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Abstract: Baccharis genus Asteraceae is widely used in traditional treatment against fever, headache,
hepatobiliary disorders, skin ulcers, diabetes, and rheumatism, as well as an antispasmodic and
diuretic. Its phytochemistry mainly shows the presence of flavonoids and terpenoids such as monoter-
penes, sesquiterpenes, diterpenes, and triterpenes. Some of them have been evaluated for biological
activities presenting allelopathic, antimicrobial, cytotoxic, and anti-inflammatory properties. In this
paper, our research group reported the isolation, characterization, and antifungal evaluation of several
molecules isolated from the dichloromethane extract from Baccharis prunifolia, Baccharis trinervis, and
Baccharis zumbadorensis against the phytopathogen fungus Botrytis cinerea. The isolated compounds
have not previously been tested against Botrytis, revealing an important source of antifungals in the
genus Baccharis. Six known flavones were isolated from B. prunifolia. The dichloromethane extracts
of B. trinervis and B. zumbadorensis were subjected to a bio-guided isolation, obtaining three known
flavones, an α-hydroxidihydrochalcone mixture, one labdane, one triterpene, and two norbisabolenes
from the most active fractions. The compounds 4′-methoxy-α-hydroxydihydrochalcone (7A), 3β,15-
dihydroxylabdan-7-en-17-al (8), and 13-nor-11,12-dihydroxybisabol-2-enone (11) are novel. The most
active compounds were the Salvigenin (5) and 1,2-dihydrosenedigital-2-one (10) with an IC50 of 13.5
and 3.1 µg/mL, respectively.

Keywords: Baccharis; Botrytis cinerea; antifungal

1. Introduction

The Asteraceae constitutes a defined family among flowering plants distributed pri-
marily in the tropical areas of South America [1]. It has approximately 1500 genera and
25,000 species [2]. The genus Baccharis is represented by more than 500 species which are
distributed mainly in Brazil, Argentina, Colombia, Chile, and Mexico [3,4]. Species of the
genus Baccharis have been widely investigated for their pharmacological properties, well
known by Indigenous populations. Medicinal properties include antidiabetic and anti-
inflammatory attributes. They are also used to treat liver disease, rheumatism, digestive,
hepatic, and renal disorders [3]. Phytochemically, the Baccharis genus produces compounds
that have been identified and their biological activities studied [5]. The compounds in-
cluded in Baccharis are mainly flavonoids [6,7] and terpenoids [8], such as diterpenes [9,10]
with clerodane, labdane, and kaurane skeletons. Phenolic compounds and essential oils
have been reported in the last years as important sources of natural products with interest-
ing biological activities [11,12].

Baccharis trinervis, B. prunifolia, and B. zumbadorensis are widely distributed from
Mexico to Argentina [13,14]. These species are used in the treatment of high fevers, edema,
ulcers, and vascular cramps [5]. They are also applied in cases of dizziness, gastrointestinal
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disorders, and against snake venom [15]. Their different parts have been studied [16–18],
identifying flavonoids [19] and terpenes [16,20]. Plants used in this work had been collected
in Venezuela [21], and it is the first study of the antifungal activity of this species of Baccharis
against phytopathogenic fungi. The antifungal activity of this genus has been reported
mainly against human fungal infections as a part of its medicinal properties [5,13,22–24].
Nevertheless, the activity against phytopathogen fungi of the genus Baccharis has been
poorly documented [25]. The traditional treatment against phytopathogen fungi is the
use of chemicals that have some serious restrictions due to the effects on the natural
environment. Therefore, the rational control of the diseases that they produce, is one of the
biggest challenges facing the agricultural-food industry, which raises the need to discover
new antifungal products of plant origin that are friendly to the environment. In this
context, Baccharis trimera and Baccharis ochracea essential oils inhibited 100% of the growth
of Alternaria alternata [26]; essential oil from Baccharis dracunculifolia was tested against
Fusarium graminearum [27]; essential oils of plants, including some species of Baccharis, were
tested with good results against Monilinia fructicola [28] and Stemphylium solani [29]; and
root extracts from Baccharis salicina decreased the percentage of germination of uredospores
of Hemileia vastatrix [30].

Botrytis cinerea is one of the most invasive and most important phytopathogen fungi
in terms of economic losses [31–33]. It is the causal agent of the grey mold in grapes, one of
the most important fruit crops worldwide. Among the possibilities of alternative control
is the use of essential oils of Baccharis trimera and Baccharis dracunculifolia tested against B.
cinerea and Colletotrichum acutatum that showed effectiveness as preventive and curative
treatment [25].

The present work reports the bio-guided isolation of metabolites by their antifun-
gal activity against Botrytis cinerea from the dichloromethane and methanol extract of
B. trinervis, B. prunifolia, and B. zumbadorensis. The purification of the active fractions
yielded six known flavones (1–6) from B. prunifolia; seven compounds: three flavones (3–5),
an α-hydroxydihydrochalcone mixture (7A and 7B), one labdane (8), and one triterpene
(9) from B. trinervis. The compounds 4′-methoxy-α-hydroxydihydrochalcone (7A) and
3β,15-dihydroxylabdan-7-en-17-al (8) are described here for the first time. In addition, B.
zumbadorensis yielded four compounds: two flavones (3 and 4) and two norbisabolenes (10
and 11), the 13-nor-11,12-dihydroxybisabol-2-enone (11) is reported for the first time. All
these compounds were isolated and identified by analytical approaches (HPLC, NMR, IR,
GC-MS).

