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Abstract: The essential oil (EO) from the leaves of Zanthoxylum caribaeum (syn. Chiloperone) (Rutaceae)
was studied previously for its acaricidal, antimicrobial, antioxidant, and insecticidal properties. In
prior studies, the most abundant compound class found in leaf oils from Brazil, Costa Rica, and
Paraguay was terpenoids. Herein, essential oil from the leaves of Zanthoxylum caribaeum (prickly
yellow, bois chandelle blanc (FWI), peñas Blancas (Costa Rica), and tembetary hu (Paraguay)) growing
in Guadeloupe was analyzed with comprehensive two-dimensional gas chromatography coupled
to time-of-flight mass spectrometry (GC × GC-TOFMS), and thirty molecules were identified. A
comparison with previously published leaf EO compositions of the same species growing in Brazil,
Costa Rica, and Paraguay revealed a number of molecules in common such as β-myrcene, limonene,
β-caryophyllene, α-humulene, and spathulenol. Some molecules identified in Zanthoxylum caribaeum
from Guadeloupe showed some antimetabolic effects on enzymes; the in-depth study of this plant
and its essential oil with regard to metabolic diseases merits further exploration.

Keywords: antimetabolites; essential oil; GC × GC-TOFMS; metabolomics; Rutaceae; Zanthoxylum
caribaeum (syn. chiloperone)

1. Introduction

Medicinal plants contribute significantly to primary health care due to cultural tradi-
tions [1] and the lack of access to and affordability of pharmaceuticals. In addition, natural
products are potential sources of new and selective agents for the treatment of important
tropical diseases [2–4]. Nowadays, the search for effective molecules for chronic disease
treatments, such as metabolic disorders, has increased, and plants may offer innovative
approaches to treat and prevent diseases [5].

Zanthoxylum is a genus of Rutaceae, a widely studied family having a worldwide
distribution mainly in tropical and subtropical regions. Many species of the Zanthoxylum
genus have been extensively studied due to their large role in the traditional medicine of
various cultures [6–8]. These species have demonstrated larvicidal, antiinflammatory, anal-
gesic, antinociceptive, antioxidant, antibiotic, hepatoprotective, antiplasmodial, cytotoxic,
antiproliferative, anthelminthic, antiviral, anticonvulsant, and antifungal properties [9].
The extracts and essential oils (EOs) derived from these plants have been used to test for
these properties. For example, canthin-6-ones in Zanthoxylum chileperone (prickly yellow,
bois chandelle blanc (FWI), peñas Blancas (Costa Rica), and tembetary hu (Paraguay))
grown in Paraguay was assessed for the treatment of mice with Chagas disease. An extract
of Zanthoxylum chileperone stem bark demonstrated antiTrypanosomacruzi activity [7]. The
reported variety of beneficial properties in the Zanthoxylum species has motivated past studies
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of Zanthoxylum caribaeum in Brazil, Colombia, Costa Rica, and Paraguay [10–18]. Across these
studies, Zanthoxylum caribaeum exhibited acaricidal, antimicrobial, antioxidant, and insecticidal
activities. To the authors’ best knowledge, there has not been an investigation into the bioactivity
or metabolome of Zanthoxylum caribaeum (yellow prickly) grown in Guadeloupe.

Some of the aforementioned beneficial properties in Zanthoxylum species are due
to volatile organic compounds (VOCs). VOC extraction from various sample types was
achieved with headspace (HS) sampling [19–21]. VOCs could be readily extracted with
full automation, no solvent, and a relatively small amount of sample. Often, headspace
solid-phase microextraction (HS-SPME) has been selected for volatilomics studies [22–24].
HS-SPME is coupled to gas chromatography (GC) for the separation of VOCs in a mixture
and the subsequent detection. In some separations, VOCs with similar partition coefficients
co-elute, leading to peak assignment errors and a hindrance in compound identification
due to poor mass spectral quality. To overcome co-elutions and increase sensitivity in
GC, comprehensive two-dimensional gas chromatography (GC × GC) was developed to
enhance separation efficiency for complex mixtures [25,26]. HS-SPME coupled to GC × GC
yields an increased number of identifiable compounds in a VOC mixture including EOs.

