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Abstract: Male infertility has increased in the last decade. Pathophysiologic mechanisms behind
extreme oligospermia (EO) are not yet fully understood. In new “omics” approaches, metabolomic can
offer new information and help elucidate these mechanisms. We performed a metabolomics study of
the seminal fluid (SF) in order to understand the mechanisms implicated in EO. We realized a targeted
quantitative analysis using high performance liquid chromatography and mass spectrometry to
compare the SF metabolomic profile of 19 men with EO with that of 22 men with a history of vasectomy
(V) and 20 men with normal semen parameters (C). A total of 114 metabolites were identified.
We obtained a multivariate OPLS-DA model discriminating the three groups. Signatures show
significantly higher levels of amino acids and polyamines in C group. The sum of polyunsaturated
fatty acids and free carnitine progressively decrease between the three groups (C > EO > V) and
sphingomyelins are significantly lower in V group. Our signature characterizing EO includes
metabolites already linked to infertility in previous studies. The similarities between the signatures
of the EO and V groups are clear evidence of epididymal dysfunction in the case of testicular damage.
This study shows the complexity of the metabolomic dysfunction occurring in the SF of EO men and
underlines the importance of metabolomics in understanding male infertility.
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1. Introduction

Recent years have seen an increase in the incidence of male factor infertility in
France [1] and all over the world, with a notable decline in the sperm concentration
of 1.4 to 1.6% per year, according to the geographical regions [2].

The diagnosis of male factor infertility is based on abnormalities in one or several
of the objective sperm parameters. Oligospermia, which is characterized by a decrease
in the sperm concentration, is among the most frequently encountered. It is considered
mild when the sperm concentration is between 10 and 15 million/mL (M/mL), moderate if
the concentration is between 5 and 10 M/mL, and severe when the concentration is lower
than 5 M/mL [3]. Extreme oligospermia (EO) are defined by a sperm concentration in
the ejaculate lower than 1 M/mL [4,5]. Among these, the most severe is non-obstructive
azoospermia (NOA), which is characterized by the complete absence of sperm cells in the
ejaculate, confirmed on two separate sperm samples. On the other hand, cryptozoospermia
is defined by the absence of sperm cells on the direct examination of fresh preparation,
but the presence of a very low number in the pellet after centrifugation [6]. Despite these
two pathologies being separate entities, the distinction is not always straightforward [7]
and there seems to be a continuum between the different disorders among EO. Indeed,
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studies have shown that around 20% of men with severe oligoasthenospermia will become
crypto/azoospermic in a mean time of 3 years [3,8].

EO is frequently diagnosed during an infertility workup and requires specific man-
agement. Indeed, given the high intra-individual variability in sperm parameters, and
the risk of progression towards azoospermia, these cases require the cryopreservation of
several samples of sperm, and/or testicular biopsies, as part of the preparation for assisted
reproductive technologies (ART). On the other hand, most cases of EO are idiopathic, even
though genome studies increasingly show underlying genetic causes [9].

Recently, omics technologies, and most notably metabolomics, are being applied in
the field of male infertility in an effort to understand its pathophysiology, with the seminal
fluid (SF) being at the center of analyses. Several studies have shown that, in patients with
oligoasthenospermia (OA), there is an alteration of the energetic metabolism—more specifi-
cally the beta-oxidation [10] and glycolysis [11–13] pathways—as well as a distortion of the
oxidative balance due to a decrease in certain amino acids or biogenic amines [10,14,15],
and an alteration of the seminal fluid composition [10,15]. Studies have also confirmed a
correlation between the concentrations of certain metabolites and sperm parameters: carni-
tine and carnosine were linked to concentration [16,17] and fructose linked to mobility [13].
Despite showing interesting results, most of these studies were limited by small samples
sizes, the use of multiple techniques targeting different metabolites, and the inclusion of
heterogenous populations with varying alterations of sperm parameters. To the best of our
knowledge, no study in the literature reported on the use of metabolomics in the seminal
fluid to try and find a specific signature that would help understand the pathophysiologic
mechanisms of EO. Based on that, we decided to analyze the metabolomic profile of the
SF of patients with EO, and compare it with two control groups, one with normal semen
parameters according to the WHO criteria, and one with a history of vasectomy. The latter
group would allow to differentiate and separately analyze the metabolites in epididymal
secretions.

