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Abstract: Postmortem metabolomics has recently been suggested as a potential tool for discov-
ering new biological markers able to assist in death investigations. Interpretation of oxycodone
concentrations in postmortem cases is complicated, as oxycodone tolerance leads to overlapping
concentrations for oxycodone intoxications versus non-intoxications. The primary aim of this study
was to use postmortem metabolomics to identify potential endogenous biomarkers that discrimi-
nate between oxycodone-related intoxications and non-intoxications. Ultra-high performance liquid
chromatography-quadrupole time-of-flight mass spectrometry data from 934 postmortem femoral
blood samples, including oxycodone intoxications and controls positive and negative for oxycodone,
were used in this study. Data were processed and evaluated with XCMS and SIMCA. A clear trend
in group separation was observed between intoxications and controls, with a model sensitivity
and specificity of 80% and 76%. Approximately halved levels of short-, medium-, and long-chain
acylcarnitines were observed for oxycodone intoxications in comparison with controls (p < 0.001).
These biochemical changes seem to relate to the toxicological effects of oxycodone and potentially
acylcarnitines constituting a biologically relevant biomarker for opioid poisonings. More studies are
needed in order to elucidate the potential of acylcarnitines as biomarker for oxycodone toxicity and
their relation to CNS-depressant effects.

Keywords: metabolomics; biomarkers; postmortem; acylcarnitine; death investigation; forensic
sciences; β-oxidation; oxycodone; opioids

1. Introduction

Metabolomics strives at quantifying as many low weight molecules as possible within
a well determined biological sample, i.e., the metabolome [1]. Metabolomics has proven
suitable both for biomarker discovery and for generating new biological hypotheses, and
since its introduction has been applied within several of different scientific fields [2]. So
far, the number of metabolomics applications used for death investigations are limited,
and most efforts have focused on using metabolomics for predicting time since death [3].
However, we recently demonstrated on autopsy cases with pneumonia that postmortem
metabolomics could potentially aid in determining the cause of death [4]. Postmortem
metabolomics offers a new and unique possibility within the field of forensic toxicology as
the postmortem metabolome probably reflects the events leading up to death, the events
after death, and potentially also the cause of death.

Overconsumption of opioids can potentially produce life-threatening respiratory de-
pression through their action on µ-opioid receptors. Studies indicates that opioids decrease
the human response to hypoxia, which might lead to irregular breathing and, for some
cases, complete cessation of rhythmic respiratory function [5]. Other CNS-depressants such
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as benzodiazepines and ethanol can lead to harmful synergistic effects, further increas-
ing the risk of respiratory depression [6,7]. Oxycodone is a semi-synthetic opioid that is
commonly prescribed due to its analgesic properties. Between 2001 and 2015, there was a
significant increase in prescription opioid overdose deaths [8,9]. Compared to other Nordic
countries, Sweden has experienced a consistent increase in the prevalence of prescribed
oxycodone [10]. Expanding the use of oxycodone has led to a higher count of unintentional
overdose deaths, and simultaneous use of alcohol and other CNS-depressants may further
add to this risk. However, interpretation of oxycodone concentrations in postmortem cases
is complicated, as oxycodone tolerance leads to overlapping concentrations for oxycodone
intoxications and non-intoxications [11,12].

Hence, the aim of this study was to investigate if postmortem metabolomics could be
used to identify metabolic differences between intoxication cases positive for oxycodone
in comparison to two control groups, positive and negative for oxycodone. Furthermore,
this study aimed to link potential identified biomarkers to hypoxia and the toxicological
effect of oxycodone. We found a significant decrease in femoral blood for 25 acylcar-
nitines in intoxication cases in comparison to control cases. The homeostatic imbalance
of acylcarnitines could potentially be linked to respiratory depression and the effect of
oxycodone intoxication.

2. Results

Postmortem metabolomics provides a biochemical overview of the postmortem
metabolome. This overview might provide vital insight into the agonal period and the
cause of death. In this study, the postmortem metabolome of oxycodone positive intoxica-
tion cases were compared with two control groups, positive and negative for oxycodone.
The primary aims were to find potential biomarkers for oxycodone intoxications and to
investigate if these biomarkers could be linked to respiratory function and hypoxia.

