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Abstract: Liquid Chromatography-Mass Spectrometry (LC–MS) based untargeted metabolomics is
heavily dependent on algorithms for automated peak detection and data preprocessing due to the
complexity and size of the raw data generated. These algorithms are generally designed to be as
inclusive as possible in order to minimize the number of missed peaks. This is known to result in an
abundance of false positive peaks that further complicate downstream data processing and analysis.
As a consequence, considerable effort is spent identifying features of interest that might represent
peak detection artifacts. Here, we present the Comprehensive Peak Characterization (CPC) algorithm,
which allows automated characterization of detected peaks with subsequent filtering of low quality
peaks using quality criteria familiar to analytical chemists. We provide a thorough description of
the methods in addition to applying the algorithms to authentic metabolomics data. In the example
presented, the algorithm removed about 35% of the peaks detected by XCMS, a majority of which
exhibited a low signal-to-noise ratio. The algorithm is made available as an R-package and can be
fully integrated into a standard XCMS workflow.

Keywords: metabolomics; untargeted; peak characterization; peak detection; XCMS; false peaks;
peak filtering; data processing; algorithm; data quality

1. Introduction

The aim of untargeted metabolomics is large-scale profiling of the metabolome [1],
i.e., all small metabolites (<2000 Da) in biological samples, representing the end-result of
all intra- and extracellular processes in addition to exogenous compounds originating from
environmental exposures during the life course, e.g., microbiota, diet and medication [2,3].
The field of metabolomics has been growing steadily in the last two decades, primarily
due to advances in analytical instrumentation as well as new algorithms suitable for the
high dimensional data generated. In targeted analysis, a subset of metabolites believed
to be descriptive of the studied phenomena are analyzed, resulting in data of relatively
low complexity. Such a selection is generally not made in untargeted metabolomics, being
aimed predominantly at hypothesis generation. Consequently, the identity of most analytes
is not known a priori and considerable effort is spent identifying the detected analytes [4].
In addition to metabolomics, untargeted analysis is also useful in several other research
areas, such as emerging pollutants [5,6], doping control [7,8], and exposomics [9].

Liquid chromatography coupled to high resolution mass spectrometry (LC–HRMS) has
emerged as a key technique for untargeted metabolomics. Its popularity is due to the high
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sensitivity of detection in combination with the wide coverage of compounds of different
chemical properties. In addition, analyte fragmentation and isotopic patterns can be readily
obtained, facilitating identification of the detected compounds. A biological sample, e.g.,
from plasma, urine or other fluid or tissue, may contain hundreds to thousands of detectable
metabolites [1,10,11]. In addition, each of these may be detected as several different
adducts and fragments [12]. As a result, manually searching through the immensely
complex data for chromatographic peaks is highly impractical, if not impossible. Instead,
various algorithmic approaches have been developed to automate this process. Several
proprietary and open source software solutions have been developed over the years for this
purpose [13]. Two of the most commonly used open source software are XCMS [14] and
MZmine [15]. While XCMS is implemented as an R package, and is thus especially suitable
for automation and customizable and reproducible high throughput analysis, MZmine is
implemented in Java and provides an easy-to-use graphical user interface with emphasis on
manual inspection of the data. They utilize highly similar methodologies and, consequently,
provide similar, but not identical results [16].