Here, we report the metabolomic profile of the EO of yellow prickly ash, or Zanthoxylum
caribaeum Lam. (ZC), grown in Guadeloupe. This plant is of interest for its composition of
alkaloids, flavonoids, tannins, terpenoids, and so on [7,14,16,27–32]. These compounds confer
several pharmacological properties [11,14,16,28,30–33]. We focused on the EO composition
of ZC growing in Guadeloupe (FWI), which has not been studied before, and compared it with
the EO composition of the same species growing in Brazil, Costa Rica, and Paraguay [10–16]. In
this work, GC × GC-TOFMS was applied to maximize the number of compounds recovered
in the EO compared to the previous studies. Similar to the prior studies in Brazil, Costa Rica,
and Paraguay, a variety of chemical classes were detected and identified in the metabolomic
profile. A number of the identified compounds from prior studies were detected in the current
study, while others were notpreviously reported in the literature. This work also focused on
the biological effects of select, specific molecules identified in ZC grown in Guadeloupe that
align with current knowledge. Some of the reported compounds may exhibit antimetabolic
properties, which merits the further study of ZC from Guadeloupe.

2. Materials and Methods
2.1. Plant Material

Zanthoxylum caribaeum Lam. leaves (voucher COVA-AI-2022) were collected from a
non-reproductive individual tree growing in Gosier Bas-du-fort (16.21725◦ N, 61.52029◦ W),
Guadeloupe in January 2022 (Figure 1).Metabolites 2022, 12, x FOR PEER REVIEW 3 of 14 
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2.2. Essential Oil

The fresh leaves (751 g) were washed with distilled water, chopped, and hydrodistilled
for 2 h 20 min using a Clevenger hydrodistillation apparatus coupled with a microwave re-
actor (ETHOS X, Milestone®, Sorisole, Italy). This setup allowed for heating at 100 ◦C with
a power of 1700 watts. The essential oil was collected and then stored under refrigeration
and in the dark at an average temperature of 4 ◦C until it was analyzed.

2.3. HS-SPME-GC × GC-TOFMS

The ZC essential oil (20 µL) was added to 20 mL headspace vials (VWR, CA), and
the vials were capped with magnetic screw caps containing septa (Canadian Life Sciences,
CA, Canada). Headspace solid-phase microextraction (HS-SPME) was accomplished using
an automated SPME module (Gerstel, Linthicum, MD, USA). A tri-mode fibre (50/30 µm
DVB/CAR/PDMS; divinylbenzene/carboxen on polydimethylsiloxane, Millipore Sigma,
St. Louis, MO, USA) was used to extract the headspace above the EO samples. The fibre
was initially conditioned according to the manufacturer’s guidelines. The EO samples
were incubated at 60 ◦C for 5 min to allow for the volatile organic compounds (VOCs) to
partition into the headspace. The headspace was extracted for 20 min while the sample
was heated at 60 ◦C. Fibre desorption was achieved by maintaining 250 ◦C at the septum-
less head (SLH) of the Cooled Injection System-Programmable Temperature Vaporizing
(CIS-PTV) inlet (Gerstel) for 180 s. The GC × GC-TOFMS system consisted of an Agi-
lent 7890 (Agilent Technologies, Palo Alto, CA, USA) gas chromatograph and a Pegasus
4D TOFMS (LECO, St. Joseph, MI, USA) with a quad jet liquid nitrogen-cooled thermal
modulator. The first dimension (1D) column was a 5% phenyl polysilphenylene-siloxane
phase (Rtx®-5MS; 60 m × 0.25 mm i.d.; 0.25 µm film thickness) connected with a SilTiteTM
µ-Union (Trajan Scientific and Medical, Victoria, Australia) to a second dimension (2D)
trifluoropropylmethylpolysiloxane-type phase (Rtx-200; 1.6 m × 0.25 mm i.d.; 0.25 µm
film thickness). All columns were from the Restek Corporation (Restek Corp., Bellefonte,
PA, USA). The 2D column was installed in a separate oven located inside the main GC
oven. The carrier gas was helium at a corrected constant flow rate of 2 mL/min, and the
injector operated in the splitless mode. The main oven temperature program was 40 ◦C
(3 min hold) with a ramp of 3.5 ◦C/min to 190 ◦C (no hold) and a final ramp of 15 ◦C/min
to 290 ◦C (12 min hold). The secondary oven was programmed with a constant +5 ◦C
offset relative to the primary oven. The modulation period was 2.50 s (0.40 s hot pulse
and 0.85 s cold pulse) with a +15 ◦C offset relative to the secondary oven. Mass spectra
were acquired in the range of m/z 40–800 for 200 spectra/s. The ion source temperature
was set at 200 ◦C, and the transfer line temperature was set at 240 ◦C. The detector voltage
was run at an offset of −200 V relative to the tuning potential, and the ionization electron
energy (EI source) was set at 70 eV. Samples were acquired using LECO ChromaTOF®