2.1. Study Cohort

A demographic overview of the 934 autopsy cases included in this study are presented
in Table 1. A skewed demography was observed between oxycodone intoxications and
controls (Table 1). In general, the oxycodone-related intoxication cases included more
females, were younger, and had a higher body mass in comparison to the two control
groups. In addition, other CNS-depressants, such as benzodiazepines, were more com-
mon for oxycodone-related intoxications in comparison to the two control groups. In
Supplementary Table S1, all analytical findings of other opioids and common prescribed
CNS-depressants are presented.

Table 1. Demographic overview of study cohort.

Oxycodone Intoxications Positive Controls Negative Controls Statistics

n 375 364 195
Females/males 160/215 123/241 44/151 p < 0.001 1

Age (yrs) 48 (35–60) 65 (53–74) 47 (30–59) p < 0.001 2

Body weight (kg) 86 (72–100) 76 (62–92) 74 (65–83) p < 0.001 2

Body Height (cm) 173 (165–181) 173 (165–179) 176 (170–182) p < 0.001 2

Body Mass Index (kg/m2) 29 (25–33) 26 (22–30) 24 (22–26) p < 0.001 2

Data are presented as median with quartile range 25–75% in parentheses. 1 p-value calculated with Chi2 (χ2)-test,
2 p-values calculated between the three groups with one-way ANOVA.

2.2. Multivariate Models

Out of 934 autopsy cases, 625 were used in a training set for model building. A total
number of 1397 chromatographic peaks with specific accurate masses and retention times
were included in the PCA model, as seen in Supplementary Figure S1. The PCA model
showed no clear outliers or unwanted trends related to gender, age, or BMI. Furthermore,
no trend related to acquisition date could be observed, indicating no or limited batch-to-



Metabolites 2022, 12, 109 3 of 11

batch variation. In addition to this, the internal standards in the blank whole blood samples
analyzed over the whole study period (n = 4065) showed an absolute area variation of
<26% (CV), a maximum mass accuracy deviation of 5.7 ppm, and a standard deviation for
the retention times less than 2.5 s, altogether indicating adequate data quality.

All chromatographic peaks in the PCA model except chromatographic peaks belonging
to oxycodone, noroxycodone, oxycodol, and noroxycodol (including different forms of
adducts, isotopes and insource fragments) were then used in an OPLS-DA model in order
to identify potential markers able to differentiate oxycodone-related intoxication from
oxycodone nonrelated intoxication. In the final OPLS-DA model, without any oxycodone-
related peaks, an apparent group separation was observed between oxycodone intoxications
and positive control cases, as seen in Figure 1a. The OPLS-DA model described the
data well, and the cross-validation score was adequate, indicating that the model was
reproducible (R2 = 0.41, Q2 = 0.21).
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Figure 1. OPLS-DA score plots. An apparent group separation is observed between oxycodone
intoxications (N) and the positive controls (�) for both the training set (a) and the validation set (b)
(R2 = 0.41, Q2 = 0.21).

The remaining 309 autopsy cases were used in a validation set enabling a full validation
of the multivariate model, thereby minimizing the risk of overfitting models. The group
separation for the validation set was comparable to the training set, as seen in Figure 1b.
For the validation set, the model’s sensitivity and specificity were 80% and 74%, while the
sensitivity and specificity were 80% and 80% for the training set. In depth analysis of false
positives (positive controls classified as intoxications by the multivariate model) showed
that several autopsy cases had high levels of oxycodone (or other opioids), and/or ethanol
or benzodiazepines even though the primary cause of death was not intoxication (e.g.,
hanging or drowning). In depth analysis of false negatives (oxycodone-related intoxications
classified as positive controls by the multivariate model) showed that several autopsy cases
had low levels of oxycodone but high levels of other non-CNS-depressant drugs such as
acetaminophen, as seen in Supplementary Table S2.