2. Materials and Methods
2.1. General Procedure

Solvents and reagents were purchased from Sigma-Aldrich, Merck, and EurisoTop®

brands with an analytical grade. Silica gel 60 (63–200 µm; 70–230 mesh) from Merck and
columns Sephadex LH-20 from Sigma were used for column chromatography.

HPLC purification was performed with an Elite LaChrom-Hitachi HPLC system
equipped with L-2400 UV-Vis detector and L-2490 differential refractor detector.

LiChrospher RP-18 (10 µm, 10 × 250 mm) column chromatography was used for
secondary metabolites separation. The eluents were methanol, acetonitrile (Carlo Ebra®

reagents), and water.
NMR spectroscopic experiments were performed on the Agilent 400 and 500 MHz

spectrometers (at 25 ◦C). Chloroform-d (7.25 or 77.00 ppm), Acetone-d6 (2.05 or 29.90 ppm),
or dimethylsulfoxide-d6 (2.50 or 39.50 ppm) (from EurisoTop® brand) were used to ref-
erence the chemical shift. IR spectra were recorded on a Perkin Elmer (Spectrum BX)
spectrophotometer in KBr cells.

High-resolution mass spectra (HRESIMS) data were recorded in positive and negative
modes using Waters SYNAPT equipment and MassLynx 4.1 software.

The Optical activities were measured with a Perkin-Elmer 241 polarimeter equipped
with a sodium lamp (λ = 589 nm) with chloroform as solvent at 25 ◦C.
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ECD spectrum was measured on a JASCO J-810 spectropolarimeter at ambient tem-
perature. The ECD curves were simulated using SpecDis 1.51 software [34].

2.2. Isolates and Cultures

Baccharis trinervis Pers was collected in July 2012 by the Arenal near Tabay road edges
at an altitude of approximately 1500 m above sea level, Libertador Municipality. Baccharis
prunifolia Steyerm was collected in July 2008 in Gavidea, located on the outskirts of Rangel
Municipality, at an altitude of 2950 m above sea level. Baccharis zumbadorensis Badillo was
collected in December 2011 in the Paramo de San José de Acequias, located on the outskirts
of Campo Elias Municipality, at an altitude of 3300 m above sea level. A Voucher Specimen
of each species (J.M. Amaro, No. 2366, No. 2357, and No. 2349, respectively) was deposited
in the Herbarium MERF of the Faculty of Pharmacy-ULA. All the municipalities are in
Merida State, Venezuela.

The culture of B. cinerea employed in this work, B. cinerea UCA 992, was obtained
from grapes from the Domecq vineyard, Jerez de la Frontera, Cádiz, Spain. This culture
of B. cinerea is deposited in the Universidad de Cadiz, Facultad de Ciencias, Mycological
Herbarium Collection (UCA). The fungus was grown in an agar-tomato plate to increase
the sporulation process and incubated at 25 ◦C the time needed for the fungus to grow and
to produce spores (15 to 20 days).

2.3. Extraction and Bio-Guided Isolation

The leaves of the plants were recollected and dried at room temperature. The whole
leaves (780 g, 2980 g, and 1750 g for B. trinervis, B. prunifolia, and B. zumbadorensis, respec-
tively) were extracted with dichloromethane at room temperature for 24 h. Next, they were
dried again under a hood and then ground. The ground material was extracted in a Soxhlet
extractor with methanol as a solvent. The solutions from both extractions were filtered
and then concentrated on a rotary evaporator at a temperature not exceeding 40 ◦C. The
extracts obtained were kept at −4 ◦C.

Dichloromethane extracts were chromatographed by Column Chromatography (CC)
over silica gel, using as eluent increasing polarities of hexane–dichloromethane, and finally,
methanol to yield the fractions:

For Baccharis prunifolia, fourteen fractions; A (40.2 g), B (22.5 g), C (3.5 g), D (10.6 g), E
(8.6 g), F (8.9 g), G (12.1 g), H (16.3 g), I (12.6 g), J (16.5 g), K (22.3 g), L (16.6 g), M (11.9 g),
and N (8.7 g). For Baccharis trinervis, eleven fractions: A (15.2 g), B (8.6 g), C (11.2 g), D
(14.7 g), E (8.5 g), F (10.6 g), G (9.0 g), H (8.6 g), I (7.7 g), J (9.5 g), and K (17.5 g). For Baccharis
zumbadorensisa, eleven fractions: A (15.2 g), B (8.6 g), C (11.2 g), D (8.0 g), E (24.1 g), F
(16.6 g), G (9.0 g), H (1.5 g), I (0.8 g), J (1.2 g), and K (0.8 g).