2. Materials and Methods
2.1. Study Population

We performed a prospective observational study at the Reproductive Medicine De-
partment of the Angers University between October 2018 and February 2021.

We included three groups of patients. The EO group included patients with extreme
oligospermia, defined as < 1 M/mL, who presented to our department for an IVF/ICSI
treatment, for the cryopreservation of sperm, or for semen analysis. The vasectomy (V)
group included patients who presented to our center for a semen analysis ordered by their
physician to confirm azoospermia following vasectomy surgery. The control (C) group
included patients with normal semen parameters, according to the WHO criteria, whose
partners were undergoing intrauterine inseminations (IUI) or IVF/ICSI for female factor
infertility.

All patients in the EO group underwent a full urologic workup (physical examina-
tion, testicular ultrasound, and genetic testing) in order to rule out obstructive causes.
Excluded from the group were all patients with a positive history suggestive of secondary
causes of EO, such as orchiepididymitis, hypogonadotropic hypogonadism, or gonadotoxic
treatment.

All patients who were followed at our department during the study period and who
signed the consent form were eligible for inclusion. We excluded from the study all patients
who refused to sign the consent form, patients who did not fit in any of the three study
groups, and patients with associated medical conditions or under chronic medication. None
of the included patients had any metabolic condition or had lifestyle habits associated
with altered sperm parameters, and none were taking any medications or supplements to
improve sperm quality.
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2.2. Ethical Approval

All participants signed the consent form prior to inclusion, and the study was ap-
proved by the Ethics Committee of the University Hospital of Angers, France (Number
DC-2014-2224 and AC-2017-2993).

2.3. Sample Preparation

All semen samples were collected by masturbation in the andrology laboratory, fol-
lowing an abstinence period of 3 to 5 days. A fraction of the sample was taken for the
assessment of the sperm parameters and the planned ART, and the remainder taken for our
study. The samples were centrifuged on a density gradient to isolate the seminal plasma,
which was later centrifuged for 5 min at 10,000× g before being frozen at −80 ◦C for the
metabolomics analysis.

2.4. Targeted Metabolomics Analysis

We performed a targeted quantitative metabolomic analysis using mass spectrometry
(QTRAP 5500, SCIEX, Villebon-sur-Yvette, France) as previously described [10]. In brief,
we used the Biocrates® Absolute IDQ p180 kit (Biocrates Life sciences AG, Innsbruck,
Austria) which allows us to quantify up to 188 different metabolites: free carnitine (C0),
39 acylcarnitines (C), the sum of hexoses (H1), 21 amino acids, 21 biogenic amines, and
105 lipids. In the kit we used, the lipids are distributed in four different classes: 14
lysophosphatidylcholines (lysoPC), 38 diacyl-phosphatidylcholines (PCaa), 38 acyl-alkyl-
phosphatidylcholines (PCae), and 15 sphingomyelins (SM). We used flow-injection analysis
with tandem mass spectrometry (FIA-MS/MS) for the analysis of carnitine, acylcarnitines,
lipids and hexoses, and we used liquid chromatography (LC) to separate amino acids and
biogenic amines.

After thawing, all seminal fluid samples were vortexed and centrifuged at 4 ◦C for
5 min at 5000× g. As per the recommendations of the kit, 10 microliters of each sample
were then added to the filter on the upper wells of the 96-well plate for the FIA analysis,
and 50 microliters for the LC analysis. Three quality controls (QCs) composed of human
plasma samples at three concentration levels (QC1, QC2, and QC3) were added to validate
our analysis.

2.5. Statistical Analysis

After validation of the kit quality controls, the raw metabolomic data were normalized
with UV scaling and mean centering. For each metabolite, the mean concentration was
substracted and the difference was divided by the standard error.

We performed an unsupervised multivariate principal component analysis (PCA),
using Simca −P+ v 16.0.1 (Umetrics, Umea, Sweden), in order to visualize the distribution
of the metabolomics data and detect the grouping of samples. Hotelling’s T2 plot was used
to detect aberrant samples.

We then performed a supervised orthogonal partial least-squares discriminant analysis
(OPLS-DA) of the three groups followed by a comparison of each two groups separately.
The quality and performance of the models were assessed using different variables: the
Q2Y(cum) (goodness of the prediction), the R2Y(cum) (goodness of the fit), the cross-
validation analysis of variance (CV-ANOVA), and the permutation test (evaluation of the
overfitting risk).