2.3. Metabolites of Importance

Due to the skewed demographics, several supervised OPLS-models were built in order
to ensure interpretation of the results was not affected by the systematic differences. Within
each separate group, no or limited trends were observed for the supervised OPLS-models
based on gender and BMI (Q2 < 0.028, data not shown). However, several chromatographic
peaks correlated with age, and an OPLS model based on age as a y-variable for the negative
control is presented in the supplementary material, Supplementary Figure S2. In addition,
to further evaluate the influence of age, a new age matched OPLS-DA model was developed.
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In this model, two thirds of the samples with an age < 56 years in the intoxication and two
thirds of the samples with an age > 56 years in the positive controls were excluded. In both
groups, a mean of 56 years was acquired and an age mean comparison with student’s t-test
gave a p-value of 0.92. The age matched OPLS-DA score plot showed similar results to the
model using the entire training set but with a reduced predictive power. The corresponding
volcano plot of variables of importance over p(corr) showed that acylcarnitines were the
most prominent metabolites. The OPLS-DA score plot and volcano plot are presented
in the supplementary material, as seen in Figure S3. Even so, in order not to neglect the
skewed demographics, only features important for discriminating intoxications from both
control groups were considered, and a criteria of p(corr) > 0.2, or p(corr) < −0.2 was used.
This is illustrated in a shared and unique structure plot (SUS-plot), as seen in Figure 2.
Only chromatographic peaks significantly different between intoxication and both control
groups were considered, which are highlighted as red squares in Figure 2.
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Figure 2. Shared and unique structure plot (SUS-plot). Shared metabolites between the two OPLS-DA
models of intoxication vs. positive controls and intoxication vs. negative controls with a p(corr) > 2 or
p(corr) < −2 are highlighted as red squares.

Furthermore, to ensure that postmortem interval (PMI) differences were not neglected,
an age and PMI compensated model was developed, as seen in Figure S4. An increased
group separation was observed between intoxication cases versus positive controls but
with a reduced model robustness. In addition, a postmortem degradation modified OPLS-
model was developed. In this model, all autopsy cases where the forensic pathologist had
documented a beginning decomposition, (e.g., some/medium/extensive decomposition
or maggots), were excluded. A similar trend in group separation was observed, and
no apparent differences in those chromatographic peaks that were important for group
discrimination were observed, as seen in Supplementary Figure S5.

All chromatographic peaks identified and important for group separation belonged to
the biochemical class acylcarnitines, as seen in Table 2. All acylcarnitines were significantly
decreased for intoxication cases compared to control cases. For example, propionylcarnitine,
heptanoylcarnitine, and hexadecadienoylcarnitine that belong to short-, medium-, and
long-chain acylcarnitines, respectively, all had a significant difference in fold change of
approximately 1

2 for intoxication in comparison to positive controls, as seen in Figure 3.
One unidentified chromatographic peak with m/z 307.122 was significantly higher in the
intoxication group in comparison with the controls.
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Table 2. Metabolite information for identified metabolites.

Metabolites 1 Chain Length 2 Identifier 3 Mean m/z 4 Exact m/z 5 ∆ 6 % 7 p-Value 8

Acetylcarnitine C2 M204T119 204.123 204.1230 0.0 0.70 4.6 × 10−4

Propionylcarnitine C3 M218T126 218.139 218.1387 −1.4 0.67 3.5 × 10−12

Butyrylcarnitine C4 M232T167_1 232.155 232.1543 −3.0 0.64 2.8 × 10−7

(Iso)valerylcarnitine C5 M246T226 246.170 246.1700 0.0 0.51 1.6 × 10−19

Hexanoylcarnitine C6 M260T289 260.186 260.1856 −1.5 0.69 8.7 × 10−8

Heptanoylcarnitine C7 M274T349 274.201 274.2013 1.1 0.53 2.6 × 10−15

Octanoylcarnitine C8 M288T405 288.217 288.2169 −0.3 0.55 7.4 × 10−12

Nonanoylcarnitine C9 M302T456_2 302.232 302.2326 2.0 0.69 3.6 × 10−9

Decenoylcarnitine C10:1 M314T459 314.232 314.2326 1.9 0.59 8.8 × 10−3

Decanoylcarnitine C10 M316T504 316.248 316.2482 0.6 0.46 7.1 × 10−8

Hydroxyhexadecadiencarnitine C16:2-OH M412T568 412.304 412.3057 4.1 0.64 2.7 × 10−4