The total fractions obtained from the CC of the crude extract from Baccharis species
were tested against B. cinerea UCA992 by Microplate resazurin assay (Figure 1, Figure 2,
Figure 3 and Figures S1–S3 [35].
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The most active fractions were submitted to a deeper analysis as follows:
The pooled fraction F (15 g) from B. prunifolia was chromatographed on Sephadex

LH-20 with hexane–dichloromethane–methanol mixtures 2:1:1 obtaining 15 fractions. A
pure, yellow solid compound 1 was obtained in fraction F6 (0.050 g), and a pure compound
2 was obtained in fraction F9 (0.038 g). In addition, fraction H was chromatographed
on preparative TLC with hexane–ethyl acetate mixtures 3:2 to obtain a pure compound
characterized as Genkwanin (3) (0.019 g) and Galangustin (6) (0.010 g), both as solids.
Compound 4 (0.015 g) was obtained as a solid in fraction G (2.37 g). Finally, the fraction I
(2.37 g) was chromatographed on preparative TLC with hexane–ethyl acetate mixtures 3:2
to obtain a solid characterized as 5 (0.052 g).

The fraction H from B. trinervis (8.615 g) was submitted to CC on silica gel with hexane–
acetate mixtures in increasing polarity, obtaining 15 fractions. The H5 was permeated
on Sephadex LH 20 with hexane:dichloromethane:methanol 3:2:1 to obtain 1.98 mg of a
mixture of 4′-methoxy-α-hydrochalcone (7A) and Lyonogenin (7B) in a 3:2 proportion.
The H13 fraction (the most active against B. cinerea) was submitted to a CC obtaining a
semi-pure compound that was purified through HPLC reverse phase chromatography. The
pure compound obtained was characterized as diterpene 3β, 15-Didroxylabdan-7-en-17-
al (8) (3.25 mg). The tri-terpene Oleanolic Acid (9) (1.95 mg) was isolated from fraction
H5. Cirsimaritin (0.015 g) was characterized from fraction G (2.37 g). Compound 5 was
isolated from I fraction (2.37 g) by chromatographic purification on preparative TLC with
hexane–ethyl acetate mixtures 3:2 (0.052 g).

2-Hydroxy-3-(4-methoxyphenyl)-1-(2,4,6-trihydroxyphenyl)propan-1-one. 4′-Methoxy-
α-hydroxydihydrochalcone (7A). Amorphous white powder. (−)-HRESIMS m/z 303.0844
[M – H]− (calcd for C16H15O5, 303.0869), exact mass calcd for C16H16O6, 304.0947. 1H-NMR
(500 MHz, CDCl3); δ 2.81 (m, 1H, CH2), 3.11 (m, 1H, CH2), 3.84 (s, 3H, OCH3), 5.37 (m, 1H,
CH), 5.98 (s, 1H, CH), 5.99 (s, 1H, CH), 6.96 (d, J = 8.8, 1H, CH), 6.96 (d, J = 8.8, 1H, CH), 7.38 (d,
J = 8.8, 1H, CH), 7.38 (d, J = 8.8, 1H, CH), 12.05 (s, 1H, OH).13C-NMR (125 MHz, CDCl3); δ 43.14
(CH2), 55.37 (OCH3), 79.02 (CH), 95.32 (CH), 96.65 (CH), 103.26 (C), 114.23 (CH), 114.23 (CH),
127.73 (CH), 127.73 (CH), 130.27 (C), 160.07 (C), 163.25 (C), 164.13 (C), 164.36 (C), 196.01 (CO).

1-((1R,6S,8aS)-6-Hydroxy-1-(5-hydroxy-3-methylpentyl)-5,5,8a-trimethyl-1,4,4a,5,6,7,8,8a-
octahydronaphthalen-2-yl)ethan-1-one or 3β,15-Dihydroxylabdan-7-en-17-al (8). (+)-HRESIMS
m/z 323.2559 [M + H]+ (calcd for C20H35O3

+, 323.2586. IR ν max; 3368 (O-H), 2930 (=C-H),
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2868 (C-H), 1682 (C=O) cm−1. 1H-NMR (500 MHz, CDCl3); δ 0.80 (s, 3H, CH3), 0.91 (s, 3H,
CH3), 0.91 (d, J = 7.9, 3H, CH3), 1.01 (s, 3H, CH3), 1.20 (m, 3H, CH), 1.48 (m, 2H, CH), 1.52 (m,
1H, CH), 1.65 (m, 5H, CH), 1.95 (m, 2H, CH), 2.35 (m, 2H, CH2), 3.27 (dd, J1 = 3.93, J2 = 11.2
1H, CH), 3.67 (m, 2H, CH2), 6.79 (t, J = 2.5, 1H, CH), 9.39 (s, 1H, CHO). 13C-NMR (125 MHz,
CDCl3); δ 14.3 (CH3), 15.2 (CH3), 19.6 (CH3), 23.9 (CH2), 24.9 (CH2), 27.2 (CH2), 27.9 (CH3),
30.3 (CH), 36.6 (C), 37.1 (CH2), 38.5 (CH2), 38.5 (CH2), 38.6 (C), 50.4 (CH), 61.3 (CH2), 78.8
(C-OH), 144.4 (C), 151.7 (C), 194.6 (CHO).