software version 4.72.0.0(LECO, St. Joseph, MI, USA). The data were processed using
LECO ChromaTOF® software version 4.71.0.0(LECO, St. Joseph, MI, USA). The expected
peak width settings in the 1D and 2D were 12.5 s and 0.16 s, respectively. The peaks were
detected from the raw chromatogram using a minimum signal-to-noise (S/N) ratio value
of 100 with a minimum sub-peak S/N of 6. The minimum match required to combine
sub-peaks was 600. The identities of the peaks were tentatively assigned based on mass
spectral similarity matches (>700) against library spectra and temperature-programmed
retention index matches (±15 RI window; when available in PubChem). The retention
indices (RIs) were calculated using n-alkanes from C7-C22 in a separate analysis under the
same extraction and GC × GC-TOFMS conditions. Mass-spectral library searches were
performed against the NIST/EPA/NIH Mass Spectral Library (NIST 17) and Wiley Registry
of Mass Spectral Data (9th edition). The peak areas were integrated with unique m/z. The
filtering scripts for the GC × GC-TOFMS data [34] automatically and rapidly identified the
chemical classes of interest.
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3. Results and Discussion
3.1. HS-SPME-GC × GC-TOFMS Analysis and Comparison

The goal of this study was to compare the volatile metabolite profile of the essential oil
of yellow prickly ash (Z. caribaeum) grown in Guadeloupe (Figure 1) to the ZC essential oils
from other regions. Herein, GC × GC-TOFMS was used to facilitate the detection of the
previously identified Z. caribaeum VOCs and the uncharacterized VOCs of potential interest.
Automated filtering scripts for the GC × GC-TOFMS data were applied to the obtained
chromatograms to classify the chemical families. GC × GC-TOFMS chromatograms could
be read similarly to a contour map. The colors emerge at the reader based on the color scale
on the left of the image. Dark blue denotes the baseline or background, while red denotes
high intensity (i.e., amount). Each peak or “blob” that the reader sees represents one
compound on the two-dimensional plot. A chromatogram with script bubbles is provided
in Figure 2.
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Figure 2. GC × GC-TOFMS total ion chromatogram (TIC) contour plot obtained from Z. caribaeum
essential oil with filtering scripts applied [34].

Filtering scripts are able to classify four major chemical families: alcohols, aldehy-
des, ketones, and terpenoids. The large band in the middle of the chromatogram is
2-undecanone, a ketone in such high abundance that detection yields a large streak. Other
ketones, alcohols, aldehydes, and terpenoids were present in the essential oil but in far
lesser amounts. Terpenoids were the most common compound class detected with the
GC × GC-TOFMS, and were subject to further exploration. A number of terpenoids
were tentatively identified based on the MS and RI matches, and a labelled extracted ion
chromatogram is shown in Figure 3.
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Table 1. Topological formulae of the molecules present in the Zanthoxylum caribaeum essential oil
from Guadeloupe.

Number Name and
Topologic Formula

Present in the EO
in Other Regions

Retention
Index

(Observed)

Retention
Index

(Library)
Forward MS

Match
Reverse MS

Match
Total

Terpenoid
% Area

Hydrocarbonatedmonoterpenes

1

β-Myrcene
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Table 1. Cont.

Number Name and
Topologic Formula

Present in the EO
in Other Regions

Retention
Index

(Observed)

Retention
Index

(Library)
Forward MS

Match
Reverse MS

Match
Total

Terpenoid
% Area

Hydrocarbonatedmonoterpenes

29

Manool
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Table 1. Cont.

Number Name and
Topologic Formula

Present in the
EO in Other

Regions

Retention
Index

(Observed)

Retention
Index

(Library)
Forward MS

Match
Reverse MS

Match
Total

Terpenoid
% Area

Hydrocarbonatedmonoterpenes
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Table 1. Cont.

Number Name and
Topologic Formula

Present in the EO
in Other Regions

Retention
Index

(Observed)

Retention
Index

(Library)
Forward MS

Match
Reverse MS

Match
Total

Terpenoid
% Area

Hydrocarbonatedmonoterpenes
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3-eudesmen-11-ol was identified as eudesm-11-en-1-ol by Souza et al. [16]. This comparison
shows that the same species has a very high variability in its composition across origins.