Tetradecadiencarnitine C14:2 M368T572 368.279 368.2795 1.4 0.55 7.1 × 10−4

Dodecanoylcarnitine C12 M344T573 344.279 344.2795 1.5 0.59 6.4 × 10−6

Hydroxyhexadecenoylcarnitine C16:1-OH M414T588 414.321 414.3214 1.0 0.64 4.0 × 10−14

Tetradecenoylcarnitine C14:1 M370T591 370.295 370.2952 0.5 0.59 1.3 × 10−7

Hexadecadienoylcarnitine C16:2 M396T601 396.311 396.3108 −0.5 0.55 5.8 × 10−7

Hydroxyhexadecanoyl carnitine C16-OH M416T606 416.337 416.3371 0.2 0.79 3.7 × 10−8

Tetradecenoylcarnitine C14 M372T608 372.311 372.3108 −0.5 0.64 2.9 × 10−8

Linolenylcarnitine C18:3 M422T611 422.327 422.3265 −1.2 0.69 1.9 × 10−6

Hydroxyoctadecanoylcarnitine C18-OH M442T617 442.353 442.3527 −0.7 0.65 2.3 × 10−10

Linoleylcarnitine C18:2 M424T628 424.343 424.3421 −2.1 0.78 1.9 × 10−4

Unidentified Na M307T132 307.122 NA NA 1.59 3.6 × 10−10

1 Putative identities according to MSI [13], 2 number of carbons, saturations, and alcohols on the ester-group on
the acylcarnitines, 3 specific identifier for each chromatographic peak, including mass and retention time, 4 mean
measured accurate mass for [H]+ over all samples, 5 theoretical monoisotopic mass 6 ppm difference between
measured and theoretical mass, 7 % of median of the normalized peak intensities of the intoxication group divided
by the positive control group including both training and validation set, and 8 Bonferroni-corrected p-values for
the log transformed normalized intensities in the intoxication group vs. positive controls.
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3. Discussion

In simple terms, postmortem metabolomics gives a vast overview of the biochemical
composition in a given metabolome after death. That overview has primarily been used for
postmortem interval (PMI) determination [3]. However, postmortem metabolomics might
also provide vital information about the agonal period as well as the biological processes
leading up to death [4]. Interpretation of oxycodone concentrations in postmortem cases
is complicated due to tolerance and overlapping concentrations for fatal and non-fatal
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levels. Therefore, this study aimed at identifying biomarkers able to discriminate between
intoxication and non-intoxications and possibly link these changes to respiratory depression
and hypoxia.

3.1. Study Strengths and Limitations

Due to the sheer number of autopsy cases, this study was able to use a two-sets
study design, with a training set that was cross-validated and an untouched validation set
enabling an external validation. Using a two-sets study design to fully validate the multi-
variate model gave a strong foundation for this postmortem metabolomics investigation.

Postmortem samples are bound to show high inter-individual variations, as death
itself and time since death most likely result in extensive biochemical changes that might
be unrelated to the cause of death [14]. The PMI was only known for a small portion of the
included autopsy cases, making it difficult to interpret PMI’s impact on the multivariate
models. However, as suggested by Chigine et al., a PMI control group was created, as seen
in Figure S4 [14]. In this age and PMI-compensated model, an improved group separation
was observed. Unfortunately, the model robustness decreased, probably owing to the
reduced number of samples. In addition, the multivariate model only including samples
without decomposition showed similar results to the previous models. The discriminative
power of the OPLS models with intoxications versus controls were highly intriguing, and
similar results were observed both for the training set and the validation set, confirming
that no model overfitting occurred. In addition, as neither acquisition date nor PMI or
postmortem degradation seemed to skew or conceal any results, the study data were
considered robust and reliable.