From B. zumbadorensis, fraction E (24.114 g) was chromatographed on silica gel col-
umn with hexane-acetate mixtures in increasing polarity obtaining 15 fractions. Fraction
E5 was submitted to CC on silica gel using hexane:dichloromethane mixtures, yielding
87 mg of flavonoid 10. Fraction I (24.234 g) was chromatographed on silica gel CC with
hexane–acetate mixtures in increasing polarity, obtaining 15 fractions. The I12 fraction was
submitted to a CC obtaining a pure compound 13-nor-11,12-dihydroxybisabol-2-enone (11)
(60 mg).

(6R)-6-((6R)-6,7-Dihydroxyheptan-2-yl)-3-methylcyclohex-2-en-1-one (11). (+)-HRESIMS
m/z 263.1611 [M + Na]+ (calcd for C14H24O3Na, 263.1623. IR νmax; 3394 (OH), 2932 (C-H),
1656 (C=O), 909 (C=CH2) cm−1. 1H-NMR (500 MHz, CDCl3); δ 0.80 (d, J = 6.4, H14, 3H, CH3),
1.30 (m, H8, 2H, CH2), 1.31 (m, H9a, 1H, CH2), 1.44 (m, H10, 2H, CH2), 1.49 (m, H9b, 1H, CH2),
1.78 (m, H5a, 1H, CH2), 1.92 (m, H5b, 1H, CH2), 1.93 (s, H15, 3H, CH3), 2.12 (m, H6, 1H, CH),
2.29 (m, H4, 2H, CH2), 2.30 (m, H7, 1H, CH), 3.43 (m, H12, 1H, CH2), 3.64 (m, H12, 1H, CH2),
3.70 (m, H11, 1H, CH), 5.85 (s, H2, 1H, CH). 13C-NMR (125 MHz, CDCl3); δ 15.8 (C14, CH3),
22.6 (C5, CH2), 23.4 (C9, CH2), 24.1 (C15, CH3), 30.4 (C4, CH2), 30.7 (C7, CH), 33.2 (C10, CH2),
34.5 (C8, CH2), 49.8 (C6, CH), 66.8 (C12, CH2OH), 72.2 (C11, CHOH), 127.0 (C2, CH), 161.4 (C3,
C), 201.3 (C1, C=O).

2.4. In Vitro Antifungal Assay

The fungicidal activity of the extracts and pure compounds was tested in vitro against
the plant pathogenic fungus Botrytis cinerea UCA992 using different methodologies ac-
cording to the characteristics of the samples [36]. The estimates of the IC50 values and
confidence ranges (95%, 0.0 < 0.05) of each compound were obtained from logarithmic
curves by adjusting to a dose–response type curve, as implemented in the program PRISM
© statistical analysis (version 5.01).

% inhibition = 100− (Positive control well absorbance)
(Negative control well absorbance)

× 100

2.4.1. Preparation of Pure Compounds Stock and Broth Microdilution Method Bioassay

The fungicidal activity of the target compounds was tested in vitro against a plant
pathogenic fungi Botrytis cinerea UCA992. According to previous reports [37,38], ELISA
equipment was employed to measure inhibition in the microplate. All materials were
carefully sterilized. The tested compounds were dissolved in dimethyl sulfoxide (DMSO) at
12.5 mg/mL as stock solution. From this solution, a work-solution was prepared, dissolving
13 µL in 1300 µL of Sabourad-glucose broth. Firstly, 100 µL of Sabourad-medium were
added to the second and subsequent columns, then 200 µL of work-solution were added to
the six first rows of the first column in the plate. Dilutions were prepared taking 100 µL
from the first column and mixed to homogeneity with the second one, and this process was
repeated for all the columns obtaining a concentration gradient. Next, 100 µL aliquots of a
spore solution (5 × 104 spores/mL) of the strain B. cinera UCA992 were inoculated in the
first three rows of microplates with Sabourad-glucose liquid medium and the corresponding
compound in a typical concentration range from 62.50 ppm to 0.061 ppm (concentration
range from the first column to the last one), therefore reaching each microplate a total
volume of 200 µL. Then, the plate was incubated for 72 h at 28 ◦C with a fungal control
plate (all the microplates with 100 µL of a spore solution (5 × 104) and 100 µL of Sabourad-
medium), to compare with the normal fungal growth and a medium control plate (all the
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microplates with 100 µL of sterilized water and 100 µL of Sabourad-medium) to eliminate
the absorbance relative to the medium. Once the incubation time was completed, the
absorbance of the three kinds of plates was measured, and 10 µL of a 0.027 M resazurin
solution was added to all the microplates to detect contamination [39,40]. This process was
performed at least three times for each compound to gather a statistical data and analyzed
by Prism® to determinate the IC50 value.

