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Supplemental Methods 

Trial Details:  The VITdAL-ICU trial randomized 475 critically ill adult subjects with 

25(OH)D ≤ 20 ng/mL to vitamin D3 or placebo given orally or via nasogastric tube once 

at a dose of 540,000 IU followed by 90,000 IU monthly 1. Patients admitted to University 

Hospital Graz in Southeast Austria in one of 5 Medical and Surgical Intensive Care 

Units (ICU), 18 years or older, with an expected ICU stay of ≥ 48 hours, with a 25(OH)D 

level of 20 ng/mL or lower were eligible for study participation. Patients were excluded 

from the trial who met any of the following criteria: severely impaired gastrointestinal 

function; other trial participation, including previous participation in the pilot trial; 

pregnant or lactating women; hypercalcemia (total calcium of >10.6 mg/dL or ionized 

serum calcium of >5.4 mg/dL); tuberculosis; sarcoidosis; nephrolithiasis within the prior 

year; and patients not deemed suitable for study participation (i.e., psychiatric disease, 

living remotely from the clinic, or prisoner status). 

 

VITdAL-ICU trial subjects were randomized 1:1 with randomization block size of 8 

stratified via ICU type and sex. The primary trial study outcome was length of hospital 

stay. Secondary outcomes included 28-day mortality, hospital mortality, 6-month 
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mortality, length of ICU stay and 25(OH)D levels at day 0, 3 and 7. Blood samples were 

collected on days 0 (pre-randomization), 3 and 7. Plasma was fractionated, aliquoted 

and stored at -70°C. 453 trial subjects had frozen plasma available for analysis. At 

VITdAL-ICU trial enrollment, written informed consent was obtained, if possible, directly 

from the patient or from a legal surrogate 1. Consent included permission for plasma 

specimens to be saved for future research studies. The post-hoc study research 

protocol was approved by the Mass General Brigham Human Research Committee 

Institutional Review Board at the Brigham and Women’s Hospital. 

 

Clinical trial data utilized included age, sex, admission diagnosis category, Charlson 

Comorbidity Index 2, baseline 25(OH)D, intervention status (placebo vs high dose 

vitamin D3), absolute change in 25(OH)D level at day 3 relative to day 0 and the 

Simplified Acute Physiology Score (SAPS) II 3 at day 0. Admission diagnosis category is 

determined at ICU admission by trial investigators and includes Neurosurgery, Cardiac 

surgery, Cardiovascular, Gastrointestinal/liver, Hematologic/Oncology/ Metabolic, 

Neurologic, Other non-operative, Other operative, Renal, Respiratory, Sepsis/infectious, 

Thoracic surgery, Transplantation, Trauma and Vascular. 

 

Sample Preparation:  VITdAL-ICU trial subject plasma aliquots were shipped on dry-

ice to Metabolon, Inc. Following receipt, the frozen plasma samples were immediately 

stored at -80oC. To generate metabolomic data, a total of 1215 plasma samples from 

428 subjects at day 0, 413 subjects at day 3 and 374 subjects at day 7 were prepared 
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and analyzed. Plasma sample preparation was performed with the automated MicroLab 

STAR® Liquid Handling system (Hamilton Company, NV, USA). Before extraction, 

samples were fortified with recovery standards for quality control (QC) purposes. To 

remove protein, dissociate small molecules bound to protein or trapped in the 

precipitated protein matrix, and to recover chemically diverse metabolites, proteins were 

precipitated with methanol via 2 minutes of robust shaking (GenoGrinder 2000 SPEX 

SamplePrep, NJ, USA) and subsequent centrifugation. The resulting extract was 

divided into five fractions: two for analysis by two separate reverse phase (RP)/UPLC-

MS/MS methods with positive ion mode electrospray ionization (ESI), one for analysis 

by RP/UPLC-MS/MS with negative ion mode ESI, one for analysis by HILIC/UPLC-

MS/MS with negative ion mode ESI, and one sample was reserved for backup. Samples 

were placed on a TurboVap® (Zymark, MA, USA) to remove the organic solvent and 

stored overnight under nitrogen before preparation for analysis. 