In brief, the feature detection workflow can be divided into a number of discrete
steps: (i) extraction of ion traces that are coherent over a sufficiently long time window in
which peaks may be present; (ii) performing peak detection on these extracted ion traces;
(iii) adjusting retention times over the entire elution range; and (iv) grouping common peaks
across samples into features (correspondence). All these steps entail algorithmic decisions
and require parametrization, which will have a profound effect on the outcome [17]. The
algorithms utilized for peak detection by these software are designed to be very sensitive,
in order to minimize false negative peak detection. It has, however, been noted that this
high sensitivity may lead to a high abundance of false positive peaks [16,18,19]. These
additional peaks add noise to the data with negative effects on both retention alignment
and correspondence, and consequently also to downstream data analysis and biological
inference. In our experience, several of the discriminant features from data analysis, when
inspected, originate from such false positive peaks. Conventional methods to mitigate
this problem include using proxy measures to remove features of low quality. One such
approach is to reject features with a high relative standard deviation among quality control
samples injected throughout the injection sequence (e.g., RSDQC > 30%) [20,21]. However,
the quality of chromatographic peaks, in these cases, is assessed solely on their repeatability
over an injection sequence, which may in fact not be related to the peak characteristics
or the predictive information provided by a feature. Moreover, the signal measured in
QC samples might not always represent each study sample completely, hence potentially
interesting features might also be removed by such a pre-filtering step.

In conventional analytical chemistry, several analytical measures, such as signal-to-
noise ratio (SN) and peak asymmetry, are frequently used to determine peak quality.
However, little such information is readily available in conventional peak picking software,
such as XCMS, which makes filtering false peaks difficult. However, a number of different
strategies for removing false peaks from the dataset have been presented in the past. For
instance, Myers et al. published an improved peak detection algorithm based on continuous
wavelet transform in 2017 [22], which according to the authors, addresses many of the
issues that they previously reported [16]. In terms of filtering peaks with poor quality, there
have also been examples of classification models that use peak quality characteristics to
train models that can predict whether a peak is trustworthy. As an example, Borgsmüller
et al. published a paper describing a workflow that utilizes a Support Vector Machine
(SVM) model for this purpose [23]. The developed workflow, called WiPP, exhibited
excellent performance for data obtained at high concentration, whereas it struggled at low
concentration, detecting 95% and 42% of manually curated peaks, respectively. Similarly,
the package ‘MetaClean’ was presented by Chetnik et al. in 2020 [24], which at the time of
publication, implemented 24 different classifiers of various types (e.g., SVM and Random
Forest). More direct approaches to classify detected peaks, such as that which is presented
here, have also been reported in the past. For example, in 2019, Kantz et al. [25] published an
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approach using image-based deep learning for classification and provided example scripts
for processing in R but the code is not provided as an R-package. The developed deep
learning algorithm had a success rate of 88% in retaining true peaks and 89% in removing
false peaks. Another example was published in the same year by Melnikov et al. [26], which
also utilize deep learning neural networks and is made available in the python package
‘peakonly’ but does not have an R implementation. Their algorithm exhibited excellent
performance with a precision of close to 97% in detecting true positive peaks. A similar
tool available as a python package is ‘NeatMS’ [27], which also utilizes neural networks for
peak classification. Finally, in a recent publication, Jirayupat et al. [28] take a somewhat
different approach and instead utilize an image-based neural network model for processing
two-dimensional maps of LCMS raw files for detection of relevant signals. While these tools
exhibit excellent performance with reported True Positive Rate (TPR) and True Negative
Rate (TNR) ≥97%, neural network models often require learning from extensive training
material and, in addition, require deep knowledge in bioinformatics and machine learning
and thus come with a steep learning curve in terms of their implementation. Furthermore,
among these tools, only that presented by Kantz et al. [25] has an R implementation, albeit
only as an example script. Thus, in light of the popularity of XCMS for data processing, we
stipulate that there is a need for tools for characterization of peaks by standard analytical
chemistry metrics that can be easily integrated into an R-based, XCMS-centered workflow.

With the aim of improving the overall data quality, we herein present the Comprehen-
sive Peak Characterization (CPC) algorithm, which characterizes and filters the peaks from
untargeted MS-based analysis. In the presented manuscript, we first provide a theoretical
overview of the CPC algorithm followed by results and observations obtained when apply-
ing the algorithm to a real metabolomics dataset. While the algorithms presented herein
were originally developed for metabolomics applications, it should be noted that they are
of a general nature and have wider applicability to other areas of untargeted LC–MS- or
GC–MS-based analysis. The CPC algorithm is made available in the R package CPC that
is seamlessly integrated with the XCMS workflow. As the other tools mentioned above
do not integrate easily with XCMS, we have opted not to compare them with CPC as a
fair benchmarking would require identical data to be processed under ideal conditions.
The package will be submitted to Bioconductor and its source code is available on GitHub
(https://www.github.com/krispir/cpc/; accessed on 28 January 2022). Documentation
and a tutorial is available at https://krispir.github.io/cpc (accessed on 28 January 2022).