The significance of the metabolites was assessed using the variable importance in
projection (VIP) plot. Only metabolites with a VIP value of at least 1 (VIP ≥ 1) were
retained.

The metabolites found during the different comparisons were all presented as volcano
plots using the Simca software −P+ v 16.0.1 (Umetrics).

We depicted the differences between the three groups on a Venn diagram using the
software Venny 2.1.0.



Metabolites 2022, 12, 1266 4 of 11

The univariate analyses comparing certain ratios and the sum of metabolites between
the groups were performed using the non-parametric Mann–Whitney test on GraphPad
Prism v 8.0 (GraphPad Software, San Diego, CA, USA). All tests were considered significant
at p-value < 0.05.

3. Results
3.1. Population Characteristics

We included a total of 61 men: 19 in the EO group, out of which 4 had azoospermia and
15 cryptozoospermia, 22 men who had a vasectomy at least 3 months before inclusion in the
V group, and 20 men with normal semen parameters according to the WHO classification
in the C group (Table S1).

3.2. Metabolomics Signature

We were able to accurately measure 114 metabolites out of the 188 analyzed by the kit.
The raw data (concentration of each metabolite in µM in each patient) are presented in the
Supplementary Table S2. In total, the following metabolites were correctly measured in the
SF of patients, each according to its measuring range: 46 glycerophospholipids out of the
90 analyzed by the kit (24/38 PCaa, 16/38 PCaa and 6/14 LysoPC), all the sphingomyelins
(15/15), 20 out of the 21 amino acids, 11 out of the 21 biogenic amines, 21 out of the
39 acylcarnitines, and all the hexoses.

According to the unsupervised PCA approach, which allows us to visualize the dataset,
we did not find any aberrant value or outliers according to Hotelling’s T2 range (Figure 1A).
We obtained a discriminating OPLS-DA model that allowed to differentiate the three
groups of patients and to confirm that the patients included in the EO group (azoospermia,
cryptozoospermia, and severe oligospermia) were homogeneous (Figure 1B). The OPLS-DA
model had a good prediction capacity (Q2cum = 70%) and good performances on the
permutation test (Q2cy = −0.45) and the CV-ANOVA (p-value = 1.33468 × 10−19).
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axes t[1] and t[2] represent the first and second component, respectively, for the PCA, and predictive
and orthogonal latent variables for the OPLS-DA.

We also obtained discriminating OPLS-DA models for the comparisons between each
two groups separately (EO vs. C; EO vs. V; V vs. C) (Table 1). These models allowed us to
determine the metabolomic signature specific to each group.

Table 1. Evaluation of the predictive capacity of different supervised models (OPLS-DA) comparing
the three groups (EAS, V, and C). All parameters indicate models with good predictive capacities and
low level of overfitting.

Comparisons Q2Y Q2(cum) Q2(cum) Permutations Test p-Value (CV-ANOVA)

V vs. C 0.96 0.87 −0.61 5.67084 × 10−14

V vs. EO 0.94 0.76 −0.62 7.38401 × 10−8

EO vs. C 0.84 0.75 −0.53 5.97088 × 10−10
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The metabolites allowing the distinction between the groups are represented as vol-
cano plots (Figure 2), and the metabolites implicated in these models, two at a time, are
the ones with VIP > 1 (list presented in Supplementary Table S3). The metabolites with a
negative p(corr) are decreased, and those with a positive p(corr) are increased.
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All the results are globally represented in the Venn diagram (Figure 3), which shows
the 23 metabolites distinguishing the C group (mainly 13 amino acids), the 15 metabolites
distinguishing the V group (mainly sphingomyelins (n = 7) and free carnitine (C0)), and the
9 metabolites distinguishing the EO group. The complete list of metabolites is presented as
supplementary data (Table S4).
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Figure 4 represents all the metabolites and the groups of metabolites allowing to
distinguish the three groups.
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The amino acid level and the polyamines (spermine and spermidine) were signifi-
cantly higher in the C group compared with the other two groups (Figure 4). The sum of
polyunsaturated fatty acids (PUFA) and free carnitine progressively decreased between
the three groups: they were significantly highest in the C group and lowest in the V group
(Figure 4). The sphingomyelins were significantly lower in the V group compared with the
C and EO groups (Figure 4).