 

Quality Assurance (QA) and Quality Control (QC):  Several types of controls were 

utilized with the plasma samples analysis: a pooled matrix sample generated by taking 

a small volume of each experimental sample served as a technical replicate throughout 

the data set 4; extracted water samples served as process blanks 5; and a cocktail of 

QC standards that were carefully chosen not to interfere with the measurement of 

endogenous compounds were spiked into every analyzed sample 6, allowed instrument 

performance monitoring and aided chromatographic alignment. Instrument variability 

was determined by calculating the median relative standard deviation (RSD) for the 

standards that were added to each sample prior to injection into the mass 
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spectrometers 7. Overall process variability was determined by calculating the median 

RSD for all endogenous metabolites (i.e., non-instrument standards) present in 100% of 

the pooled matrix samples. Experimental samples were randomized across the platform 

run with QC samples spaced evenly among the injections. 

 

Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy 

(UPLC-MS/MS):  All methods utilized a Waters ACQUITY ultra-performance liquid 

chromatography (UPLC) (Waters, MA, USA) and for untargeted lipidomic analysis a 

Thermo Scientific Q Exactive™ high resolution/accurate mass spectrometer interfaced 

with a heated electrospray ionization (HESI-II) source and Orbitrap™ mass analyzer 

operated at 35,000 mass resolution (ThermoFisher Scientific, MA, USA) 8. The sample 

extract was dried then reconstituted in solvents compatible to each of the four methods. 

Each reconstitution solvent contained a series of standards at fixed concentrations to 

ensure injection and chromatographic consistency. One aliquot was analyzed using 

acidic positive ion conditions, chromatographically optimized for more hydrophilic 

compounds. In this method, the extract was gradient eluted from a C18 column (Waters 

UPLC BEH C18-2.1x100 mm, 1.7 µm) using water and methanol, containing 0.05% 

perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA). Another aliquot was also 

analyzed using acidic positive ion conditions, however it was chromatographically 

optimized for more hydrophobic compounds 9,10. In this method, the extract was 

gradient eluted from the same afore mentioned C18 column using methanol, 

acetonitrile, water, 0.05% PFPA and 0.01% FA and was operated at an overall higher 

organic content. Another aliquot was analyzed using basic negative ion optimized 
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conditions using a separate dedicated C18 column. The basic extracts were gradient 

eluted from the column using methanol and water, however with 6.5mM Ammonium 

Bicarbonate at pH 8. The fourth aliquot was analyzed via negative ionization following 

elution from a HILIC column (Waters UPLC BEH Amide 2.1x150 mm, 1.7 µm) using a 

gradient consisting of water and acetonitrile with 10mM Ammonium Formate, pH 10.8. 

The MS analysis alternated between MS and data-dependent MSn scans using dynamic 

exclusion 11. The scan range for both ionization modes was 70–1000 m/z 12. 

 

Data Extraction and Compound Identification:  Raw data was extracted, peak-

identified and QC processed using Metabolon’s hardware and software. Compounds 

were identified by comparison to library entries of purified standards or recurrent 

unknown entities. Metabolon maintains a library based on authenticated standards that 

contains the retention time/index (RI), mass-to-charge ratio (m/z), and chromatographic 

data (including MS/MS spectral data) on all molecules present in the library. 

Furthermore, biochemical identifications are based on three criteria: retention index 

within a narrow RI window of the proposed identification, accurate mass match to the 

library +/- 10 ppm, and the MS/MS forward and reverse scores between the 

experimental data and authentic standards 13. The MS/MS scores are based on a 

comparison of the ions present in the experimental spectrum to the ions present in the 

library spectrum. While there may be similarities between these molecules based on 

one of these factors, the use of all three data points can be utilized to distinguish and 

differentiate biochemicals 14. More than 3300 commercially available purified standard 

compounds have been acquired and registered into the Metabolon Laboratory 
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Information Management System (LIMS) system for analysis on all platforms for 

determination of their analytical characteristics. The identification level reported in our 

tables follows the criteria described by Sumner et al. 15. Level 1 is a validated 

identification which confirms a structure with a minimum of two independent and 

orthogonal data from a pure reference standard under identical analytical conditions. 