2. Theory and Methodology

The peak picking in XCMS provides a list of potential chromatographic peaks, thus
allowing for a targeted evaluation of potential peak regions rather than operating on the
entire raw data, which would be more computationally expensive. The primary purpose
of the CPC algorithm is thus to filter the detected peaks from all files directly after peak
detection, which will reduce the data complexity in the subsequent alignment and feature
detection steps. This will result in less spurious matching of noise features and thereby
improve the quality of the final feature table. An overview of the CPC algorithm and its
integration into the XCMS workflow is presented in Figure 1.

For each peak, the CPC algorithm retrieves the extracted ion trace (EIC) from the
raw data with an m/z window size set by a user-specified ppm parameter (by default the
same value as used for XCMS peak picking). The smoothed EIC and its first and second
derivatives are then calculated using either a Savitzky–Golay filter (default) or a moving
window mean smoother, as specified by the user. Peak apices are detected as local negative
minima cradled by inflection points (zero-crossings) along the second derivative. Baseline
expansion along the EIC is then performed to locate the boundaries of detected peaks using
a modified ApexTrack algorithm [29]. In brief, an initial baseline is set between the front
and tail inflection points of the peak (Figure 2A). The baseline bounds are then expanded
(Figure 2B) until the slope differences between both the front and tail boundaries and the
expanded baseline are below the threshold (Figure 2C). The termination threshold is set

https://www.github.com/krispir/cpc/
https://krispir.github.io/cpc
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using the parameters liftoff and touchdown, given as percent of the initial slope differences
(default: liftoff 0% and touchdown 0.5%).

After baseline expansion, co-eluting peak clusters are detected as peaks with over-
lapping baseline bounds and the baseline bounds for the clusters are updated, taking into
account the degree of overlap between peaks, resulting in valley (Figure 3A,C,E), shoulder
(Figure 3B,D,F), and rounded (not shown) peak boundaries. The peak cluster boundaries
consequently represent approximations, although more precise peak characteristics can
be obtained through deconvolution (Figure 3E,F). However, this procedure is computa-
tionally expensive and consequently not recommended for the purpose of filtering peaks,
where the baseline expansion boundaries provide sufficient accuracy. For deconvolution
parametrization, the reader is referred to the documentation of the CPC package.
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Figure 1. Integration of the CPC algorithm into the XCMS workflow. Following peak detection,
the CPC algorithm works directly on the generated XCMSnExp object and returns a similar but
filtered object that can be used directly in subsequent steps of the XCMS workflow. For each peak
in the XCMS peak table, the ion trace is extracted from the raw data and the smoothed trace is
calculated together with its second derivative (step 1). All peaks in the ion trace are detected by the
CPC algorithm (step 2), while keeping track of the peak reported by XCMS (blue asterisk). Baseline
expansion is then performed (step 3), after which peak characteristics are calculated and stored in a
table corresponding to the XCMS peak table (step 4). The peak characteristics can then be used to
filter the peak table (step 5) before further processing using XCMS.
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expensive and consequently not recommended for the purpose of filtering peaks, where 
the baseline expansion boundaries provide sufficient accuracy. For deconvolution para-
metrization, the reader is referred to the documentation of the CPC package. 