4. Discussion

The seminal fluid is made up of a mixture of secretions from the epididymis, prostate,
and seminal vesicles, and reflects the exchanges between the genital tract and the sperm
cells. It is essential for the survival of the sperm cells, since it contributes to their nutrition,
maturation, and protection from their fertilizing capacity (decapacitation). The exchanges
between the sperm cells and the SF occur via exosomes, which represent approximately
3% of its proteins, making it among the richest biologic fluids in exosomes. The exosomes
are mainly proteasomes and epididymosomes [18], the latter being secretion vesicles of the
epididymal epithelium that are essential for the acquisition of the fertilizing capacity of the
sperm cells. They are rich in sphingomyelins and lipids, but contain also RNAs, proteins,
and several metabolites such as amino acids [19,20].

In order to analyze the SF, we used a metabolomics approach targeting 188 metabolites
with the objective of finding a specific signature that would differentiate men with EO from
men with normal semen parameters. We also included a group of vasectomized men in
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order to have a more detailed understanding of the structures and mechanisms implicated.
The signature we found is comprised mainly of amino acids (AA), polyunsaturated fatty
acids (PUFA), free carnitine (C0), spermine, and spermidine.

We found a decrease in AA in the EO and V groups when compared with controls.
Besides being essential components of proteins, AA play several important roles. It is well
known that, in humans, they are abundant in the SF and that they play an essential part in
reproduction [21]. On the other hand, in animals, supplementation with certain AA has
been shown to improve sperm quality, the fertilizing capacity of sperm cells, and their
resistance to cryopreservation [22–24]. In men, the administration of AA with antioxidant
properties helps to maintain sperm DNA integrity, and the functional parameters of the
sperm cells during the cryopreservation process [25].

In infertile men, the levels and composition of AA in the SF seem to be altered. Indeed,
studies have shown a global decrease in AA in the semen of azoospermic men [26]. More
recently, mass spectrometry studies analyzing the AA content of the SF have revealed
an important imbalance in men with asthenospermia [21,27] and oligospermia [21], with
a significant decrease in their levels compared with controls. Likewise, metabolomics
studies have shown several modifications in the expression profile of AA in the SF ac-
cording to the sperm quality or the patients’ fertility (metabolism of branched AA) [14],
asthenospermia [28], oligoasthenoteratospermia (OATS) [10,12,15], and unexplained in-
fertility [11,29–31]. In general, the majority of studies make the case for a decrease in
the concentration of AA in the SF in cases of infertility, but there is no consensus on the
expression profiles of AA that could be specific to certain sperm alterations, mainly because
of the large heterogeneity in the profiles assessed. Our study has focused on EO, a very
well-defined and severe phenotype of sperm alteration, and we found a significant decrease
in the concentration of the majority of the AA compared with men with normal semen
parameters. The presence of sperm cells in the ejaculate does not seem to modify the
content in AA of the SF, and a glandular origin of these AAs has been proposed [26]. The
fact that the concentration of AA was also lower in vasectomized men (V group) than in
controls makes the case for an epididymal origin of the AA. Furthermore, the fact that
they are likewise decreased in men with EO suggests an alteration in the “epididymal
production” in men with secretory problems.

Our study has also found a significant and progressive decrease in the concentration of
PUFA between the C, EO, and V groups, respectively. Lipids are the major components of
the sperm membranes, which are mainly comprised of cholesterol and phospholipids that
carry saturated and polyunsaturated fatty acids, distributed in an asymmetrical manner.
The lipid composition of the spermatic membrane varies across the different developmental
stages of sperm cells. During spermatogenesis, there is an integration of PUFA in the
membrane via the transformation of essential nutritional fatty acids by elongation and
desaturation steps in the germinal cells [32]. During epididymal maturation, there is an
increase in the unsaturation level of the fatty acids [33], especially with the incorporation of
Docosahexaenoic acid (DHA), which is the main PUFA of the spermatic membrane [34]. The
addition of cholesterol during maturation and the upkeep of an asymmetrical distribution
of phospholipids allow to ensure a certain membrane stability during periods of stasis
and ejaculation [35]. In the female genital tract, and after the cholesterol efflux, they allow
increases in the membrane fluidity, which is crucial for the fusion of the sperm and oocyte
membranes [35,36].