3.2. Antimetabolic Effects of Some Molecules

Several studies have shown the biological properties of ZC extracts [35], but very
few were interested in the antimetabolic properties of the essential oils extracted from the
leaves. Some molecules identified in this article were studied for their interesting properties
(Table 2) and mechanistic action on organisms (Figure 4).

Table 2. Antimetabolic activities of molecules present in Zanthoxylum caribaeum essential oil
from Guadeloupe.

Name Present in the EO in
Other Regions Antimetabolic Properties

β-Caryophyllene Paraguay [10]
Brazil [11–14] Antiinflammatory and antitumor

cis-Carvyl acetate Currently unknown

β-Damascenone Currently unknown

Carvone Antidiabetic and obesity prevention

β-Ionone Anticancer, antitumor, antiinflammatory,
antibacterial, antifungal, and antileishmanial

Limonene
Paraguay [10]
Costa Rica [15]

Brazil [12]
Antidiabetic, antioxidant, and anticarcinogenic

Safranal Antioxidant, antidiabetic, and antihyperglycemic

Spathulenol Paraguay [10]
Brazil [11–14,16] antidiabetic

α-Copaen-11-ol Antidiabetic

Manool Antioxidant

Metabolites 2022, 12, x FOR PEER REVIEW 10 of 14 
 

 

Table 2. Antimetabolic activities of molecules present in Zanthoxylum caribaeum essential oil from 
Guadeloupe. 

Name Present in the EO in Other Regions Antimetabolic Properties 

β-Caryophyllene 
Paraguay [10] 
Brazil [11–14] Antiinflammatory and antitumor 

cis-Carvyl acetate  Currently unknown 
β-Damascenone  Currently unknown 

Carvone  Antidiabetic and obesity prevention 

β-Ionone  Anticancer, antitumor, antiinflammatory, 
antibacterial, antifungal, and antileishmanial 

Limonene 
Paraguay [10] 
Costa Rica [15] 

Brazil [12] 
Antidiabetic, antioxidant, and anticarcinogenic 

Safranal  Antioxidant, antidiabetic, and antihyperglycemic 

Spathulenol 
Paraguay [10] 

Brazil [11–14,16] antidiabetic 

α-Copaen-11-ol  Antidiabetic 
Manool  Antioxidant 

 
Figure 4. Antimetabolic mechanisms of the bioactive phytochemicals from Zanthoxylumcaribaeum 
growing in Guadeloupe. 

A recent review conducted by Francomano et al. showed the great biological potential 
of β-caryophyllene [36]. It is a selective phytocannabinoid agonist of the type 2 receptor 
CB2, one of the two classical cannabinoid receptors. Among its various biological 
activities, β-caryophyllene exerts an antiinflammatory action via inhibiting the main 
inflammatory mediators, such as inducible nitric oxide synthase, interleukin 1 beta, 
interleukin-6, tumor necrosis factor-alfa, and so on [37]. Several in vitro and in vivo 
studies have suggested that treatments with β-caryophyllene improved the phenotype of 
animals used to model various inflammatory pathologies, such as nervous system 
diseases (Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, amyotrophic lateral 
sclerosis, and stroke), atherosclerosis, and tumors (colon, breast, pancreas, lymphoma, 
melanoma, and glioma cancer). Further insights and clinical trials are required for future 
human applications. To our knowledge, there are no biological studies investigating cis-
carvyl acetate and β-damascenone, but compounds with similar structures, carvone and 
β-ionone respectively, have interesting biological properties. Bouyahya et al. reviewed the 

Figure 4. Antimetabolic mechanisms of the bioactive phytochemicals from Zanthoxylumcaribaeum
growing in Guadeloupe.