 
Figure 3. Illustration of the result of CPC processing on extracted ion chromatograms (EIC) repre-
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Figure 2. The baseline expansion algorithm initiates at the inflection points of the peak (A). The slope
difference between the tangents (blue lines) and the current baseline (red dashed line) is calculated.
The difference threshold used to terminate the expansion is calculated from the liftoff (% of slope
difference between front tangent and initial baseline at inflection points) and touchdown (% of slope
difference between tail tangent and initial baseline at inflection points) parameters. The algorithm
iteratively expands the baseline boundaries (B) until the slope difference is below the threshold on
both the front and tail end of the peak (C).
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Figure 3. Illustration of the result of CPC processing on extracted ion chromatograms (EIC) repre-
senting two peak clusters (A,B) with their respective second derivatives (C,D). The peaks currently
being processed are indicated in red shading and peak cluster baselines as blue lines (A,B). For valley
boundaries (A,C), the lowest point along the EIC between the peak apices is set as the boundary.
For shoulder boundaries (B,D), second derivative maxima are instead used. More accurate peak
characteristics for the same peak clusters can be obtained through deconvolution (E,F).

Peak quality characteristics (Figure 4) are calculated based on the results from the
baseline expansion algorithm. The peak area is calculated between the peak bounds using
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the trapezoid method. The noise (N, Figure 4) is estimated as the mean absolute peak-to-
peak difference for all non-peak scans along the original ion trace. This is used to calculate
the signal-to-noise ratio (S/N) for the peak as 2 h/N, where h is the peak height and N is
the noise, as recommended by the 2019 European Pharmacopeia (Figure 4) [30]. The base
width, width at 5%, and 10% peak height along with full width at half maximum (FWHM)
are then calculated using the peak boundaries determined from the baseline expansion.
In addition, the front and tail widths (a and b, respectively, Figure 4) are calculated at
10% peak height and used to determine the tailing factor as b/a [31]. The algorithm will
return all calculated peak characteristics (a characterized peak list can be obtained from the
CPC object using the cpt() function). Finally, the CPC algorithm allows filtering of peaks
according to several criteria. By default, peaks will be initially filtered if they do not exhibit
a characteristic peak signature in the second derivate, i.e., a negative minimum cradled
by inflection points. Then, detected peaks with too few data points between the inflection
points in the second derivative (default: 3) as well as between the peak bounds (default: 7)
can be filtered. In addition, peaks can be filtered based on their S/N (default: 10) as well as
the tailing factor (default: not used). All the filtering criteria can be customized by the user.
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Figure 4. Calculated CPC peak characteristics. Noise (N) is estimated across all non-chromatographic
peak scans as the mean peak-to-peak distance between adjacent local maximum/minimum pairs.
The peak height is calculated using the determined baseline. The peak area (A) is determined using
the trapezoid method between the peak bounds (blue points). The width of the front (a) and tail (b)
width is determined at 10% peak height.

3. Results and Discussion

The algorithm was applied to a dataset from a previously reported study on hydrogen
gas attenuation of noise-induced hearing loss in guinea pigs [32]. The full data are available
for download via the MetaboLights repository (unique identifier: MTBLS2418). A total of 57
files, including QC sample injections, were processed using XCMS with and without CPC
filtering. XCMS detected 1250–5397 peaks per sample with an average of 2287 peaks. The
total runtime for the CPC processing was approximately 40 min with a mean processing
time per sample of 42.8 s on an HP EliteBook 840 G5 with an Intel Core i7-8550U CPU and
32 GB RAM. In comparison, the XCMS peak picking required on average ca 1.3 min per
sample on the same machine. In this example, the CPC algorithm removed approximately
45,000 of the peaks detected by XCMS, corresponding to roughly 35% (Table 1).
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Table 1. Overview of the results from processing the guinea pig dataset with and without CPC
peak filtering.