The link between lipids and male fertility has been proven by several studies analyzing
the plasmatic membrane and/or the seminal fluid. The DHA concentration in sperm has
been correlated to morphology, motility, and sperm concentration [34,37–39]. Many studies
have also shown a decrease in the PUFA concentration in the sperm cell membranes in men
with asthenospermia [38,40–42] and oligospermia [39].

On the other hand, there is a correlation between the lipid composition of the sperm
membrane and that of the seminal plasma [43]. Several metabolomics studies have shown
an increase in the level of saturated fatty acids [28,44], as well as a decrease in the PUFA
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levels [34,38] in the seminal plasma of men with asthenospermia, a finding also noted in
men with oligoasthenospermia [10]. Finally, it has been proposed that the sperm and the
seminal fluid composition in fatty acids could be predictive markers of the success of the
sperm freezing procedure [45]. The exact mechanisms of the epididymal rearrangement
of the lipid composition of the sperm membranes are not yet fully understood, but they
seem to involve the epididymosomes [46]. Indeed, studies have described a variability in
the lipid composition of the epididymosomes in the epididymis itself, with the presence
at the level of the head of vesicles rich in PUFA and at the level of the tail of vesicles rich
in cholesterol and phospholipids [46]. In our study, the decrease in PUFA in the V group
is an argument in favor of their epididymosomal origin. The concomitant decrease in
sphingomyelins, which are important components of epididymosomes, further supports
this hypothesis. Likewise, the decrease in PUFA in the EO group suggests an impairment
of the epididymosomal function.

We have also found a progressive decrease in free carnitine (C0) between the control,
EO, and V groups. C0 is well known to be primarily of epididymal secretion [47] and
has been used as a seminal biochemistry marker. Studies have reported a decrease in
free carnitine in infertile men, more specifically men with severe OA [10], and found a
correlation between the concentration of C0 and several sperm parameters [48,49].

Finally, we have observed a decrease in several polyamines, such as spermine and
spermidine, in the EO and V groups, compared with the controls. These polyamines,
which are derived from arginine, play several roles in spermatogenesis and act on cellu-
lar proliferation [50]. Spermine also has a role in sperm cell decapacitation [51] and has
antioxidant activity that neutralizes free radicals [52]. Polyamines are known to be of pro-
static origin [53] but studies have also reported a testicular secretion by Sertoli and Leydig
cells [54]. Other studies have indirectly confirmed that finding by showing an alteration of
the polyamines concentration in men following vasectomies [55]. Metabolomics studies
of the seminal fluid have also shown decreased concentrations of spermine in men with
OATS [10,15] and asthenospermia [14].

Surprisingly, we noticed a great similarity between the signature of EO and vasec-
tomized men. That overlapping raises the question whether there is also an epididymal
damage associated to the testicular dysfunction (anomalies of spermatogenesis). This
double dysfunction has two major consequences. The first is that it highlights the difficulty
of finding seminal fluid biomarkers that could help distinguish excretory (non-testicular)
from secretory (testicular and non-testicular) azoospermia. The second is that it could
constitute an argument in favor of the hypothesis of the testicular dysgenesis syndrome,
which states that, in many cases, exposure to environmental toxins, such as endocrine
disruptors, and genetic factors can cause an alteration of the spermatogenesis but also
malformations of the genital tracts, thus leading to the development of azoospermia and
oligospermia [56,57].

5. Conclusions

In the current study, we have found a specific signature characterizing extreme
oligospermia that includes certain metabolites already linked to infertility in previous
studies. Globally, all these metabolites are decreased in men with EO when compared
with controls, which rules out a signature linked to the consumption of metabolites by
sperm cells. Indeed, the absence or the very low numbers of sperm cells could have led
to a non-consumption of metabolites, which would have had higher concentrations than
in men with normal semen parameters. This is why this signature most likely reflects a
production problem, linked to a dysregulation of the functions and secretions of the genital
tract.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/metabo12121266/s1. Table S1: Characteristics of partici-
pant. Table S2: raw data table (attached to the file). Table S3: The relevant metabolites characterizing
the multivariate signature of the three groups compared two by two. Molecules were sorted by
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decreasing VIP value. For each metabolite, the table shows the family, the p(corr) value, and the VIP
value. Table S4: Metabolites of the Venn diagram.
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48. Gürbüz, B.; Yalti, S.; FiÇicioğlu, C.; Zehir, K. Relationship between Semen Quality and Seminal Plasma Total Carnitine in Infertile
Men. J. Obstet. Gynaecol. 2003, 23, 653–656. [CrossRef]

49. Sheikh, N.; Goodarzi, M.; Bab Al-Havaejee, H.; Safari, M.; Amiri, I.; Najafi, R.; Hadeie, J. L-Carnitine Level in Seminal Plasma of
Fertile and Infertile Men. J. Res. Health Sci. 2007, 7, 43–48.