For data treatment, we perform a minimum of 9 experiments. It usually takes us
three days to complete a study, performing three repetitions per day. Each experiment is
submitted to the Grubbs test and then is represented graphically, and an equation associated
with the data used to obtain a first approximation of the IC50 value is obtained. Once all
the graphs and IC50 values of the “n” experiments are obtained, we discard the extreme
values and keep the central values (the volume of “n” data will present a Gaussian curve).
The estimates of the IC50 values and confidence ranges (95%, 0.0 < 0.05) of each compound
were obtained from logarithmic curves by adjusting to a dose–response type curve, as
implemented in the program PRISM © statistical analysis (version 5.01).

2.4.2. Bio-Guided Antifungal Assays: Use of Resazurin as Inhibition Indicator

The minimal inhibitory concentration for microorganism growth (MIC) was deter-
mined in triplicate by using the microdilution broth method in 96-well microplates. Samples
were dissolved in DMSO at 12.5 mg/mL obtaining a solution of 500 ppm (take 40 µL of
stock solution and 960 µL of the medium solution Sabourad-glucose in an Eppendorf). A
total of 100 µL of this solution was added into the first well with 100 µL of water or solution
of the spores from B. cinerea UCA992 obtaining a 250 ppm concentration. The final DMSO
concentration should be less than 2% to not interfere with the assay. Concentrations ranging
from 250 to 0.05 ppm were achieved. One inoculated well was included, to allow for control
of the adequacy of the broth for organism growth. One non-inoculated well, free of antimi-
crobial agent, was also employed, to ensure medium sterility. Irgasan was used as positive
control. The microplates (96-wells) were incubated at 28 ◦C for 72 h. After the incubation
time, 10 µL of a solution of resazurin (270 mg in 40 mL of distilled and sterilized water) was
added to all the microplates to indicate microorganism viability and check non-inoculated
well was free of contamination, and then microplates were sealed with a sterile adhesive
polyester film (50 µm; VWR® Microplate Sealing Film) and incubated (28 ◦C with artificial
light) for 24 h more. The MIC values of extract from Baccharis spp. were determined as the
lowest concentration in which the resazurin (purple) did not bio-transform to resorufine
(red/brown) (see Figure 4) due to the inhibition of B. cinerea growth.

2.4.3. Poisoned Food Medium Assay

The fungicidal properties of most active compounds, 5 and 10, were assessed by the
“poisoned food” technique (Figures S28 and S29) [41]. The bioassay was carried out by
measuring radial growth inhibition on an agar medium in a Petri dish in the presence of
test compounds at 28 ◦C. The test compound was dissolved in ethanol, resulting in a final
compound concentration of 0.06–30 µg/mL. The final ethanol concentration was identical
in the control and treated cultures. The medium was poured into 9 cm diameter sterile
Petri dishes, and a 5 mm diameter mycelial disk of B. cinerea cut from an actively growing
culture (two days of growth) was placed in the center of the agar plate. Radial growth
was measured for three days. Three independent experiments and three replicates per
treatment were conducted. The fungicide irgasan was used as a standard for comparison
in this test.
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2.4.4. Statistical Analysis

The data were analyzed using an ANOVA test with PRISM © statistical analysis
software (version 5.01). Dose–response analysis was performed to estimate the IC50 values
with 95% confidence ranges.

3. Results
Bio-Guided Isolation and Identification of New Compounds

The first part of this study was to test the antifungal activity of the DCM and methanol
extracts from the aerial parts of Baccharis species (Table 1). The antifungal study was
performed using the microdilution method [42].

Table 1. MIC data of the extracts from Baccharis spp. against B. cinerea UCA992. The most active
fractions were those from dichloromethane.

Species Part of the Plant Extract MIC (µg/mL)

Baccharis prunifolia Leaves
Dichloromethane 125

Methanol 125

Baccharis trinervis Leaves
Dichloromethane 125

Methanol 250

Baccharis
zumbadorensis

Leaves
Dichloromethane 125

Methanol 250

Irgasan 0.23

The DCM extracts gave the best results as they were fractioned, and the assays were
repeated with the fractions. The chromatographic analysis by CC of the active fractions led
to the isolation of nine known compounds and three novel compounds (Figure 5). Com-
pounds from fractions F, G, H, and I (B. prunifolia (750 g)) were identified as Nevadensin
(1) [43], 4′,7-dimethoxyapigenin (Sakuranetin) (2) [44,45], Genkwanin (3) [46,47], Cirsimar-
itin (4) [48], Salvigenin (5) [49], and Galangustin (6) [50]. From the B. trinervis extract (288 g),
the fraction H yielded 4′-methoxy-α-hydroxydihydrochalcone (7A), Lyonogenin (7B) [51],
and 3β,15-dihydroxylabdan-7-en-17-al (8); and from fraction I yielded the compounds 3, 4,
and 5. Finally, the extract from B. zumbadorensis (267 g) yielded the following compounds:
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1,2-Dihydrosenedigital-2-one (10) [52] from fraction E, compound 11 from fraction I, and
compounds 3 and 4 from fraction J.
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folia, and B. zumbadorensis). New compounds isolated from Baccharis spp.: 4′-Methoxy-
α-hydroxydihydrochalcone (7A), 3β,15-dihydroxylabdan-7-en-17-al (8), and (6R)-6-((6R)-6,7-
dihydroxyheptan-2-yl)-3-methylcyclohex-2-en-1-one (11).