A recent review conducted by Francomano et al. showed the great biological po-
tential of β-caryophyllene [36]. It is a selective phytocannabinoid agonist of the type 2
receptor CB2, one of the two classical cannabinoid receptors. Among its various biological
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activities, β-caryophyllene exerts an antiinflammatory action via inhibiting the main inflam-
matory mediators, such as inducible nitric oxide synthase, interleukin 1 beta, interleukin-6,
tumor necrosis factor-alfa, and so on [37]. Several in vitro and in vivo studies have sug-
gested that treatments with β-caryophyllene improved the phenotype of animals used to
model various inflammatory pathologies, such as nervous system diseases (Parkinson’s
disease, Alzheimer’s disease, multiple sclerosis, amyotrophic lateral sclerosis, and stroke),
atherosclerosis, and tumors (colon, breast, pancreas, lymphoma, melanoma, and glioma
cancer). Further insights and clinical trials are required for future human applications.
To our knowledge, there are no biological studies investigating cis-carvyl acetate and β-
damascenone, but compounds with similar structures, carvone and β-ionone respectively,
have interesting biological properties. Bouyahya et al. reviewed the health benefits and
pharmacological properties of carvone [38]. This molecule has also demonstrated an antidi-
abetic effect through its role in the prevention of obesity and metabolic problems associated
with high-fat diets. This effect is achieved by improving glycoprotein component abnormal-
ities and controlling glucose metabolism. The potential of β-ionone and related compounds
as anticancer agents was reviewed by Ansari et al. [39]. Antitumor activities of β-ionone
were demonstrated in melanoma, breast cancer, and chemical-induced rat carcinogenesis.
Prostate-specific G protein-coupled receptor (PSGR) activation with its ligand, β-ionone,
could suppress prostate cancer cell growth in both in vitro and in vivo models, according
to the study by Xie and co-workers [40]. Due to its ability to selectively kill tumor cells and
its anti-metastatic and apoptosis induction properties obtained with in vitro and in vivo
studies, this molecule and its related compounds could be considered novel candidates
in chemopreventive and chemotherapeutic strategies for overcoming cancerous diseases.
Along with these potential applications, antiinflammatory, antibacterial, antifungal, and
antileishmanial properties were also reported [41].

Although other molecules are present in lower proportions in our study, they have
created great interest due to their effects on metabolism. For example, Murali et al. studied
the antidiabetic effect of D-limonene in streptozotocin-induced diabetic rats [42]. This
molecule was reported to have a number of pharmacological effects, including antioxidant,
chemopreventive, and anticarcinogenic properties. A 100 mg/kg body weight D-limonene
dose shows more effect on increasing plasma glucose and glycosylated hemoglobin levels.
Glucose 6-phosphatase and fructose 1, 6-bisphosphatase enzyme activities were increased,
while glucokinase activity was decreased along with liver glycogen in diabetic rats. These
results suggest the potential antihyperglycemic activity of D-limonene. Safranal, only
identified in ZC’s leaves’ EO from Guadeloupe, was reported for its antioxidant proper-
ties and ability to improve chemically-induced diabetes [43].This compound modulates
antioxidant gene expression and upregulates mitochondrial antioxidant genes, leading to a
lower mitochondrial oxygen radical generation. This may, in part, induce an improvement
in hyperglycemia, hyperlipidemia, and oxidative stress in an experimental model of dia-
betes [44]. By modulating oxidative stress in streptozotocin-diabetic rats, safranal may also
be effective in the treatment of diabetes [45]. Samini et al. reported that safranalmighthave
antihyperglycemic effects without hepatic and renal toxicities in alloxan-diabetic rats [44].
Molecular docking studies showed spathulenoland α-copaen-11-ol, compounds identified
in Cinnamomum travancoricum leaves’ essential oil, play an active role in antidiabetic ac-
tivity through α-amylase, α-glucosidase, insulin receptors, and insulin secretion protein,
GLP-1 [46]. According to Ravera et al., manool could serve as an exogenous antioxidant
to prevent oxidative damage in photoreceptors, a risk factor for degenerative retinal dis-
eases. The molecular docking study confirmed that the OxPhos machinery is ectopically
expressed in the outer rod segments and that the F1Fo-ATP synthase enzyme is a target of
manool, which inhibited the outer segments’ ATP synthesis by binding to the F1 moiety
with high affinity [47].



Metabolites 2022, 12, 1293 11 of 13

4. Conclusions

This is the first time that the yellow prickly ash, or Zanthoxylum caribaeum (syn.
chiloperone), leaves’ essential oil from Guadeloupe is reported in the literature. Its metabolite
profile was determined to be similar in composition to the same species located in Brazil,
Costa Rica, and Paraguay. Numerous compounds were detected, and thirty terpenoids
were tentatively identified using GC × GC-TOFMS. Among them, eight of the identified
terpenoids pressented antimetabolic properties in the literature. Two of the identified
terpenoids have no reported activity, but their structural analogs exhibit antimetabolic
effects. GC × GC-TOFMS facilitated a rapid and simple method for profiling the volatile
metabolome of yellow prickly. These results suggest the biological potential of Zanthoxylum
caribaeum, and provide a preliminary metabolite profile for further study on the essential
oil from Guadeloupe. Future work on the metabolomics of the yellow prickly ash should
follow this protocol to maximize the number of identifiable VOC metabolites.
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