50. Pegg, A.E. Functions of Polyamines in Mammals. J. Biol. Chem. 2016, 291, 14904–14912. [CrossRef] [PubMed]
51. Rubinstein, S.; Breitbart, H. Role of Spermine in Mammalian Sperm Capacitation and Acrosome Reaction. Biochem. J. 1991,

278, 25–28. [CrossRef] [PubMed]
52. Rider, J.E.; Hacker, A.; Mackintosh, C.A.; Pegg, A.E.; Woster, P.M.; Casero, R.A. Spermine and Spermidine Mediate Protection

against Oxidative Damage Caused by Hydrogen Peroxide. Amino Acids 2007, 33, 231–240. [CrossRef] [PubMed]
53. Mann, T. Secretory Function of the Prostate, Seminal Vesicle and Other Male Accessory Organs of Reproduction. J. Reprod. Fertil.

1974, 37, 179–188. [CrossRef] [PubMed]
54. Lefèvre, P.L.C.; Palin, M.-F.; Murphy, B.D. Polyamines on the Reproductive Landscape. Endocr. Rev. 2011, 32, 694–712. [CrossRef]

[PubMed]
55. Jakobsen, H.; Rui, H.; Thomassen, Y.; Hald, T.; Purvis, K. Polyamines and Other Accessory Sex Gland Secretions in Human

Seminal Plasma 8 Years after Vasectomy. J. Reprod. Fertil. 1989, 87, 39–45. [CrossRef]
56. Thorup, J.; McLachlan, R.; Cortes, D.; Nation, T.R.; Balic, A.; Southwell, B.R.; Hutson, J.M. What Is New in Cryptorchidism and

Hypospadias–a Critical Review on the Testicular Dysgenesis Hypothesis. J. Pediatr. Surg. 2010, 45, 2074–2086. [CrossRef]
57. Xing, J.-S.; Bai, Z.-M. Is Testicular Dysgenesis Syndrome a Genetic, Endocrine, or Environmental Disease, or an Unexplained

Reproductive Disorder? Life Sci. 2018, 194, 120–129. [CrossRef]

http://doi.org/10.1016/j.plefa.2007.07.001
http://doi.org/10.1111/j.1365-2605.2008.00874.x
http://www.ncbi.nlm.nih.gov/pubmed/18399983
http://doi.org/10.3109/01485018108999329
http://www.ncbi.nlm.nih.gov/pubmed/7316607
http://doi.org/10.1111/and.12744
http://www.ncbi.nlm.nih.gov/pubmed/28124472
http://doi.org/10.1111/j.2047-2927.2012.00040.x
http://doi.org/10.1111/aji.13338
http://www.ncbi.nlm.nih.gov/pubmed/12338489
http://doi.org/10.1080/01443610310001604466
http://doi.org/10.1074/jbc.R116.731661
http://www.ncbi.nlm.nih.gov/pubmed/27268251
http://doi.org/10.1042/bj2780025
http://www.ncbi.nlm.nih.gov/pubmed/1883333
http://doi.org/10.1007/s00726-007-0513-4
http://www.ncbi.nlm.nih.gov/pubmed/17396215
http://doi.org/10.1530/jrf.0.0370179
http://www.ncbi.nlm.nih.gov/pubmed/4593605
http://doi.org/10.1210/er.2011-0012
http://www.ncbi.nlm.nih.gov/pubmed/21791568
http://doi.org/10.1530/jrf.0.0870039
http://doi.org/10.1016/j.jpedsurg.2010.07.030
http://doi.org/10.1016/j.lfs.2017.11.039

	Introduction 
	Materials and Methods 
	Study Population 
	Ethical Approval 
	Sample Preparation 
	Targeted Metabolomics Analysis 
	Statistical Analysis 

	Results 
	Population Characteristics 
	Metabolomics Signature 

	Discussion 
	Conclusions 
	References