The previously reported compounds were identified by comparing their obtained spec-
troscopy data with those in the literature. Nevadensin (1), Genkwanin (3), Cirsimaritin (4),
and Salvigenin (5) have been reported as a constituent of the aerial parts of different species
of Baccharis [19,43,53–55]. However, it is the first time they have been reported in B. prunifo-
lia, presenting a phytochemical contribution to this species. They present different biological
activities: hypotensive, anti-inflammatory, cytotoxic, and antimicrobial [56–63]. In addi-
tion, the compounds 4′,7-dimethoxyapigenin (2) and 5,7-dihydroxy-4′,8-dimethoxyflavone
(Galangustin) (6) were described here for the first time in the genus Baccharis. They present
high antioxidant activity [64–66], and cytotoxicity has been tested [45].

A compound never isolated before in the genus Baccharis, 13-nor-bisabol-2,11-dienone
(10), was isolated from fraction E, extracted from B. zumbadorensis; the new compound
13-nor-11,12-dihydroxybisabol-2-enone (11) was isolated from fraction I; and the known
Genkwanin (3) and Cirsimaritin (4) were isolated from fraction J. The compound 13-nor-
bisabola-2,11-dienone (10), known by the name of 1,2-dihydrosenedigital-2-one, has only
been previously reported in the species Senecio digitalifolius (Asteraceae) [67]; while 13-nor-
11,12-dihydroxybisabol-2-enone (11) is a norsesquiterpene of the bisabolene series which
has not been described previously in the literature.

The compound 4′-methoxy-α-hydroxydihydrochalcone (7A), isolated from the α-
hydroxydihydrochalcone mixture extracted from B. trinervis, is described here for the
first time (Figures S4–S6 and S7a,b). Compound (7A) was elucidated from a mixture in
which the isomer Lyogenin (7B) was the major compound, obtained as an amorphous solid.
The HRESIMS (-) data of this compound (detected m/z 303.0869 calculated for C16H15O6
[M-H]− m/z 303.0869) resulted in the molecular formula C16H16O6. Comparison of the
spectroscopic data with those of (7B) reported in the literature [47] indicates that the 4-OH
and 7′-OMe groups were interchanged. The 1H-NMR spectrum of 7A showed a low field
AA’BB’ system integrating to two protons at δH: 7.38 (H-2A/H-6A) and δH: 6.96 (H-3A/H-
5A) with a coupling constant of 8.8 Hz, typical of a para-substituted benzene ring (Table 1
and Figure S4). 13C-NMR spectrum of 7A showed signals at δC 103.7 (C), 114.2 (2 × CH),
127.7 (2 × CH), 130.3 (C), 160.1 (C), 163.3 (C), 164.1 (C), and 164.4 (C) corresponding to
two benzoyl groups, δC 196.0 corresponding to an α,β unsaturated carbonyl and δC 55.4
corresponding to OMe group (Table 1 and Figure S5). Correlations H6 (δH 7.38) with
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carbon α (δC 79.02) and H-β1 (δH 3.11) with C-1 (δC 130.27) were confirmed in 1H-13C
HMBC spectrum. The correlation of the OMe group (δH 3.84) with C4 (δC 160.1) confirmed
the presence of the OMe group at C4 (Figure S6a,b). According to this result, compound
7A was assigned as 4′-methoxy-α-hydroxydihydrochalcone.

Compound (8) was obtained as a colorless amorphous solid. The HRESIMS (+) data of
this compound (m/z: 323.2559, calculated for C20H35O3 [M + H]+) resulted in the molecular
formula C20H34O3, with four degrees of unsaturation. The 1H-NMR spectrum of 8 revealed
the presence of two proton groups adjacent to an oxygen group (δH-3: 3.27 and δH-15:
3.67), a proton in sp2-carbon (δH-7: 6.79), a couple of proton signals near to an alkene group
(δ-H6: 2.35 and δ-H9: 1.95), four methyl groups (δ-H18: 1.01, δ-H19: 0.91, δ-H20: 0.80,
and δ-H16: 0.91), and an aldehyde signal at δH-17: 9.39. Methylene signals H1, H2, and
H11 (δ-H1: 1.65, δ-H2: 1.65, δ-H11: 1.48) were presented as multiplets and two methylene
signal were assigned as H12 and H14 (δ-H12: 1.20, 1.95, and δ-H14: 1.20, 1.65), both signals
as multiplets (Table 2 and Figures S8 and S10). The 13C NMR spectrum presents signals
at δC: 144.4 (C-8), 151.7 (C-7), 194.6 (CHO)) confirming the presence of an aldehyde and
an alkene group (Table 2 and Figure S9). The analysis of the 1H-13C HMBC spectrum
showed a heterocyclic ring of 6/6 carbon connected by C5 and C10. Furthermore, the
1H-13C HMBC correlations between H-11 and C-9 (Figure 6 and Figure S11) confirm the
presence of the alcohol moiety at C-9. NOESY correlations H-5/H-9, H-19/H-20, H-3/H-5,
and H-3/H-18, support the proposed structure (8) (Figure 6 and Figure S13a). All 1H-13C
HMBC correlations are shown in Figure 6.