It is important to mention that all supervised OPLS models assume that the group
classification is perfect. For this study, perfect diagnostic accuracy by the forensic pathol-
ogist is assumed. We have not found any studies that estimate the error rate of forensic
pathological intoxication diagnosis with regard to the correct classification of involved
substances or with regard to other potential differential diagnoses. However, in a clinical
setting, it has been estimated that approximately 10–15% of diagnoses are incorrect [15].
While these percentages might not be comparable to a forensic pathological setting, it can
also not be assumed that the forensic pathologist is correct by default. Therefore, it is very
difficult to evaluate the model’s sensitivity (number of false negative) and the specificity
(number of false positives). In addition, as the model is based on biochemical changes,
some misclassifications by the model could be due to the same biochemical processes
being present but to a lesser extent. In order to evaluate this aspect, a small set of false
negatives and false positives were inspected in depth. Several of the positive controls,
falsely classified as intoxications, had intoxication as a secondary contributing cause of
death. For these cases, a high concentration of oxycodone or other opioids or the presence
of other CNS depressants were observed, even though the primary cause of death was
something else (e.g., hanging or drowning). Looking at the false negatives, some were
intoxications with non-opioid substances (for example acetaminophen). In this aspect, it
could thereby be argued that these are not true false positives or false negatives as the
metabolic pattern was explainable.

It is also important to mention that the model includes all intoxication where oxy-
codone is present, even though the concentration might be rather low and the contribution
to the primary cause of death could be questionable. The diagnostic accuracy might have
been improved by manually evaluating the intoxication cases and only include cases where
the contribution from oxycodone is certain. This approach, however, would have been very
tedious, and the final multivariate model would only be able to handle a very small and
homogeneous set of samples. In addition, a stringent selection might miss vital results, as
it is well known that a combination of oxycodone together with other CNS-depressants
further increases the risk of respiratory depression [6,7]. However, it is important in future
studies to include more CNS-depressants in order to investigate their general effect on
acylcarnitine homeostasis. In any case, some error is to be expected as neither a model
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nor a forensic pathologist can be expected to have complete diagnostic accuracy. With the
current sensitivity and specificity, the model is able to highlight cases that merit a closer
review in order to confirm or exclude an intoxication diagnosis.

3.2. Acylcarnitines Potential as Biomarker for Oxycodone-Related Intoxications

Acylcarnitines have been linked to a number of age-related diseases where most
commonly elevated levels of acylcarnitines are observed. For example, elevated levels
of acylcarnitines have been suggested as a marker for cardiovascular disease [16,17] and
diabetes [18,19]. However, Jarrell et al. recently demonstrated that long-chain and very
long-chain acylcarnitines increase with age [20]. These results are troubling as there is an
age-related systematic difference between the oxycodone-related intoxications and positive
controls in this study. In order to ensure the validity of the results in this postmortem
metabolomics investigation, several multivariate models were developed in order to in-
vestigate a possible age bias. In the age-matched OPLS-DA model, an apparent group
separation was still observed, and acylcarnitines showed high model impact and correla-
tion, as seen in Supplementary Figure S3. In addition, the age-based OPLS model showed
that acylcarnitines had a poor model impact and a low model correlation in comparison
to the OPLS-DA models of intoxications versus positive controls, as seen in Figure S4. To
bypass the age-related differences, only results differentiating oxycodone intoxications
from both control groups are presented. This minimized the confounding effects of age, as
there were no age-related differences between intoxications and negative controls.

