 rpm for 10 min at 4 ◦C.
Then, the obtained plasma was aliquoted and stored at −80 ◦C until further analysis.

5.3. 1H-NMR Spectroscopy Analyses

Samples were thawed in an ice bath (4 ◦C), diluted 1:1 (v/v) in deuterium oxide (D2O,
99.9% with 0.03% of trimethylsilyl propanoic acid, TSP, from Sigma Aldrich, St. Louis, MO,
USA), and transferred into 5 mm NMR tubes. A Bruker AVANCE III 600 spectrometer (Bruker
Biospin, Karlsruhe, Germany), equipped with a TBI (Triple Resonance Broadband Inverse)
probe, was used. All 1H-NMR spectra were acquired at 25 ◦C, for example, Carr–Purcell–
Meiboom–Gill (CPMG) pulse sequence (cpmgpr1d), with 128 scans, was explored fur-
ther. The two-dimensional (2D) total correlation spectroscopy (TOCSY) experiments were
recorded with mlevgpphw5 pulse sequence and 300 scans of randomly selected samples.

5.4. Data Analysis: NMR Data Processing

The obtained spectra were processed and standardized using MestreNova software
(MestrelabResearch S.L.). First, the spectra were referenced using TSP (0.0 ppm), then
aligned, and their phase was corrected. Next, peaks were normalized by the total area,
and the matrix was prepared using spectral bins (0.005 ppm). A normalization with a
constant sum (100) of the entire spectrum intensity was employed, reducing the differences
in concentration between the plasma samples. In addition, that, water and EDTA spectral
regions were removed.

Such a data matrix was processed using MetaboAnalyst 5.0 platform (Xia, McGill
University) [46]. Data filtering, normalization by the sum, and Pareto scaling (mean-
centered and divided by the square root of the standard deviation of each variable) were
used in data preprocessing before the statistical tests, and 56 samples against 1620 variables
(bins) for 1H-NMR CPMG were analyzed.
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Furthermore, we performed multivariate principal component analysis (PCA), par-
tial least-squares discriminant analysis (PLS-DA), orthogonal (o) PLS-DA, leave-one-out
cross-validation (LOOCV), and variable importance in projection (VIP) scores. The first
fifteen VIPs were correlated with univariate analyses, such as fold change (FC) and the
t-test (p-value < 0.05). The area under the curve (AUC) of the receiver operator charac-
teristics (ROC) curve of the selected features was also used to evaluate their prediction
power by using the MetaboAnalyst 5.0 platform (Xia, McGill University) [46]. The chemical
compounds were identified with the support of the Human Metabolome Database (HMDB)
h [47] and Biological Magnetic Resonance Data Bank (BMRB) [48]. Metabolic and disease
pathways analyses were performed using the Metaboanalyst function Metabolic Set En-
richment Analysis (MSEA) with an over-representation analysis (ORA) algorithm. We also
built a network of compound-gene relations using the MetScape app from Cytoscape [49]
to identify enriched pathways and visualize changes in metabolite data. All the above
enrichment analyses were generated using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) [50] and the Small Molecule Pathway Database (SMPDB) [51].
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Appendix A

Table A1. 1H-NMR chemical shifts assignments of the metabolites found in the plasma of patients
and controls. Metabolites were identified according to the variables of importance in projection (VIPs)
by the PLS-DA model are shown underlined for the comparison between patients and controls and
between patients with refractory MTLE and responsive MTLE.

Sugars

1 Glucose 3.41 (H4′), 3.54 (H2′), 3.72 (H3′), 3.84 (H5′), 5.24 (H1′)
3.25 (H2′), 3.41 (H4′), 3.47 (H5′), 3.72 (H6′), 3.90 (H6′), 4.65 (H1′)

Amino acids

2 Isoleucine 0.94 (δ-CH3), 1.01 (γ-CH2), 1.42 (γ-CH2), 3.67 (α-CH)

3 Leucine 0.96 (δ-CH3), 1.71 (β-CH2)

4 Valine 0.99 (γ-CH2), 1.04 (γ-CH3), 2.25–2.31 (β-CH), 3.60 (α-CH)

5 Alanine 1.48 (β-CH3), 3.78 (α-CH)

6 Glutamate 2.04 (β-CH2), 2.36 (γ-CH2), 3.71 (α-CH)

7 Glutamine 2.13 (β-CH2), 2.45 (γ-CH2), 3.78 (α-CH)

8 Arginine 1.72 (γ-CH2), 1.89 (β-CH2), 3.23 (δ-CH2), 3.73 (α-CH)

9 Proline 3.36 (δ′δ′-CH2), 3.41 (δ-CH2), 4.14 (α-CH)

10 Histidine 7.06 (H4), 7.77 (H2)

11 Tyrosine 6.89 (H3, H5), 7.19 (H2, H6)

12 Phenylalanine 3.24 (β′β′-CH), 7.32,7.36 (H2, H6), 7.42 (H3, 5H)

Lipids

13 Low-density lipoproteins (LDL) 0.90 (CH3), 1.30 (CH2)n

14 Very-low-density lipoproteins (VLDL) 0.76–0.93 (CH3), 1.24–1.37 (CH2)n

15 High-density lipoproteins (HDL) 0.80–0.85 (CH3), 1.21–1.23 (CH2)n

16 Fatty-acid chain 1.53–1.65 (-CH2CH2CO)

17 Unsaturated lipids and N-acetyl
glycoproteins 1.96–2.09 (-CH2-CH=)

18 Lipids HC=CH 5.29–5.43 (CH)

Organic acids

19 Lactate 1.33 (CH3), 4.11 (CH)

20 Acetic acid 1.92 (CH2)

21 Acetone 2.24 (CH2)

22 Acetoacetic acid 2.28 (CH2)

23 Citrate 2.54 (CH2), 2.68 (CH2)

24 Formate 8.47 (CH)

Other compounds

25 Ethanol 1.20 (CH3); 3.67 (CH2)

26 Creatinine 3.94 (CH2), 3.04 (CH2)

27 Creatine 4.06 (CH2), 3.05 (CH2)
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Figure A1. 2D TOCSY 1H-1H NMR obtained for one plasma sample. Spectral region 0.50 to
5.50 ppm is shown on the upper panel, and the region from 6.6 to 7.9 ppm is given on the bot-
tom panel. The following metabolites were identified: 1. Glucose; 3. Leucine; 4. Valine; 5. Alanine;
6. Glutamate; 7. Glutamine; 8. Arginine; 9. Proline; 10. Histidine; 11. Tyrosine; 12. Phenylalanine;
13. LDL: Low-Density Lipoproteins; 14, VLDL: Very Low-Density Lipoproteins; 16. Fatty-Acid Chain;
17. Unsaturated lipids and N-acetyl-glycoproteins; 20. Lactate; 23. Citrate. (Numbers refer to ones
shown in Table A1).
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Figure A3. Multivariate analysis of 1H-NMR (CPMG) plasma spectra of responsive and refractory
MTLE patients. (A) PLS-DA analysis with the accuracy of 44.6%, R2 0.13, and Q2 −0.19. (B) O-PLS-
DA analysis. The information about response to treatment with ASM in patients with MTLE was not
implemented into the models. (C) Box plots representing the variations of the relative concentrations
(measured as peak intensities) of metabolites whose VIP scores > 2 according to PLS-DA results. The
black dots represent the metabolite levels in all samples, and the yellow diamond represents the
average value. Responsive MTLE (blue) and refractory MTLE (red).
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