Table 2. NMR data of novel compounds isolated from Baccharis species.

7A 8 11

δH Mult(J in Hz) δC δH Mult(J in Hz) δC δH Mult(J in Hz) δC
1 - 130.3 1 1.65, m 27.2 1 - 201.3
2 7.38, d (8.8) 127.7 2 1.65, m 38.5 2 5.85, m 127.0

3 6.96, d (8.8) 114.2 3 3.27, dd (3.9,
11.2) 78.8 3 - 161.4

4 - 160.1 4 - 38.6 4 2.29, m 30.4

5 6.96, d (8.8) 114.2 5 1.20, m 49.0 5
a 1.78 m

22.6b 1.92, m
6 7.38, d (8.8) 127.7 6 2.35, m 24.9 6 2.12, m 49.8
α 5.37, m 79.0 7 6.79, t 151.7 7 2.30, m 30.7

β
3.11, m

43.1 8 - 144.4 8 1.30, m 34.52.81, m

1′ - 103.3 9 1.95, m 50.4 9
a 1.31

23.4b 1.49
2′ - 164.4 10 - 36.6 10 1.44, m 33.2
3′ 5.99, s 96.7 11 1.48, m 23.9 11 3.70, m 72.2

4′ - 164.1 12 1.95, m
1.20, m 37.1 12 3.64–3.43, m 66.8

5′ 5.98, s 95.3 13 1.52, m 30.3 13 - -

6′ - 163.3 14 1.65, m
1.20, m 38.5 14 0.80, d (7.0) 15.8

C=O - 196.0 15 3.67, m 61.3 15 1.93, s 24.1
OCH3 3.84, s 55.4 16 0.91, d (7.9) 19.6 - -

OH 12.05, s - 17 9.39, s 194.6 - -
- - - 18 1.01, s 27.9 - -
- - - 19 0.91, s 15.2 - -
- - - 20 0.80, s 14.3 - -
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Figure 6. Structural analysis of 7A, 8, and 11, key 1H-13C HMBC correlations.

Compound 11 was isolated as a yellow oil with a specific rotation of [α]D
25: −24.4.

The analysis of the high-resolution mass spectrum (HRESIMS (+) [M + Na]+: 263.1623,
found: 263.1611) confirms the molecular formula C14H24O3. NMR spectroscopic data
of 11 showed similarities with those published from the known compound 10 [51]. The
1H-NMR spectrum (Table 2 and Figure S14) showed the presence of a methyl group (δH-14:
0.80), a proton next to an alkene system (δH-4: 2.29), and a methyl group on sp2-carbon
(δH-15: 1.93). Furthermore, three oxygenated groups (δH-11: 3.70 and δH-12: 3.64 and
3.63) and an olefinic group (δH-2: 5.85) were present. The 13C-NMR spectrum (Table 2
and Figure S15) showed the presence of an α-β unsaturated carbonyl group δC: 201.3
(C-1), an olefinic group δC: 161.4 (C-3), 127.0 (C-2), and two oxygenated carbons, δC: 72.2
(C-11) and 66.8 (C-12). The 1H-13C HMBC correlation observed between H-6 and C-5, H-6
and C-14, H-7 and C-5, H-7 and C-14, and between H-8 and C-14 supports the idea that
the di-alcohol moiety was connected to C-6 (Figure S17). All 1H-13C HMBC correlations
are shown in Figure 3. According to this result, compound 11 was assigned as 13-nor-
11,12-dihydroxybisabol-2-enone. The absolute configuration for 11 was confirmed by
comparing their theoretical and experimental ECD spectra. The calculated and measured
ECD curves matched well, leading to the assignment of the absolute configuration of 11 as
(6R)-6-((6R)-6,7-dihydroxyheptan-2-yl)-3-methylcyclohex-2-en-1-one (Figure 7).
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4. Antifungal Assay

The pure compounds isolated and identified from the three species in this study were
tested against the phytopathogenic fungus B. cinerea UCA992. Some of them have been
described to have antimicrobial activities against some bacteria and fungi, but compounds 3,
4, 5, and 8 had not previously been tested against B. cinerea. Salvigenin (5) (IC50 of 41.1 µM)
isolated from B. prunifolia and B. trinervis, and 6(R)-6-((R)-hept-6-en-2-yl)-3-methylcyclohex-
2-en-1-one (10) (IC50 15.2 µM) isolated from B. Zumbadorensis showed the highest activity
(Figures S23 and S26).