Dataset No. Detected Peaks
in All Injections

% Filled Peaks in
the Dataset

% of Peaks
Associated to

a Feature

No.
Features

% of Features with
RSDQC ≤ 30%

Without CPC
filtering 130,351 13.7% 49.3% 1270 85.7%

With CPC filtering 84,936 18.9% 69.1% 1213 87.0%

Despite the large number of removed peaks, only 57 features were in fact removed
in the filtered data. However, both the percentage of filled peaks and the percentage of
peaks were associated with a feature increase when CPC was applied. This is mainly due
to the distribution of removed peaks in the m/z—retention time space as is exemplified
in Figure 5, which shows removed and retained peaks in the first QC sample injection
(Figure 5A) and all QC sample injections (Figure 5B). The primary consequence of this
distribution is that most of the removed peaks would not become associated with a feature.
However, an important aspect is that without filtering, all these peaks are present during
both retention alignment and correspondence and may therefore affect the outcome of those
processing steps. Since the peaks (and consequently the features) kept after correspondence
in the filtered and non-filtered data, respectively, were similar, the proportion of features
passing the RSDQC ≤ 30% filter was highly similar between the two datasets. These results
confirm our intuition that, whereas RSDQC provides a good estimate of feature stability in
an analytical run, it does not provide a good estimate of peak quality per se. In fact, we
would argue that the RSDQC and the CPC approaches are complementary as they target
different aspects of the data quality.
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We found that the peak expansion algorithm used in CPC provides reasonable esti-
mates of the peak boundaries for both tailing and fronting peaks across a wide range of
signal-to-noise ratios (Figure 6).
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to-noise ratio (A: S/N < 26.13, B: 26.13 ≤ S/N < 52.12, C: 52.12 ≤ S/N < 117.4, and D: 117.4 ≤ S/N).
The raw ion trace is shown in dashed grey, the smoothed ion trace is in solid black, the detected
baseline is in dashed red, and the detected peak boundaries are the red (CPC) or blue (XCMS) filled
circles. For more examples, see Figures S1–S4 in the Supplementary Materials.

In this dataset, the vast majority of removed peaks were filtered due to a low signal-
to-noise ratio, which frequently, but not always, coincided with a low total intensity
(Figure 7). We observed that a large proportion of the removed peaks originated from
periodic fluctuation in the baseline intensity, likely caused by the motion of the LC pump
heads (data not shown). Our results are in line with previous research, which has identified
a large proportion of false positive XCMS peaks as noise artifacts [16,18,19]. We also
observed that the CPC peak filtering appear well suited to detect and remove this type of
false peaks.

The XCMS noise threshold parameter strongly influences the peak detection and due
care must be taken by the user in setting the peak picking parameters to avoid detecting
low-intensity noise as peaks. When applying the CPC algorithm to XCMS results obtained
from successively lowering noise thresholds (Figure 8), i.e., allowing the detection of smaller
peaks, we observed a successive increase in the proportion of peaks removed by CPC. In
addition to highlighting the association between instrument noise and peak artifacts, the
results demonstrate the ability of CPC to remove such noise artefacts.