Acylcarnitines are considered important metabolic intermediates in mitochondrial
metabolism [21], and the decreased levels of acylcarnitines observed in our study could
therefore be an effect of oxygen depletion due to the presumed respiratory depression for
intoxication cases. The are several relevant in vivo studies that report that hypoxia and
ischemia affect the homeostasis of acylcarnitines, thereby supporting our results [22,23].
Bjorndalen et al. uses an animal model with a TTP diet (known inhibitor of β-oxidation
and mitochondrial function) with the primary aim to evaluate mitochondrial function and
respiratory activity. Interestingly, Bjorndalen et al. observes a hepatic lipid accumulation
together with a reduction of short chain acylcarnitines in plasma for the rats on a TTP
diet [22]. Similarly, Hal et al. observed drastic decreases in levels of acylcarnitines by
measuring total carnitine during neonatal hypoxia [23]. Bruder and Raff also observe
similar results in neonatal rats (Postnatal Day 2) during acute hypoxia; however, increased
levels of plasma acylcarnitines were observed in older rats (Postnatal Day 60) [24]. Whitmer
et al. found decreased concentrations of acylcarnitines together with an accumulation of
long-chain acylcarnitines in ischemic and hypoxic rat hearts [25]. Friolet et al. demonstrated
increased concentrations of short-chain acylcarnitines in plasma after exhaustive exercise
under both hypoxic and normoxic conditions [26]. The observed decreases of acylcarnitines
in our study might reflect a prolonged hypoxic state and an increase in oxidative stress,
resulting in a depletion of acylcarnitine reserves.

Furthermore, several in vitro studies regarding ischemia in cerebral rat cells show
that acylcarnitines (primarily acetylcarnitine) have a neuroprotective effect. Pretreatment
with acylcarnitines before induced ischemia showed increased cell survival, increased
cytochrome c oxidase activity, and reduced oxidative stress compared to controls, among
other protective parameters. Even though the mechanism is not fully understood, there
are suggested theories that include maintenance of mitochondrial proteins, protection
against oxidative stress, and inhibition of apoptosis [27–31]. As high levels of acylcarnitines
are protective in ischemia, perhaps the low level observed in this study with a terminal
outcome reflects a sustained ischemia in which the acylcarnitines are consumed.

Even though controversy exists regarding which acylcarnitines are increased, de-
creased, or unaltered in whole blood or plasma during hypoxia and ischemia, the potential
of postmortem metabolomics for biomarker discovery is unquestionable. Further studies
are needed to fully elucidate the potential of acylcarnitines as biomarkers for hypoxia and
oxycodone toxicity and acylcarnitines’ relation to age and other CNS-depressants.
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4. Materials and Methods

All autopsy cases admitted to the Swedish National Board of Forensic Medicine
between late June 2017 until end of October 2020 with femoral blood and with a tox-
icological screening using high-resolution mass-spectrometry were considered for this
study (n = 17,008). All intoxications with ICD9-codes 965, 967, 969, 970, 977, 980, and 995
and positive for oxycodone were included in the intoxication group (oxycodone intoxi-
cation, n = 375). All other autopsy cases positive for oxycodone were grouped into the
oxycodone-positive control group (Positive Controls, n = 364). A third, oxycodone-negative
control group with the inclusion criteria ICD9-codes 994, 958, 933 869, 861, 852, and 804;
BMI 18.5–30.0; age 20–75; and the exclusion criteria of intoxications (including insulin,
cyanide, and carbon monoxide), diseases potentially affecting the metabolic fingerprint
(such as cancer, cardiovascular diseases, sepsis and pneumonia), and signs of alcohol
damage (Negative Controls, n = 195). Each parameter in the demographic overview was
compared between the three groups with the statistical methods χ2 and one-way ANOVA.

All autopsy cases were analyzed with a standardized procedure described else-
where [32]. In short, each femoral blood sample was prepared by protein precipitation
(MeCN:EtOH, 90:10), including an addition of three internal standards (amphetamine-
d8, diazepam-d5 and mianserin-d3). All samples were injected on a UHPLC-ESI-QToF
system (Agilent 6540 QTOF with a Jet Stream interface and an Agilent 1290 Infinity LC
instrument). Separation was performed on a C18 column (Waters Acquity, HSS T3 column;
150 mm × 2.1 mm, 1.8 µm) using gradient elution. MS data were collected in positive mode,
and the total acquisition time for each sample was 12 min. Each analytical run included
a blank drug-free bovine whole blood sample (purchased from a local slaughterhouse)
also containing the three internal standards, analyzed in the beginning and at the end of
each run.