Predictive or externally acquired structure evidence when a reference standard does not 

exist, (i.e. MS/MS data, exhibiting diagnostic fragments or neutral losses consistent with 

a specific structure) is a putative identification (Level 2) 16. Compounds labelled with “*” 

have identification Level 2. If no label is applied, the identification Level is 1. 

Compounds labelled with “( )” or “[ ]” indicate a structural isomer of another compound 

in the spectral library; for example, a steroid that may be sulfated at one of several 

positions that are indistinguishable by the mass spectrometry data or a diacylglycerol for 

which more than one stereospecific molecule exists. For the Acylcarnitine sub pathway: 

a capital C is followed by the number of carbons within the fatty acyl group attached to 

the carnitine. A colon followed by a number is one or more unsaturated carbons in the 

acylcarnitine ester (i.e. C10:1 is a monounsaturated C10 acylcarnitine). DC following the 

carbon number is a dicarboxylic acylcarnitine. Acylcarnitines are classified by the 

number of carbon atoms in the acyl group chain: short-chain acylcarnitines C2 to C7; 

medium-chain acylcarnitines C8 to C14; long-chain acylcarnitines C16 – C26 17. A 

summary of all 983 metabolites identified is present in Data S1. 

 

Curation:  A variety of curation procedures were carried out to ensure that a high 

quality data set was made available for statistical analysis and data interpretation. The 
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QC and curation processes were designed to ensure accurate and consistent 

identification of true chemical entities, and to remove those representing system 

artifacts, mis-assignments, and background noise. Metabolon data analysts use 

proprietary visualization and interpretation software to confirm the consistency of peak 

identification among the various samples. Library matches for each compound were 

checked for each sample and corrected if necessary. 

 

Metabolite Quantification and Data Normalization:  Peaks were quantified using total 

spectral area (area under the curve) 18-20. Metabolite quantitation or abundance is 

defined as the total ion count for the given mass-to-charge ratio (m/z) assigned to the 

particular metabolite 21. Specifically, metabolite quantitation is determined using 

extracted ion chromatograms by focusing the narrow mass window on the theoretical 

m/z value of the individual metabolite of interest and eliminating overlapping isobaric 

signals with maintenance of the mass accuracy during the acquisition 22-26. A data 

normalization step was performed to correct variation resulting from instrument inter-day 

tuning differences. Each compound was corrected in run-day blocks by registering the 

medians to equal one (1.00) and normalizing each data point proportionately. 

 

Pharmacokinetics:  For determination of the pharmacokinetics of oral vitamin D3 we 

utilized serum 25(OH)D levels, a marker of systemic vitamin D status 27. Serum 

25(OH)D were measured by chemiluminescence assay (IDS-iSYS, Immunodiagnostic 

Systems) with assay coefficients of variation for control material of 13.4% at 13 ng/mL, 
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10% at 31 ng/mL, and 9.4% at 64 ng/mL 1. For pharmacokinetics evaluation, the area 

under the plasma concentration–time curve from vitamin D3 dosing to day 7 (AUC0-7d) 

was calculated using the linear trapezoidal method. Patients with missing 25(OH)D 

levels on day 3 or 7 and those that received placebo were excluded from the 

pharmacokinetics evaluation. AUC normalized to vitamin D3 dose and body weight 

(AUCnorm) was calculated by dividing AUC 0-7d by dose in IU per kg body weight. 

Median AUCnorm and serum 25(OH)D levels on days 0, 3 and 7 values were compared 

between males and females. 

 

Statistical Analyses:  Determination of the changes in relative concentrations of 

metabolites was first suggested as a strategy to define the metabolome in 1998 28. 

Metabolomic profiling identified 983 metabolites 29,30. Metabolomic data underwent a 

cube root transformation followed by Pareto scaling to generate data that were on the 

same scale and followed an approximate normal distribution 31,32.  