Although the proportion of removed peaks increases with lower noise thresholds,
not all additional peaks at the lower thresholds are removed by CPC and may therefore
reflect actual analytes at detectable, albeit low intensities. This indicates that optimization
of the noise threshold parameter in XCMS is insufficient to properly manage exclusion of
false negative peaks. Instead, a combination of tuning the noise threshold and applying
algorithms, such as CPC to filter the resulting peak list, allows the inclusion of as many
informative peaks as possible while maintaining a minimum of false peaks. Additionally,
our results suggest that even with thorough parameter optimization, XCMS may be overly
optimistic in estimating S/N as most of the filtered peaks exhibit an S/N that is too low.
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For more examples, see Figures S5–S12 in the Supplementary Materials. The blue dots in the
chromatograms indicate the peak bounds reported by XCMS and the red shaded area between the
red dots, and the dashed red line indicates the peak region and baseline, respectively, determined
by CPC.
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Figure 8. Effect on number of peaks detected vs. retained when changing the noise setting in XCMS
peak picking. The number of detected peaks decrease dramatically when the noise setting is increased
incrementally from 100 to 5000 (black circles, A) and the number of these that are retained by the
CPC algorithm appears to converge with the number of detected peaks at approximately 2000 (red
circles, A). This can also be seen in the ratio between the increase in retained peaks (dFiltered, B) and
increase in detected peaks (dOriginal, B). As the noise setting is incrementally decreased from 5000 to
100, the proportion of removed peaks becomes successively higher.
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As mentioned, the presence of these false peaks in the data during correspondence
may have an effect on the grouping of peaks into features. For that reason, in a similar
experiment, the ‘bw’ parameter was varied in the correspondence step of the XCMS
workflow. This parameter defines the bandwidth of the density function and thereby
relates to how much the retention times of peaks (between samples) are allowed to vary
within a feature. Thus, with an increased number of randomly distributed peaks, the
chance for spurious matches of peaks into features increases. For UHPLC-derived data
with minimal retention time variation, a suitable setting for this parameter is normally
around 1–2. However, with a larger drift in retention times, e.g., from sub-optimally
prepared samples, it may become necessary to increase this parameter. For this reason,
bw settings of 1, 2, 5, and 10 were investigated. We observed a clear effect of the CPC
processing in relation to the bw parameter: As bw is increased, the number of peaks that are
associated with a feature after correspondence increases in both the unfiltered and filtered
datasets. However, the increase is much greater in the unfiltered data (Supplementary
Materials, Figure S13). We also observed that there were fewer filled peaks for the filtered
data, especially at higher bw (Supplementary Materials, Figure S14). We interpret this
to mean that there are less spuriously matched features in this dataset that require peak
filling. In addition, as a side-effect of peaks that lie near to each other in the m/z—retention
time space, we have observed that XCMS occasionally associate more peaks to features
than there are samples. This effect was somewhat mitigated by CPC (Supplementary
Materials, Figure S15). Finally, we conducted a deeper investigation of the features that
were associated with peaks that CPC removed. The majority of the features were either
largely intact (i.e., the remaining peaks from the other samples were still contained in the
same feature) or completely removed (i.e., most or all peaks within feature were filtered),
representing either high or low quality features (Supplementary Materials, Table S1). As bw
increased, not only did the number of such high and low quality features increase, but also
the occurrence of features that were partly intact (Supplementary Materials, Table S1). This
would indicate first that false peaks contribute to erroneous correspondence, especially at
higher bw settings. Second, it suggests that by removing these peaks, CPC filtering should
help in mitigating this problem.

To assess the performance of the algorithm to determine whether a peak reported by
XCMS should be kept or filtered, we manually curated a subset of peaks and compared
the outcome with that reported by CPC. To this end, 144 peaks were selected by random
sampling of 36 peaks from each quartile of XCMS reported peak intensities. Each peak
was then subjected to an expert assessment based on the general peak shape, approximate
signal-to-noise ratio, and the width of the peak and then contrasted with the CPC algo-
rithm (Supplementary Materials, Table S2). The CPC algorithm exhibited an overall True
Positive Rate (TPR), True Negative Rate (TNR), and F1 score of 90.8%, 87.7%, and 91.3%,
respectively. While these values are somewhat modest in relation to those reported for the
best performing deep learning algorithms, they compare favorably to the other approaches
in reducing false peaks.

While the purpose of the peak filtering is to remove noise artefacts and other false
peaks that exhibit spurious associations with the research question, consequently leading
to less time spent identifying false positives, it should not negatively impact biological
inference. As an example of the potential effects of CPC filtering on inference, we per-
formed an OPLS-DA on the effects of Noise vs. Noise + H2 on the guinea pig perilymph
metabolome, which was the primary focus in the original study [32]. The data analysis was
performed on both the original (Figure 9A) and filtered (Figure 9B) datasets. Some change
in the order of the features of interest (VIP ≥ 1) was observed between the models (colored
red in VIP plots in Figure 9). However, models fitted using the original and filtered datasets
exhibited similar discriminatory power (Q2, Figure 9), indicating that the CPC filtering did
not impact biological inference.
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Figure 9. OPLS-DA models fitted on the guinea pig perilymph metabolome from study groups Noise
vs. Noise + H2 [32] without (A) and with (B) CPC filtering. As the models show equal discriminatory
ability, the CPC filtering does not appear to have removed features with biologically important
information. Features with VIP ≥ 1 in the models fitted on data without CPC filtering (A) were
matched to the features in the filtered data and are colored red in the VIP plots of both models.