The raw LC/MS data from the selected autopsy cases were exported to mzData-files
using Masshunter. The exported files were loaded into R (2.14) and the XCMS package for
peak detection and retention time alignment [33]. In XCMS, the centWave algorithm was
used for peak detection using the following parameters: ∆m/z of 15 ppm, minimum peak
width of 3 s, maximum peak width of 20 s, and signal-to-noise threshold of 3 with noise
variable set to 1500. Retention time correction was performed using the obiwarp function,
and for the grouping, an m/z width of 0.05, base width of 3, and minimum fraction of 0.8
were used.

All chromatographic peaks before 90 s and after 660 s were excluded, and the remain-
ing features were normalized in Excel using the probabilistic quotient normalization. All
autopsy cases (n = 934) were ordered after class and acquisition date, and every third
case was assigned to a validation set (n = 309) used for external validation, while the
remaining were used in a training set (n = 625) for model building. All variables were
scaled with unit variance, log transformed, and subjected to multivariate analysis using
SIMCA 15.0.2 (Umetrics, Umeå, Sweden). Principal component analysis (PCA) was used
to give an overview of the data, enabling identification of outliers and observation of
trends. PLS models for each variable (i.e., age, gender, weight, length, and BMI) were
created to investigate systematic differences in the metabolic profiles. Orthogonal partial
least-squares discriminant analysis (OPLS-DA) was used to identify features directly re-
lated to oxycodone, i.e., isotopes, different adducts, in-source fragments, and oxycodone
metabolites. All oxycodone-related features were excluded, and two OPLS-DA models of
intoxication (n = 249) vs. positive controls (n = 244) and intoxication (n = 249) vs. negative
controls (n = 132) were developed. The OPLS-DA model was used to identify features
important for group separation with a potential link to oxycodone toxicity. Variable im-
portance for the projection plots (VIP) and shared unique structure plots (SUS) were used
to identify potential biomarkers important for discrimination of oxycodone intoxication.
Metabolites with a p(corr) > 0.2 or <−0.2 were putatively identified and annotated by
matching molecular weight (±5 ppm) with the Human Metabolome Database, ref [34] as
well as the METLIN database [35]. For visualization, each metabolites’ normalized mean
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intensity was also statistically evaluated with univariate analysis using student’s t-test.
All presented p-values were Bonferroni-corrected (Microsoft Office Excel 2013). Several
OPLS and OPLS-DA models were developed to check and correct for systematic differences
related to age, gender, BMI, PMI, grade of decomposition, and acquisition date. For model
specifics, the reader is referred to the Figure legends in the supplemental material.

Experimental reproducibility was assessed by determination of the coefficients of
variation (CV) for the isotope-labeled standards in blank whole blood samples and by visual
examination of the score plot from the PCA. All multivariate models has been validated
using k-fold cross-validation, and the OPLS-DA model of oxycodone intoxications versus
positive controls was also evaluated using external validation. For the cross-validation,
samples were divided into seven cross-validation groups (k = 7). Each group was, in
turn, kept out of model development, and the kept out part was then predicted by the
model. After this, the predictions of the kept out part were compared with the actual values.
These steps were repeated until all parts (samples) had been kept out. For all included
components, SIMCA computes an overall Q2 = 1 − PRESS/SS, where the prediction error
sum of squares (PRESS) is the squared differences between observed and predicted values
for the Y-data kept out of the model fitting and SS is the sum of squares of Y. For the
external validation, left-out autopsy cases were predicted using the corresponding OPLS-
DA model. The model predictability was evaluated by determining the model’s sensitivity
and specificity. False positives and negatives in the validation set with a predicted score
value above 5 or below −5 were investigated in depth in order to elucidate the usability of
the multivariate model.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo12020109/s1, Figure S1: PCA score plot, Figure S2: Age-based OPLS model, Figure S3:
Age-matched OPLS-DA model, Figure S4: Age and PMI-matched OPLS-DA model, Figure S5.
Modified OPLS-DA model with regard to decomposition, Table S1: Distribution of commonly
prescribed CNS-depressants, Table S2: Cause of death and analytical findings for false positives and
false negatives (t > 5 or t < −5).
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