The flavonoids 1, 2, 3, and 4 showed moderate activity. Nevadensin (1) had the lowest
activity (IC50 of 57.0 ppm), 4′, 7-dimethoxyapigenin (2); Genkwanin (3) and Cirsimaritin
(4) had a similar activity (IC50 of 31.3, 35.9, and 38.9 ppm); all of them have a hydroxyl
group in C-5. On the other hand, Genkwanin (3) has a similar structure to 2 with the main
difference being the free hydroxyl group presented in C-4′ (Figure 5), so this free hydroxyl
group could be related to the activity increase in compound 3 (IC50 of 35.9 ppm) (see
Supporting Material).

Salvigenin (5) and Galangustin (6) showed similar activities. In both cases, there is a
hydroxyl group in C-5 and a methoxyl group in C-4′ (compound 5) and C-8 (compound 6).
Salvigenin (5) showed the highest activity of all flavonoid compounds tested. A structural
comparison with compounds 3 and 6 shows the importance of the free hydroxyl group in
C-4′ as seen in the previous case (compounds 2 and 3) and the presence of a methoxyl group
in C-7. In conclusion, for this family of compounds, the IC data confirms the importance
of presenting at least a free hydroxyl group to increase the polarity, which increases the
solubility in polar media (a hydroxyl group in C-5). A hydroxyl group in C-5 and a
methoxyl group in C-8 (compound 6) or C-4′ (compound 5) could be related to the more
efficient structural requirements for a high activity against B. cinerea. Compound 8, a novel
compound identified from B. trinervis, showed a lower activity with an IC50 of 70.04 ppm.

Compounds 10 and 11 showed completely different activities (IC50 of 3.1 ppm and
59.1 ppm, respectively); this data is the first report on the fungicide activity of these
structures. Compound 10, with an alkene group in C-11-C-12 showed higher activity than
the oxidized analog compound 11 (see Figure 8). This fact manifests the importance of the
oxidation reaction in B. cinerea as a part of a detoxification pathway [68–70].
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Figure 8. Data obtained from the antifungal test of the isolated compounds 1,2-dihydrosenedigital-2-
ona (10) and (6R)-6-((6R)-6,7-dihydroxyheptan-2-yl)-3-methylcyclohex-2-en-1-one (11) from Baccharis
sp. Comparison of the activities: (a) compound 10 and (b) compound 11, showing completely
different activities (IC50 of 3.1 ppm and 59.1 ppm, respectively).

The most active compounds (5 and 10) were also tested by the poisoned food technique [36,71],
obtaining similar results to the previous micro-dilution data (Figures S28 and S29).
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5. Conclusions

Three species from the Baccharis genus (Baccharis prunifolia, Baccharis trenervis, and Bac-
charis zumbadorensis) were studied in order to isolate new compounds with antifungal activ-
ity against the phytopathogen fungus B. cinerea UCA992. This is the first report of biological
assays against the phytopathogen Botrytis cinerea which tests these isolated compounds.

For this purpose, the extracts and the fractions from an initial chromatographic analysis
were submitted to bio-guided isolation. Phytochemical investigation of the most active
fractions of DCM extracts allowed for the identification of twelve compounds. Three of
them reported here for the first time: (7A), (8), and (11). All compounds were tested against
Botrytis cinerea UCA 992. The most active compounds were Salvigenin (5) with an IC50 of
13.5 ppm and 1,2-dihydrosenedigital-2-one (10) with an IC50 of 3.1 ppm.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12121292/s1. Isolation procedure: SI-1: Scheme of the
bio-guided isolated compounds from Baccharis prunifolia; SI-2: Scheme of the bio-guides isolated
compounds from Baccharis trinervis; SI-3: Scheme of the bio-guided isolated compounds from
Baccharis Zumbadorensis. NMR data: SI-4: 1H-NMR spectrum of compound 7A in CDCl3 (400 MHz);
SI-5: 13C-NMR spectrum of compound 7A in CDCl3 (100 MHz); SI-6: gHMBC spectrum of compound
7A in CDCl3.; SI-7: gHSQC spectrum of compound 7A in CDCl3; SI-8: 1H-NMR spectrum of
compound 8 in CDCl3 (400 MHz); SI-9: 13C- NMR spectrum of compound 8 in CDCl3 (100 MHz); SI-
10: gCOSY spectrum of compound 8 in CDCl3 (400 MHz); SI-11: gHMBC spectrum of compound 8 in
CDCl3; SI-12: gHSQC spectrum of compound 8 in CDCl3; SI-12a: gHSQC correlations of compound 8;
SI-13: NOESY spectrum of compound 8 in CDCl3; SI-14: 1H-NMR spectrum of compound 11 in CDCl3
(400 MHz); SI-15: 13C- NMR spectrum of compound 11 in CDCl3 (100 MHz); SI-16: gCOSY spectrum
of compound 11 in CDCl3; SI-17: gHMBC spectrum of compound 11 in CDCl3; SI-18: gHSQC
spectrum of compound 11 in CDCl3; SI-18a: gHSQC correlations of compound 11. Antifungal activity
against Botrytis cinerea UCA 992: From SI-19 to SI-29.
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