4. Materials and Methods
4.1. Software

All development of the CPC algorithm and package was carried out using the R and
C++ language program and any data analysis was performed in the R statistical language
environment (version 4.1.1). The package was built using devtools (version 2.4.2) and
usethis (version 2.1.2) R packages in RStudio (version 1.3.1093, RStudio, Boston, MA, USA).
Raw data files were converted from. RAW to. CDF files using Databridge (version 3.5,
Micromass UK Ltd. Manchester, England). Further data preprocessing (i.e., peak pick-
ing, retention alignment, correspondence, and peak filling) was performed using XCMS
(version 3.14.1) [14]. Orthogonal Projection to Latent Structures Discriminant Analysis
(OPLS-DA) models were fitted using the R-package ropls (version 1.24.0).

4.2. Untargeted Metabolomics Analysis of Guinea Pig Perilymph Samples

The sample preparation protocol and analytical method used to analyze the guinea
pig perilymph samples have been reported in detail elsewhere [32]. In short, LC–MS data
were acquired from perilymph samples obtained from 42 guinea pigs along with 15 quality
control (QC) sample injections. The individuals were divided into four different study
groups that were either exposed to noise with subsequent hydrogen gas administration
(Noise+H2, n = 17) and without (Noise, n = 15), or control groups that were not exposed to
noise with hydrogen gas administration (H2, n = 7) and without (Control, n = 3). Protein
precipitation was achieved by addition of 20.0 µL cold acetonitrile to 5.0 µL sample aliquots.
After centrifugation (21,000× g, 4 ◦C, 15 min), the samples were analyzed without further
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treatment. LC–MS analysis was performed using a Waters ACQUITY I-class UPLC system
(Waters Corp., Milford, CO, USA) coupled to a Synapt G2-S QTOF High Resolution Mass
Spectrometer (Waters). Chromatographic separation was achieved in HILIC mode with a
Waters BEH Amide column (50 × 2.1 mm i.d., 1.7 µm particle size, 100 Å pore size) fitted
with a Waters VanGuard BEH Amide (5 × 2.1 mm i.d., 1.7 µm particle size, 100 Å pore size)
guard column. See supplementary text or reference [32] for further details.

4.3. Data Processing with XCMS and CPC

Only mass peaks between 45 and 1000 s were processed by XCMS. Parameter selection
for XCMS was performed using the proposed workflow presented in the XCMS vignette
in combination with our experience in working with these algorithms. Peak picking was
performed using the centWave algorithm with parameters ppm = 50, peakwidth = c(5, 40),
snthresh = 10, fitgauss = TRUE, noise = 200, integrate = 2, prefilter = c(5, 1000), and ver-
boseColumns = TRUE, mzdiff = 0.01. Retention alignment using the obiwarp method
with parameters binSize = 0.01, centerSample = 33 (middle QC sample), response = 1,
gapInit = 2.5, and gapExtend = 4.0. Correspondence was performed using the ‘peak density’
algorithm with parameters minFraction = 0.8, binSize = 0.02, and bw = 2. Peak filling
parameters as well as all other parameters in the other functions were kept as default.
CPC processing parameters, selected based on observations during the development of the
algorithm, were ppm = 50 (m/z window used when extracting raw ion traces), min_pts = 7
(minimum points between peak bounds), min_inf_width = 3 (minimum points between
inflection points in the second derivative), min_sn = 10 (minimum signal-to-noise ratio),
min_intensity = 2000 (minimum peak area), min_shoulder_pts = 3 (minimum number of
points between the bounding second derivative maxima and the peak apex of shoulder
peak pairs), min_rounded_pts = 3 (minimum number of points between the bounding
second derivative maxima and the peak apex of rounded peak pairs), interval_tf = NULL
(minimum and maximum tailing factor), min_fwhm = NULL (minimum full width at half
maxima), min_w = 5 (minimum window size of the smoothing function), max_w = 21
(maximum window size of the smoothing function), smooth_method = ‘savgol’ (smooth-
ing method), smooth_times = 2 (number of times the smoother is applied to the data),
smooth_win = NULL (set window size of the smoothing function, automatically deter-
mined if set to NULL), and max_sigma = NULL (maximum sigma value in the automatic
determination of the window size of the smoothing function, otherwise determined from
the peak table reported by XCMS).