 

Based on our previous metabolomics analysis of the VITdAL-ICU trial 29 , we considered 

a response to high dose oral vitamin D3 as an absolute increase in 25(OH)D ≥ 7.5 ng/ml 

from day 0 to day 3. For a sex-stratified analysis of day 0 data, Student’s t test was 

used to determine the significance of each metabolite between vitamin D3 response 

groups [25(OH)D < or ≥ 7.5 ng/ml from day 0 to day 3] using MetaboAnalyst in women 

and in men 33. To identify all significant associations we utilized multiple testing 

correction based on the Benjamini-Hochberg procedure to adjust the false discovery 

rate (FDR) to 0.10 producing a q-value 34. Day 0 data was also analyzed using 
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orthogonal partial least square-discriminant analysis (OPLS-DA), also known as 

orthogonal projections to latent structures discriminant analysis, a supervised method to 

assess the significance of classification discrimination (SIMCA 15.0 Umetrics, Umea, 

Sweden).  

 

We utilized the OPLS-DA approach to find what were the metabolomic differences at 

baseline (day 0) between patients who did and did not respond to high dose vitamin D3. 

We analyzed male and female subjects separately to determine if such differences in 

metabolites at baseline were sex-specific. OPLS-DA was performed to relate the X data 

to the Y response 35,36. In our study, the X are the metabolites at day 0 and the Y is the 

intervention (vitamin D3 response groups [25(OH)D < or ≥ 7.5 ng/ml from day 0 to day 

3]). We assessed the OPLS-DA model quality via the variation of X explained by the 

model (R2X(cum)); the goodness-of-fit represented by the percentage of the variation of 

Y explained by the model (R2); and the predictive performance (Q2). Permutation 

testing was performed to validate the OPLS-DA model 37,38. The percentage of the 

variation of the dataset predicted by the model (Permuted Q2) was assessed using a 

cross-validation test 39,40. Sevenfold cross-validation analysis of variance (CV-ANOVA) 

was utilized to determine OPLS-DA model significance 38. Additionally, response 

permutation testing was performed to validate the OPLS-DA model 37,38. To this end, the 

intervention is permutated to appear in a different order while the metabolite-dataset 

remains intact. Next, a model is then fit to the permutated data. The goodness-of-fit (R2) 

and predictive performance (Q2) of the permutated model are contrasted to the actual 

model. A valid model has lower permutated Q2 values compared to the actual model 
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and a Q2-intercept below zero. A Q2-intercept below zero indicates that the model is 

stable and non-random, firmly supporting model validity 41. 

 

For day 0, 3 and 7 repeated measures data, correlations between individual metabolites 

and absolute increase in 25(OH)D levels from day 0 to day 3 over time were determined 

separately in women and in men utilizing sex-stratified linear mixed effects models 

correcting for age, baseline 25(OH)D, absolute increase in 25(OH)D at day 3, SAPS II, 

plasma day, admission diagnosis, and an individual subject-specific random-intercept. A 

false discovery rate adjusted p-value (q-value) threshold of 0.10 was used to identify all 

significant differences 34. Additionally, we performed a subanalysis in a responder 

cohort of patients who received high dose vitamin D3 intervention and had an increase 

in 25(OH)D ≥ 7.5 ng/ml from day 0 to day 3. In day 0, 3 and 7 repeated measures data 

we determined correlations between individual metabolites over time relative to sex (as 

the exposure) using linear mixed effects models correcting for age, baseline 25(OH)D, 

SAPS II, plasma day, admission diagnosis, and an individual subject-specific random-

intercept. All mixed models were analyzed using STATA 16.1MP (College Station, TX). 

For data visualization purposes, rain plots were produced in R-3.6.2 42. 

 

Lastly, we evaluated a potential sex-specific mediating effect on the association 

between the absolute increase in 25(OH)D levels from day 0 to day 3 and individual 

metabolite abundance adjusted for age, baseline 25(OH)D, SAPS II and admission 

diagnosis. Analyses were performed on each of the 983 metabolites at day 3 using the 

R package mediation 43 to obtain bootstrap P values (N = 2000 samples) for the 



11 
 

mediation effect of sex. Significant mediation was present if the p value was < 0.01 and 

10% or more of the association was mediated through sex 44. 
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