5. Conclusions

The CPC algorithm determines peak quality metrics for peaks detected by the XCMS
algorithm. These can be used to filter low quality peaks to reduce their impact on feature
correspondence, reduce the number of spuriously matched features, and consequently
improve subsequent data analyses and interpretation. We have demonstrated the usability
of the approach on authentic data from the guinea pig perilymph metabolome, in which
35% of the peaks detected by XCMS were removed prior to correspondence. These data
were obtained from an LC-ESI-QTOF MS instrument. However, the algorithm operates
on XCMS objects and is thus also directly applicable to other chromatographic separation
and MS techniques. Furthermore, we investigated the ability of the CPC algorithm on
mitigating adverse effects of poor XCMS parametrization, often the cause of false peaks, and
found consistent improvements when CPC was applied. In a benchmarking experiment, a
randomly selected set of 144 peaks was manually curated and the results compared with
that of CPC yielding an F1 score of 91.3%. In addition, using multivariate discriminatory
data analysis on the same authentic data, we showed that the CPC peak filtering does not
negatively impact the biological inference that can be drawn from the data. Finally, the
reported peak characteristics can also be used to prioritize detected features of interest
for identification. The algorithm is fully integrated into the XCMS workflow and is made
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available as an R-package (installation instructions are available at https://www.github.
com/krispir/cpc/, accessed on 28 January 2022).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo12020137/s1, Supplementary text with experimental conditions for the sample prepara-
tion of guinea pig perilymph and LC-ESI-Q-TOF/MS based sample analysis. Figures S1–S4: Peaks
kept by the CPC algorithm selected from lowest (Figure S1), second lowest (Figure S2), second
highest (Figure S3), and highest (Figure S4) quartile of the signal-to-noise ratio, Figures S5–S12: Peaks
removed by the CPC algorithm due to not being detected (Figure S5), having a low signal-to-noise
ratio (Figure S6), being too narrow (Figure S7), having too low an intensity (Figure S8), having
too low a signal-to-noise ratio in combination with being too narrow (Figure S9), having too low a
signal-to-noise ratio in combination with having too low an intensity (Figure S10), being too narrow
in combination with having too low an intensity (Figure S11), and having a too low signal-to-noise
ratio, being too narrow, and having too low an intensity (Figure S12). Figures S13–S15: Results
from varying the bw setting during correspondence showing the number of peaks associated with a
feature with and without CPC filtering (Figure S13), the number of filled peaks with and without
CPC filtering (Figure S14), and the number of features associated with more peaks than there are
samples (>15, Figure S15). Figures S16–S19: Panels of 144 randomly selected peaks (36 peaks from
each quartile of XCMS reported peak intensities) for benchmarking by manual curation selected from
the lowest quartile (Q1, Figure S16), second lowest quartile (Q2, Figure S17), second highest quartile
(Q3, Figure S18), and the highest quartile (Q4, Figure S19). Table S1: Outcome of features associated
with peaks removed by CPC. Table S2: Benchmarking results from a random selection of 144 peaks
subjected to manual curation.
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